

Reaction Chemistry & Engineering

Integrated Low Carbon H2 Conversion with In-Situ Carbon Mineralization from Aqueous Biomass Oxygenate Precursors by Tuning Reactive Multiphase Chemical Interactions

Journal:	Reaction Chemistry & Engineering
Manuscript ID	RE-ART-12-2022-000542.R1
Article Type:	Paper
Date Submitted by the Author:	09-Mar-2023
Complete List of Authors:	Ochonma, Prince; Cornell University Noe, Christopher; Cornell University Mohammed, Sohaib; Cornell University, Civil and Environmental Engineering Mamidala, Akanksh; Cornell University Gadikota, Greeshma; Cornell University,

SCHOLARONE[™] Manuscripts

1	
2	
3	Integrated Low Carbon H ₂ Conversion with In-Situ Carbon
4	Mineralization from Aqueous Biomass Oxygenate Precursors by
5	Tuning Reactive Multiphase Chemical Interactions
6	Prince Ochonma, ¹ Christopher Noe, ² Sohaib Mohammed, ³ Akanksh Mamidala, ³
7	and Greeshma Gadikota ^{1,3*}
8	¹ Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell
9	University, 113 Ho Plaza, Ithaca, NY 14853
10	² Department of Chemistry, College of Art and Science, Stony Brook University, Stony Brook,
11	NY 11790
12	³ School of Civil and Environmental Engineering, Cornell University, 527 College Avenue,
13	117 Hollister Hall, Ithaca, NY 14853
14	
15	
16	

^{*} Corresponding Author. Phone: +1 607-255-4796. E-mail: gg464@cornell.edu

1 Abstract

Meeting our rising demand for clean energy carriers such as H₂ from renewable biomass resources 2 3 is challenged by the co-emission of CO₂ and CH₄. To address this challenge, we design novel 4 reactive separation pathways that integrate multiphase chemical reactions by harnessing Ca & Mg bearing minerals as a sorbent to capture CO₂ released during the hydrothermal deconstruction of 5 6 aqueous biomass oxygenates to produce H₂ and solid carbonates via low temperature aqueous 7 phase reforming and thermodynamically downhill carbon mineralization. Earth abundant catalysts such as Ni/Al₂O₃ are effective in producing H₂ yields as high as 79% and 74% using ethylene 8 9 glycol and methanol in the presence of Ca(OH)₂ as the alkaline sorbent, without contaminating or 10 deactivating the catalyst. H₂ yields with in-situ carbon mineralization using Ni or Pt/Al₂O₃ catalyst are enhanced based on the following order of reactivity: acetate < glycerol < methanol < formate 11 12 < ethylene glycol. These studies demonstrate that the multiphase chemical interactions can be successfully tuned to enhance H_2 yields through the selective cleavage of C-C bonds using 13 14 Ni/Al₂O₃ catalysts to deconstruct biomass oxygenates for producing H₂ and CO₂, and *in-situ* 15 carbon mineralization by harnessing abundant alkaline materials, as demonstrated using ladle slag. 16 This approach unlocks new scientific possibilities for harnessing multiple emissions including 17 abundant organic-rich wastewater streams and alkaline industrial residues to co-produce low carbon H_2 and carbonate-bearing materials for use in construction by using renewable solar 18 19 thermal energy resources.

Keywords: H₂ conversion, *in-situ* carbon mineralization, oxygenates, aqueous phase reforming,
biomass & wastewater valorization, multiphase chemical interactions.

2

1. Introduction

Advancing sustainable low carbon chemical pathways for meeting our energy needs while limiting 3 detrimental impacts on climate and the environment is our societal and scientific grand challenge.¹ 4 5 One emerging approach to realize rapid decarbonization is by harnessing hydrogen as a sustainable and clean energy carrier^{2,3} for use in industrial processes, fuel cells, transportation, and heating. 6 Hydrogen generated with inherent carbon removal and via electrolysis of water resources has the 7 8 potential to decarbonize sectors which pose a challenge to abating CO₂ emissions such as aviation, 9 long distance transportation, and shipping which contributes to ~ 2.2 Gt of CO_2 emissions annually.¹ Current methods for producing hydrogen at commercial scales requires energy-10 11 intensive, high-temperature steam methane reforming (SMR) of non- renewable feedstocks which results in significant CO₂ emissions.⁴ SMR for H₂ production contributes to about 3% of global 12 CO_2 emissions annually (~1200 MMT of CO_2 per year).⁵ Despite the promise of H₂ generation 13 via water electrolysis (also known as green electrolysis), significant scientific and technological 14 advances are needed to achieve favorable economics for scalable deployment.⁶ 15

16

One of the less explored but highly promising approaches is to harness low value and renewable aqueous biomass oxygenates such as bio-derived methanol, ethylene glycol, ethanol, formate and acetate for producing H₂.^{4,7–9} Depending on the sourcing and processing conditions, the use of aqueous bio derived feedstocks for H₂ production has the potential to be carbon neutral.¹⁰ Bioderived oxygenates are abundant in wastewater from biomass processing. For instance, biomethanol, glycerol, and ethylene glycol are major by-products of bio-based fuels processing.^{11,12} In 2020, about 1,817 million gallons of biodiesel was produced in the United States.¹³ Every gallon of biodiesel produced generates approximately 1.05 pounds of glycerol.¹⁴ Formate and acetate are produced in massive quantities from the anaerobic digestion of food waste and wastewater sludge.^{15,16} Upcycling aqueous biomass oxygenates to produce H₂ is a less conventional but a unique approach that valorizes these waste streams and enhances resource utilization as opposed to treating it as a waste in need of remediation.

6

Approaches to produce H_2 from aqueous biomass oxygenates at 200-300°C in pressurized N_2 7 environments in the presence of a metal catalyst^{8,17} have resulted in high H₂ yields. However, in 8 9 this process, which is also known as Aqueous Phase Reforming (APR), H₂ evolution is accompanied by the co-generation of CO₂. One scientific challenge in APR lies in enabling the 10 cleavage of C-C bonds to promote H₂ and CO₂ evolution as opposed to C-O bond cleavage which 11 results in CH₄ formation. This challenge has been resolved by using catalysts such as Ni and Pt 12 which have shown to favor the cleavage of C-C bonds.^{8,17} One of the key advantages of this 13 14 approach is that the water content co-present with biomass oxygenates can be synergistically harnessed for H₂ conversion. Potentially limiting reaction kinetics and thermodynamics due to 15 elevated pressures and hydrothermal conditions are overcome by harnessing catalysts to 16 17 selectively cleave biomass oxygenate molecules. In contrast to conventional biomass gasification which occurs at temperatures $>500^{\circ}$ C,¹⁸ this approach harnesses significantly lower temperatures 18 19 in the range of 200-250°C which can be achieved using renewable solar thermal energy resources.19 20

21

To date, research conducted on enhancing H₂ yields from aqueous biomass oxygenates has focused
 on the role of catalysts in enhancing reactivity. For example, Vaidya and Lopez-Sanchez⁸

summarized the influence of group VIII metal catalysts such as Ni and Pt on metal oxide supports 1 (e.g., Al_2O_3) in aiding the C-C cleavage of biomass oxygenate molecules to produce H_2 and CO_2 . 2 Extensive studies have been conducted on harnessing biomass oxygenates such as glycerol,²⁰ 3 sorbitol,²¹ xylitol,²² methanol,¹⁷ ethanol,²³ acetic acid,²⁴ and butanol²⁵. Conversion of 10–60 wt.% 4 aqueous feed concentrations of glucose,²¹ cellulose,²⁶ and glycols²⁷ have been reported, 5 6 demonstrating that this process is also effective for converting non-volatile biomass feedstocks into H₂. Despite the promise of aqueous phase reforming, H₂ selectivity remains a challenge. 7 Competing methanation reaction which involves the reaction of H₂ and CO/CO₂⁸ to produce CH₄ 8 9 limits H₂ yield and selectivity. Slower kinetics at lower temperatures in the range of 200-250°C as opposed to temperatures greater than 500°C may limit H₂ yields due to the endothermic nature of 10 biomass deconstruction pathways.²⁸ In addition to H₂ selectivity and kinetic limitations, significant 11 quantities of CO_2 are co-produced, which implies that an additional unit for separation and 12 purification of gas streams is essential to produce low carbon H_2 . Thus, novel chemical pathways 13 need to be designed for highly selective, energy- and atom-efficient reactive separation of CO₂ 14 integrated with H₂ conversions from aqueous biomass oxygenate precursors. 15

16

Several approaches exist for CO_2 capture and removal post energy and resource conversion processes. CO_2 capture involves separating CO_2 in dilute flue gas streams to produce a CO_2 -rich stream and CO_2 -lean streams using adsorbents, absorbents, and membranes.^{29–31} Furthermore, approaches to remove CO_2 via carbon mineralization obtained post CO_2 capture have been investigated. Carbon mineralization is a thermodynamically downhill pathway for converting gaseous CO_2 into solid carbonates. Specifically, pH swing approaches in which acids are used to facilitate the dissolution of alkaline-bearing minerals and residues followed by bases to enhance 1 carbonate concentrations for solid carbonate formation, have been well established.³² As an 2 alternative to these carbon mineralization pathways, single step approaches in which regenerable 3 solvents are used to enhance CO_2 capture and mineralization to produce solid carbonates which 4 results in the chemical regeneration of the solvents^{30,33,34} has been shown to be very effective 5 without the need for external reagents for pH swing.

6

7 While post combustion CO_2 capture and mineralization has been shown to be effective, integration of H₂ conversion with CO₂ mineralization remains less explored. Coupling thermodynamically 8 9 downhill carbon mineralization pathways with uphill energy and resource conversions has the net impact of lowering the overall energy needs while contributing to inherent carbon removal. For 10 example, coupling the water gas shift reaction with carbon mineralization of Ca- and Mg-silicates 11 is favored by elevated temperatures in the range of 150-250°C and pressurized gaseous 12 environments.³⁵ This approach is inspired by evidence of more than 80% conversion of olivine 13 14 $((Mg, Fe)_2SiO_4)$ to magnesium carbonate at elevated partial pressures of CO₂ in the range of 100-150 atm and temperatures in the range of 150 - 185°C.³⁶ Enhanced H₂ yields with inherent carbon 15 removal via mineralization remains less explored in the context of using aqueous biomass 16 17 oxygenates. The conditions that favor carbon mineralization including elevated temperatures, high CO₂ partial pressures and aqueous slurry environments are well-aligned with the deconstruction 18 19 of biomass oxygenates to produce H_2 with inherent removal of CO_2 . Elevated temperatures increases the reactivities of Ca- and Mg-oxides, hydroxides, and silicates ³⁷ and enhance the 20 precipitation of solid Ca- and Mg-carbonates whose solubility decreases with increasing 21 temperature³⁸ The high pressure at which these reactions proceeds also implies enhanced CO₂ 22 capture rates, due to increased CO₂ solubility.³⁹ 23

In a prior study, we showed that suppression of methane formation using catalysts and the presence of alkaline resources (e.g., calcium oxide) to capture CO₂ are effective in enhancing H₂ yields from bio-derived aqueous feedstocks such as ethanol, methanol, glycerol, ethylene glycol, acetone, and acetic acid.²⁸ The reaction representing enhanced H₂ yield with inherent carbon removal is as follows:

$$6 \quad C_xH_yO_z + xCaO + (2x-z)H_2O \rightarrow xCaCO_3 + (2x-z+0.5y)H_2 \qquad (Reaction 1)$$

The proposed *in-situ* CO₂ capture approach from aqueous biomass oxygenate resources does not 7 require expensive separation of CO₂, utilizes enormous quantities of available feedstocks, and can 8 9 be integrated into existing biorefineries. A key consideration is the suppression of methane evolution using a catalyst such as Pt or Ni. Platinum supported on alumina has been shown to 10 result in high yield and selectivity of H₂.²⁷ As an alternative to catalysts synthesized from precious 11 metals, nickel-bearing catalysts have been proposed as an economical alternative. Low H₂ 12 selectivity in the presence of Ni-based catalysts¹⁷ motivated research efforts to dope these catalysts 13 with Cu, Ce and Sn and use various metal oxides and carbonaceous materials as supports to 14 enhance H₂ selectivity.^{40–42} 15

16

Prior work showing the thermodynamic feasibility of enhancing H₂ yields with inherent carbon removal from aqueous biomass oxygenates using calcium oxide has opened new possibilities for harnessing alkaline industrial residues bearing calcium oxide. Among alkaline industrial residues, ladle slag (LS) generated as a by-product of post-processing molten steel produced from the EAF steel making process has a significant potential to store CO_2 due to its high calcium and magnesium content.⁴³ However, large quantities of these residues still end up in landfills with significant disposal costs and detrimental environmental impacts. The valorization potential of these materials

is low due to their weak cementitious properties, low strength, and potential leaching of heavy 1 metals which can inhibit utilization for several key applications.⁴⁴ Accelerated carbon 2 mineralization of ladle slag can upgrade their chemical and mechanical properties which is 3 beneficial to subsequent utilization as construction materials in blended cement or 4 concrete.^{44,45} Incorporating compositions as low as 10 wt% of carbonate-bearing steel slag in 5 construction materials has shown to enhance the compressive strength from about 33–50 MPa³³ 6 7 Recent studies have reported that the heavy metal immobilization potential can also be enhanced by carbon mineralization.^{44,46} The direct use of alkaline industrial residues rich in Ca- or Mg-8 9 oxides and hydroxides circumvents the need to produce high purity Ca- or Mg- oxides and hydroxides for carbon mineralization. The proposed approach contributes to the upcycling of 10 multiple low-value streams including aqueous biomass oxygenates and ladle slag to produce H_2 11 with inherent carbon removal and can establish a waste-to-resource supply chain for advancing a 12 low carbon H₂ economy, as shown in **Figure 1**. 13

14

Despite the promising potential of these pathways to produce H₂ with inherent carbon removal, 15 16 several open scientific challenges remain. First, the kinetics and mechanisms associated with 17 enhanced H_2 recovery with inherent carbon removal from biomass oxygenates remain unresolved. Second, the hypothesis that nickel-bearing catalyst can be effective in enhancing H_2 yields with 18 19 inherent carbon removal as an alternative to platinum-bearing catalyst, has not been investigated. 20 Third, the effectiveness of various reaction modes in enhancing H_2 yield and selectivity such as 21 those in which the alkaline residues, catalysts and oxygenates are co-present in the aqueous phase 22 (referred to as Mode I in this study) versus placing the alkaline residue in the gas phase while the 23 biomass oxygenates, and catalysts are in the aqueous phase (referred to as Mode II in this study)

has not been studied. Fourth, the enhancement in H_2 yield and selectivity associated with using 1 2 alkaline industrial residues such as ladle slag has not been contrasted with that of pure calcium 3 hydroxide. Fifth, the mechanisms associated with the deconstruction of biomass oxygenates and associated reactivity based on their structure has not been elucidated. Sixth, identification of the 4 rate limiting step in multiphase chemical transformations is not trivial. In the context of enhanced 5 6 H_2 recovery with inherent carbon removal, biomass deconstruction, selective H_2 formation over 7 CH₄ evolution, CO₂ solubility, or the conversion of CO₂ to solid carbonate could be rate limiting. 8 Identifying the rate limiting step is crucial for developing approaches to accelerate low carbon H_2 9 recovery. Therefore, the aim of this study is to elucidate the mechanisms and rates of enhanced H_2 production with inherent carbon removal from aqueous biomass oxygenates such as methanol, 10 ethylene glycol, acetate, formate, and glycerol using calcium hydroxide as the alkaline sorbent. 11 The effectiveness of using ladle slag for in-situ carbon capture is investigated. 12

13

14 The proposed approach of harnessing low value aqueous biomass oxygenates for enhanced H_2 yield with inherent carbon removal is transformative. This approach adds to the portfolio of 15 technologies for Bioenergy with Carbon Capture and Storage (BECCS) which involves harnessing 16 bioenergy while capturing and storing biogenic CO₂.⁴⁷ In 2018, IPCC reported that BECCS can 17 contribute to carbon offsets to the order of ~ 0.5 - 5 GtCO₂/year with costs in the range of \$ 100 -18 \$ 200/ton of CO2.48 These estimates were based on conventional BECCS technologies where 19 20 biomass is co-fired with coal in a power plant and the captured CO₂ is stored in a subsurface geologic environment. The proposed approach of producing H₂ with inherent carbon removal from 21 22 aqueous biomass oxygenates eliminates the need for *in-situ* CO₂ storage and monitoring over long 23 periods of time. Advances in solar thermal energy technologies facilitate distributed conversion of 1 aqueous biomass oxygenates to H_2 with inherent carbon removal. Fundamental mechanistic 2 insights into the deconstruction of aqueous biomass oxygenates to produce low carbon H_2 3 developed through this study are crucial for the scalable realization of these pathways for 4 implementation.

5 2. Materials and Methods

6 2.1 Materials

7 High purity oxygenates such as methanol (99.9%, Thermo Fisher Scientific), glycerol (99.5%, 8 Thermo Fisher Scientific), ethylene glycol (99.7%, Thermo Fisher Scientific), sodium acetate (99%, Fisher Bioreagents), and sodium formate (99.9% Acros Organics) are used as model 9 10 wastewater bio-oxygenates in this study. Platinum (Pt) and nickel (Ni) on alumina (Al_2O_3) support 11 were used as catalyst in these experiments. Pt/Al_2O_3 catalyst with a composition of 5 wt.% is obtained from Sigma Aldrich. Ni/Al₂O₃ catalyst with a composition of 5 wt. % is synthesized in 12 13 the lab via the incipient wetness impregnation method. To synthesize Ni/Al₂O₃ catalyst, γ -Al₂O₃ (Strem Chemicals Inc., 97%) is impregnated with a solution bearing $Ni(NO_3)_2.6H_2O$ (Thermo 14 Fisher Scientific). Post impregnation, the samples are dried at 80 °C, and then calcined or reduced 15 in flowing N₂ or H₂ (95%:5%) gas stream at 450 °C (± 5 °C) for 5 hours. Calcium hydroxide 16 (Thermo Fisher Scientific), and Ladle Slag (LD) from Nucor's Electric Arc Furnace (EAF) steel 17 making plant in Auburn, NY are used as the alkaline sorbents for this study. 18

19 Elemental Analysis of Ladle Slag

The major constituent compositions of ladle slag used as an alkaline sorbent in this study are determined using Wavelength Dispersion X-Ray Fluorescence (WD-XRF, Panalytical Axios). Prior to elemental analyses, the samples are crushed and pulverized followed by the formation of a homogenous glass disk by the fusion of the sample and a lithium tetra- borate/lithium metaborate
mixture. The Loss on Ignition (LOI) is determined separately and gravimetrically at 1000°C. The
prepared disks are analyzed by Wavelength Dispersion X-Ray Fluorescence (WD-XRF). The LOI
is included in the matrix correction calculations, which are performed by the XRF software. XRay Photoelectron Spectroscopy (XPS, Scienta Omicron ESCA-2SR, Al Kα) surface analysis and
Inductively Coupled Plasma Optical Emission Spectrometry are utilized to confirm the weight
ratio of Ni and Pt metals to Al₂O₃ support used in this study as shown in Figure S1.

8 Determination of the chemical composition of the solid samples

The thermal behavior of the alkaline sorbents and their reacted products are determined using a 9 10 Thermo Gravimetric Analyzer (TGA, Discovery SDT 650, TA instrument), and Total Carbon 11 Analysis (TCA, LECO CS 844). In a typical TGA run, samples are exposed to a N₂ environment (flow rate: 50 ml/min) as the temperature is ramped from 25 °C to 1000 °C at a rate of 10 °C /min. 12 13 Based on the weight drop related to each dehydroxylation or calcination temperature, the carbonate phase in the solid sample is identified and the extent of carbon mineralization is determined. 14 15 Detailed information on the estimation of the extent of carbonation can be found in the 16 supplementary information. During the TCA run, samples are placed in a ceramic boat and combusted in the presence of O₂ at temperatures as high as 1000 °C. The combustion process 17 18 converts all carbon – both inorganic and organic – into CO₂ and CO, and the total carbon is 19 reported. In this study both the TCA mode and TGA techniques are used to estimate the extents of 20 carbon mineralization, and the results of both methods are compared to assess consistency. The crystalline phases present in alkaline sorbents, catalysts and reaction products are detected using 21 22 X-ray diffraction (XRD, Bruker D8 Advance ECO powder diffractometer, Bruker with Cu Ka radiation (40 kV, 25 mA)). The samples are scanned over the 2θ range from 20° to 80°. The FTIR
spectra of powder and liquid samples are recorded with a FTIR spectrometer (ThermoFisher
Scientific). Thirty-two scans are collected for each measurement in the spectral range of 4,000–
400 cm⁻¹ with a resolution of 4 cm⁻¹ and the average was taken as a representative measurement.
Figure S2a represents the FTIR spectra corresponding to various oxygenates for a baseline
comparison.

7 Determination of the morphological features of the solid samples

The particle size distributions of the materials are determined using a particle size analyzer (Anton 8 Paar). Figure S3 (a) represents the particle size distribution of ladle slag. The pore size 9 10 distributions (PSD) surface areas, and pore volumes of starting materials, and synthesized particles are determined from N₂ adsorption-desorption isotherms using the Brunauer-Emmett-Teller 11 technique (BET) (Quantachrome Autosorb iQ Analyzer, Boynton Beach, FL). Before measuring 12 13 the adsorption-desorption isotherms, the synthesized samples are outgassed at 120 °C for 24 h. The total pore volume, average pore diameters and pore size distributions are obtained from the 14 15 N₂ adsorption branches of isotherms using the Barrett–Joyner–Halenda (BJH) method.

16 Determination of the chemical compositions of liquids using NMR spectroscopy

The compositions of the oxygenate molecules are determined using Nuclear Magnetic Radiation (NMR). NMR data are acquired on a 500 MHz Bruker AVIII spectrometer equipped with a Prodigy BBO probehead. To calculate mass composition, ¹D and ¹H spectra are acquired with 4 scans, 30 seconds relaxation delay, 10 kHz spectral width, and 3.3 s acquisition time. The spectra are processed in MNova (version 14.2.3, Mestrelab Research S.L.). The FID are zero filled to 128k points prior to Fourier transform. Automatic phase correction is applied followed by baseline correction with 5th-order Bernstein polynomials. Spectra are superimposed, and frequency aligned using solute signals, and integrated using automatic linear correction for solute signals. Minor products are identified by suppressing the water signal using WET as implemented in TopSpin 3.6.4 (Bruker BioSpin). WET-1H spectra are acquired with 64 scans, 3 seconds relaxation delay, kHz spectral width, and 2 s acquisition time. Figure S2b represents the NMR spectra corresponding to various oxygenates for a baseline comparison.

8 2.2 Experimental Setup

The experiments to investigate enhanced H₂ recovery from aqueous biomass oxygenates are 9 10 conducted in a stainless-steel stirred reactor (Micro Bench Top Reactor, Parr Instrument 11 Company), maintained at a temperature of 240 °C (\pm 5 °C), 50 bar (\pm 1 bar) N₂ pressure, and stirring rate of 10 rpm (\pm 2 rpm). Figure 2 (a) shows a schematic representation of the reactor system. 12 13 Aqueous biomass oxygenates with a composition of 3 wt.% are prepared by mixing high purity oxygenates in an appropriate volume of distilled water, and 3 g (\pm 0.05 g) of either Ni or Pt on 14 15 alumina catalyst is used in the experiments that required a catalyst. Experiments are also performed 16 without a catalyst as the base case. Prior to the start of each experiment, the system is purged with N_2 for 3–5 min to remove any trapped gas impurities. The system is then heated, and the gas 17 pressure is set to the desired value. The start of the reaction is marked by reaching the desired 18 19 temperature setpoint of 240 °C (\pm 5 °C). At the end of the reaction, the reactor is cooled back to 20 room temperature, and the products are collected and analyzed.

The product gases are analyzed by connecting the reactor to a gas chromatograph (GC) equipped with four columns connected in series (MS and Poraplot Q) with thermal conductivity and flame

ionization detectors (TCD-FID). H₂, O₂, and N₂, CH₄ and CO were analyzed using Channel A with 1 2 a molecular sieve column and argon as the carrier gas; CO₂, C₂H₄, and C₂H₆ are analyzed using 3 Channel B with a molecular sieve column and helium as the carrier gas. The gas sample is injected after every experiment is completed. Since the concentration of inert gas, N₂, is already known at 4 the start of the reaction, the concentrations of product gases are calculated based on the N₂ 5 6 concentration in the gas samples. For each reaction condition, an error bar is generated by using three to four repeated experiments. The gas yields are obtained by GC analysis and their purities 7 are calculated by volume concentration ratio. Known concentrations of standard gases i.e., H_2 , CO, 8 9 CO₂, and hydrocarbon gases are used as calibration gases.

10 H₂ evolution is also studied by exploring two distinct modes of operation. In Mode I, the biomass 11 oxygenates, alkaline sorbent (calcium hydroxide), and catalyst are co-present as a slurry. In Mode II, a basket bearing the alkaline sorbent is in contact with the gas phase and the fluid phase 12 (oxygenate-water mixture) remains in contact with the catalyst. Placing the catalyst in the aqueous 13 phase and the alkaline sorbent in the gas phase enables ease of recovery and reuse of the catalyst. 14 15 The hypothesis that reactivities will differ in modes I and II due to differences in mass transfer 16 behavior is investigated. For example, in Mode II, CO₂ ex-solution into the gas phase is essential for *in-situ* CO₂ capture unlike in Mode I, where CO₂ in the aqueous phase can be directly captured 17 18 to produce solid carbonates. In both modes, the solid products were recovered and separated from 19 the liquid mixture using vacuum filtration and dried in a vacuum oven. The recovered solids were analyzed for carbonate content, and their structural and morphological features. The liquid 20 21 products and catalysts before and after reactions are also characterized to determine changes in chemical composition. 22

1 2.3 Extent of carbon mineralization and product yield calculations

The extent of carbon mineralization is defined as the measured amount of CO_2 stored in the samples as solid carbonate relative to the theoretical maximum CO_2 storage capacity based on the stoichiometry of complete conversion and is expressed by Eq. (1):

5 *Extent of carbon mineralization* (%) =
$$\frac{\text{measured amount of CO2 in the samples}}{\text{theoretical maximum CO2 storage capacity}} \times 100$$
 (1)

6 More information on chemical phase determination and extent of carbon mineralization of
7 heterogenous slag samples can be found in the supplementary information.

8 The conversion of biomass oxygenates and associated yields of products (e.g., H₂, CO. CH₄, and
9 CO₂) are determined using Eq. 4-6 as shown below.

10 % Conversion of Biomass Oxygenates (BO) =
$$\frac{BO_{in} - BO_{out}}{BO_{in}} * 100$$
 (4)

11 % H₂ yield =
$$\frac{\text{Moles of H}_2 \text{ produced}}{\text{Moles of biomass oxygenate fed * Stoichometric Ratio (SR)}} * 100$$
 (5)

12 % CO, CO₂ and alkanes yield
$$= \frac{\text{Moles of C in compond produced}}{\text{Moles of C atoms in BO fed}} * 100$$
 (6)

Stoichiometric ratio (SR) is a factor obtained from the stoichiometry for complete conversions of
biomass oxygenates as shown in Table S1 in the supporting information.

15 **3.** Results and Discussion

16 3.1 Pathways involved in enhanced H_2 recovery with inherent carbon removal from aqueous

17 *biomass oxygenates*

The three key multiphase reactions involved in producing H_2 with *in-situ* CO₂ capture from aqueous biomass oxygenates are: (i) the deconstruction of the oxygenates over a metal catalyst, (ii) the selective cleavage of C-C or C-O cleavage to produce CO/H₂/CO₂ and CH₄ over a metal catalyst, respectively, and (iii) the reactivity of CO₂ with Ca- or Mg-oxides or hydroxides to produce Ca- or Mg-carbonates. Robust characterization of multiphase gas-liquid-solid chemical interactions are crucial for delineating which of these steps is rate-limiting.^{28,49} In the first step, the oxygenates typically undergo reversible dehydrogenation over a metal catalyst to produce adsorbed intermediates, prior to cleavage of C-C and C-O bonds. The reaction pathways involved in the deconstruction of aqueous biomass oxygenates are shown in **Figure 2** (b).

7

8 When considering the deconstruction mechanisms of glycerol and ethylene glycol, the first 9 pathway usually involves the cleavage of the C–C bond leading to the formation of CO and H₂. 10 This pathway is ideal for producing adsorbed CO for water gas shift reactions in the subsequent step. However, when the starting feedstock is acetate, the cleavage of the C-C bond typically leads 11 to the formation of CO, H₂ and CH₄. Another reaction pathway involves the cleavage of C-O bonds 12 followed by hydrogenation with ethylene glycol and glycerol precursors to produce an alcohol. 13 14 The alcohol can further react on the metal surface via adsorption, C-C bond cleavage or C-O bond cleavage which can lead to the formation of CH₄, CO₂, H₂ and H₂O. Another possible pathway 15 involves the desorption of species from the metal surface followed by rearrangement (which may 16 17 occur on the catalyst support and/or in the aqueous phase) to form an acid, which can then undergo surface reactions including adsorption, C-C bond cleavage, and C-O bond cleavage to form alkanes 18 19 (e.g., CH_4 , C_2H_6), CO_2 , H_2 and H_2O . These interactions highlight selectivity challenges that exist in tuning multiphase chemical interactions for preferentially synthesizing CO, CO₂, and H₂ over 20 21 alkanes or alcohols. It has been shown that slightly acidic solutions promote alkane formation due to acid-catalyzed dehydration reactions, followed by hydrogenation on the metal interface. In 22 contrast, neutral and basic solutions yield high H₂ and low alkane selectivities⁴⁹ Therefore, the 23

- hypothesis that alkaline environments bearing calcium hydroxide or oxide aid the selective
 deconstruction of biomass oxygenates to produce H₂, is investigated in this study.
- 3

The second potentially rate-limiting step involves the selectivity of gas phase chemical reactions 4 5 to produce CO_2 and H_2 via the water gas shift reaction (see Reaction 2) as opposed to methanation 6 reactions (see Reactions 3 and 4) which result in CH₄ evolution. Methanation reactions scavenge H₂ to produce CH₄, which is not desirable. Examples of other possible reactions that limit H₂ yields 7 include alcohol dehydration which produces large amounts of hydrocarbons, CO/CO₂ reduction 8 and Boudouard reactions which leads to the formation solid carbon.²⁸ Acidic environments arising 9 from the evolution of CO_2 and dissolution aids methanation. However, the hypothesis that alkaline 10 environments such as the presence of Ca(OH)₂ aids CO₂ removal and suppresses methane 11 evolution has not been extensively explored. Furthermore, according to the Le Chatelier 12 principle,⁵⁰ the removal of CO₂ promotes an equilibrium shift in WGS reaction (Reaction 2) to 13 14 favor more rapid H₂ production and CO consumption which simultaneously impedes the formation of methane (Reactions 3 and 4). 15

16	$\rm CO + H_2O \rightarrow H_2 + CO_2$	(Reaction 2)
17	$\rm CO + 3H_2 \rightarrow CH_4 + H_2O$	(Reaction 3)
18	$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$	(Reaction 4)

The third and final step is the removal of CO₂ from the gaseous phase via carbon mineralization using alkaline sorbents such as Ca- or Mg- hydroxides and alkaline industrial residues (e.g., Ladle Slag generated during steel making) to produce stable solid carbonates with limited solubility in water. The dissolution of Ca- or Mg-hydroxides or oxides mobilizes Ca²⁺ or Mg²⁺ ions which can react with dissolved carbonates to produce solid Ca- or Mg-carbonates, as shown in Reactions 5-

1	9. The pH of our feedstock was found to increase from 4.88 – 7.67 to 12.25 – 12.29 post-addition	n
2	of Ca(OH) ₂ and $12.15 - 12.19$ post-addition of LD slag sorbent (See Table S4). Carbonate (CO ₃ ²	2-
3) concentrations that are needed for carbon mineralization are favored over bicarbonate ion	s
4	(HCO ₃ ⁻) with increase in pH (See Figure S4), which favors the formation of solid carbonates in	n
5	Reaction 8 – 9.	
6	Dissolution of Species	
7	$Ca (OH)_2 \rightarrow Ca^{2+} + 2OH^-$ (Reaction 5)	
8	Mg (OH) ₂ \rightarrow Mg ²⁺ + 2OH ⁻ (Reaction 6)	
9	$H_2O + CO_2 \rightarrow CO_3^{2-} + 2H^+$ (Reaction 7)	
10	Carbonate Formation	
11	$Mg^{2+} + CO_3^{2-} \rightarrow MgCO_{3(s)}$ (Reaction 8)	

on	9)
ļ	on

Despite the simplicity of the stoichiometric reactions describing the formation of Ca- or Mg-13 carbonates, complex chemo-morphological interactions result in non-monotonic kinetics of 14 carbonate nucleation and growth. For example, the kinetics of carbon mineralization are strongly 15 influenced by the pH and composition of the aqueous phase,⁵¹ partial pressure of CO_2 ,⁵² and 16 temperature.³⁴ pH conditions greater than 8 favor (bi)carbonate formation which aid solid 17 carbonate formation while more acidic pH conditions favor the dissolution of Ca- or Mg-oxides 18 19 and hydroxides. Higher CO₂ partial pressures coupled with alkaline aqueous environments favor CO₂ solvation and carbon mineralization.³⁶ Elevated temperatures favor dissolution of Ca- or Mg-20 oxides and hydroxides and thermodynamically favor the precipitation of solid carbonates.³⁶ While 21 22 the thermodynamic feasibility of realizing CO₂ removal via carbon mineralization when coupled

Reaction Chemistry & Engineering

with the deconstruction of biomass oxygenates has been established,²⁸ the associated kinetics have
 not been discussed.

3 CO₂ removal via carbon mineralization can be integrated with the deconstruction of biomass oxygenates in two modes. In the first mode, the aqueous biomass oxygenate, catalyst, and alkaline 4 5 sorbent are actively interacting in a slurry environment. In this mode, any evolved CO_2 can be rapidly mineralized to produce solid carbonates when excess alkalinity is present. This approach, 6 7 if successful, can limit the ex-solution of CO₂ into the gas phase. However, carbonate formation on the catalyst in the aqueous phase can lead to deactivation, after just one reaction. Alternatively, 8 9 another mode can be explored in which the alkaline sorbent can be placed in the gas phase. In this 10 mode, the deconstruction of biomass oxygenates in the aqueous phase results in the ex-solution of CO_2 into the gas phase followed by mineralization. The mass transfer of CO_2 from the aqueous 11 phase to the gas phase, followed by the reactivity of CO₂ with the alkaline sorbent suspended in 12 the gas phase introduce additional "resistances" to *in-situ* CO₂ capture and removal. However, this 13 14 mode has the significant advantage that catalysts are not deactivated by solid carbonate formation, and *in-situ* separation of solid carbonate products from the deconstructed aqueous biomass 15 oxygenate-bearing solutions and solid catalysts can be easily achieved. Thus, the experiments 16 conducted in this study and discussed in the followed sections, are designed to examine the 17 18 influence of these coupled multiphase chemical interactions on enhanced H_2 recovery with 19 inherent carbon removal, with the intent to inform appropriate reaction modes for scalable deployment. 20

3.2 Carbon removal effect on H₂ evolution during non-catalyzed hydrothermal treatment of
 oxygenates

Chemical reactions that proceed via cleavage of covalent bonds in organic compounds usually 1 have high activation energies. Hence, these pathways typically require a catalyst to lower their 2 3 activation energy for the reactions to occur fast enough over short time scales. In this study, a base case scenario involving the hydrothermal conversion of 3 wt% methanol is conducted to elucidate 4 the effect of coupling mineralization reactions without a catalyst on the reforming process. In the 5 6 absence of a catalyst and an alkaline sorbent for *in-situ* CO₂ capture, H₂ yields obtained are less than 1% after a reaction time of 3 hours (Figure 3). These low H_2 yields of < 1% are consistent 7 with the thermodynamic calculations reported in our prior studies.²⁸ However unlike predictions 8 9 from thermodynamic studies, hydrocarbons such as CH₄ are not detected in the gas product stream for all cases studied in the absence of a catalyst. Results from product liquid analyses using NMR 10 in Figure 3 (b) show formate and acetate as the only intermediates formed when methanol is the 11 oxygenate precursor. From this observation and the absence of hydrocarbons in the product gas 12 stream, we infer that without a catalyst, H_2 production from methanol is likely to proceed solely 13 14 via the formation of formate as shown in **Figure 2** (b). In the formate pathway, methanol undergoes partial oxidation to produce formate, which further produces CO₂ and H₂ via dehydrogenation. 15 Although no gaseous CO was observed in the product gas stream, we cannot completely rule out 16 17 the possibility of the formation of CO intermediates via the CO pathway. In the future, operando measurements will be conducted to evaluate this hypothesis. 18

Over extended reaction residence time, we observed an increase in the concentration of acetate in solution (**Figure 3 (b**)), which could be due to the recombination of CO_2 , H_2 and methanol via hydrocarboxylation to produce acetate.⁵³ The preferential formation of acetate through hydrocarboxylation rather than methane formation via methanation is a very interesting observation, especially since H_2 and CO_2 have been extensive reported to be thermodynamically unstable compared to alkanes and water at low temperatures.⁴⁹ Overall, the kinetics of H₂ evolution
without a catalyst was observed to be greatly limited by biomass deconstruction to produce H₂ as
opposed to the formation of undesired products such as methane formation.

Further, we observed that H₂ and CO₂ yields increase, although very slowly with time (Figures 3 4 5 (a), 3 (c) and 3 (d)). In the presence of $Ca(OH)_2$ for CO_2 capture, a slight relative increase in H_2 yields in the range of 0.1 - 4.8% are achieved under similar conditions. While these results show 6 7 the importance of an alkaline environment in enhancing these reactions, it is also evident that without a catalyst, these systems are severely limited by biomass deconstruction with or without 8 9 an alkaline sorbent. These results clearly demonstrate that catalysts are essential for biomass 10 oxygenate deconstruction, and their absence can severely limit H₂ evolution even when coupled with exothermic carbon mineralization reactions. 11

12 3.3 Effect of catalysts on enhanced H₂ yield without in-situ CO₂ removal

High yield and selectivity for H₂ production from aqueous oxygenates is challenging to achieve 13 14 without an appropriate catalyst. To address this challenge, both Pt/Al₂O₃ and Ni/Al₂O₃ are selected for this study given their effectiveness in reforming of heavy oxygenated hydrocarbons due to their 15 high activity for C-C cleavage.⁴⁹ Ni/Al₂O₃ catalyst shows better activity for both C-C breakage 16 and water gas shift reaction compared to Pt/Al₂O₃ catalysts,^{8,49,54} However, better catalyst 17 performance implies that the catalyst must also not facilitate undesired side reactions such as 18 methanation. Figures 3 (c) & 3 (d) show that H₂ yields of 20% are achieved in the presence of 19 Ni/Al₂O₃ catalysts with 3 wt% methanol after 1 hour of reaction time and at 240°C. Under similar 20 conditions, about 60 % H₂ yield was obtained using Pt/Al₂O₃. The lower H₂ yield obtained with 21 22 Ni/Al₂O₃ corresponds to the higher relative amount of methane produced. We observed that 25%

yield of methane was produced with Ni/Al₂O₃, whereas methane yields of < 1% were realized with Pt/Al₂O₃ (**Figures 3 (c) & 3 (d)**). These observations of high H₂ selectivity with Pt/Al₂O₃ are consistent with other studies reported in literature.⁵⁵ On this basis, Pt-based catalysts has been consistently identified as a better catalyst for H₂ production. Regardless, the earth abundance, low cost, and high biomass deconstruction activity provided by Ni-based catalysts are desirable for the deconstruction of aqueous biomass oxygenates.

7 Longer reaction times of 6 hours increased CH₄ yield from methanol as the precursor as shown in Figures 3 (c) & 3 (d). An increase in CH₄ yield from 0.99% to 1.4% is observed when the reaction 8 9 time increased from 1 hour to 6 hours in the presence of Pt/Al_2O_3 catalyst. The corresponding 10 increase in CH₄ yield in the presence of Ni/Al₂O₃ catalyst from 20.7% to 58% is more prominent. 11 A simultaneous decrease in H_2 yield observed in **Figures 3** (c) & 3 (d) confirms that methane formation occurs primarily due to gas phase selectivity reactions of CO/CO₂ favorable under these 12 conditions. Longer residence times imply more time for methane formation due to the increase in 13 14 CO₂ concentration. NMR analyses of the liquid products in Figures S5-S7 in supporting information confirm the presence of very low quantities of formate and acetate using either Pt or 15 16 Ni catalysts, thus supporting our earlier hypothesis that these reactions also proceed via the formate formation route in Figure 2 (b). These results also show that H₂ and CO₂ do recombine with 17 18 methanol via hydrocarboxylation to produce acetate. However, in the presence of a catalyst, H_2 19 and CO₂ recombine more selectively to produce methane in Reaction 4. Faster methanation on Ni catalyst relative to that of Pt is consistent with the lower activity of Pt catalyst for methanation 20 21 reactions.

1	To obtain additional insights into the influence of catalyst morphology on reactivity, the pore sizes
2	and morphologies are determined using BET analyses. The specific surface area (SSA), pore
3	volume, and average pore diameter of the raw and spent Ni/Al ₂ O ₃ and Pt/Al ₂ O ₃ catalyst are
4	reported in Table 2. BET surface area of raw Ni/Al ₂ O ₃ catalyst (259.080 $\pm 2.2\%$ m ² /g) synthesized
5	in the lab are found to be higher than that of raw Pt/Al ₂ O ₃ (174.375 $\pm 2.2\%$ m ² /g). This observation
6	is attributed to the relatively smaller sizes of Al ₂ O ₃ particles in the Ni/Al ₂ O ₃ catalysts synthesized
7	in the lab. The number weighted average particle size of Ni/Al ₂ O ₃ catalyst is 40 nm which is
8	considerably lower than that of Pt/Al_2O_3 which is 200 nm as shown in Figure S8a in the supporting
9	information section. Post-reaction, we observed a significant decrease in the surface area of
10	Ni/Al ₂ O ₃ and Pt/Al ₂ O ₃ catalysts. This is likely due to transformation of the catalyst & catalyst
11	support, in particular the hydration to Al ₂ O ₃ to form boehmite was evident shown in Figures S9
12	& S10 in the supporting information section. While the loading of Pt or Ni on Al ₂ O ₃ support is the
13	same at 5 wt%, we do not eliminate the possibility that morphological features such as particle
14	size, pore size and surface area of a catalyst could potentially impact methane selectivity.
15	Formation of methane from aqueous phase reforming of butanol over Rh/ZrO ₂ was recently found
16	to decrease from 0.25 mol CH ₄ /mol feedstock to 0.01 mol CH ₄ /mol feedstock as the catalyst
17	particle size increased from 40 - 60 μ m to 250 - 420 μ m, after 2 hours of reaction. ²⁵ Lower
18	conversions of feedstocks were observed due to these morphological changes in the catalyst
19	particles. In contrast, an ideal scenario would be one where lower methane yields can be achieved
20	while maintaining high conversions of biomass oxygenates to desired gaseous products such as
21	H ₂ .

22 3.4 Enhanced catalytically aided H₂ evolution with in-situ carbon removal

While our work reported in the previous section, supported by extensive prior research,^{17,18,28,42,56} have shown that catalysts are essential for deconstructing biomass oxygenates to produce CO₂ and H₂, the hypothesis that *in-situ* CO₂ capture and removal will enhance H₂ yield (as shown in Reaction 1) remains unexplored. To investigate the influence of alkaline sorbents, which is calcium hydroxide (Ca(OH)₂) in this case, experiments are performed at temperatures of 240 °C and pressures of 50 bar N₂ pressure using 3 wt% methanol solution. These results are summarized in **Table S2** and **Figure 3**.

Figure 3 shows that in the presence of Ca(OH)₂, methane yields are suppressed with either 8 9 Ni/Al₂O₃ or Pt/Al₂O₃ catalysts. CH₄ yields of about 6 % was obtained with Ni/Al₂O₃ when 10 Ca(OH)₂ is used for *in-situ* CO₂ capture which showed a significant decrease from ~ 58% obtained 11 without *in-situ* CO₂ capture after 6 hours of reaction. In contrast, CH₄ yield decreased from $\sim 1.3\%$ to ~0.4% using Pt/Al₂O₃, with and without *in-situ* CO₂ capture. CO₂ removal via solid carbonate 12 formation leads to the depletion of CO_2 in the product stream and favors CO consumption as a 13 14 reactant which limits methane formation. Results showing CH_4 suppression using Pt/Al_2O_3 is not as significant as results obtained with Ni/Al₂O₃ due to the relatively lower activity of Pt/Al₂O₃ to 15 16 methanation reactions shown in Reactions 3 & 4. Higher selectivity for H_2 with Pt/Al_2O_3 catalysts is consistent with prior studies on biomass oxygenate deconstruction to produce H₂.⁴⁹ Interestingly, 17 18 H_2 yields as high as 74% are achieved in Mode II configuration in which Ca(OH)₂ is placed in the gas phase, as opposed to 57% in Mode I configuration in which Ca(OH)₂ is in the aqueous phase, 19 20 for a reaction time of 6 hours using Ni/Al₂O₃ catalyst. Similarly, in the presence of Pt/Al_2O_3 21 catalyst, H₂ yields as high as 71% are achieved in Mode II configuration when Ca(OH)₂ is placed 22 in the gas phase, as opposed to 76% in Mode I configuration in which Ca(OH)₂ is in the aqueous phase. Furthermore, longer reaction times up to 6 hours enhance H₂ yields in the presence of 23

Ni/Al₂O₃ catalyst and in Modes I and II. In contrast, increasing the reaction time from 3 to 6 hours
does not result in a significant enhancement in H₂ yield in Modes I and II in the presence of
Pt/Al₂O₃ catalyst. CO₂ concentrations in the product stream are negligible after reaction times of
3 hours and 6 hours when Ni/Al₂O₃ catalyst is used, and below 2% in the presence of Pt/Al₂O₃
catalyst.

These results are significant for several reasons. First, the effectiveness of Mode II in enhancing 6 7 H₂ yields with significant suppression of CO₂ yields is unexpected. It was hypothesized that the direct contacting of the aqueous phase with $Ca(OH)_2$ promotes dissolution and rapid uptake of any 8 9 carbonate-bearing species without releasing CO_2 into the gas phase. In contrast, our results show 10 that gas-solid contacting of $Ca(OH)_2$ and CO_2 evolved during biomass oxygenate deconstruction is also effective in enhancing H_2 yields with *in-situ* CO₂ capture. The low pH of the solution due 11 to the absence of an alkaline sorbent in the aqueous phase could be responsible for facilitating CO₂ 12 ex-solution. Figure S4 shows that the formation of H_2CO_3 (a precursor for CO_2 exsolution) is 13 more prominent at low pH. These results demonstrate that in-situ separation of the carbonate-14 bearing product can be realized concurrently with enhanced H₂ yields. Interestingly, H₂ evolution 15 16 increases monotonically with time in Mode II unlike in Mode I in which higher reactivities are achieved immediately due to the rapid uptake of CO₂ by calcium hydroxide in the aqueous phase. 17 18 In Mode II, *in-situ* CO_2 capture is the rate limiting step with higher longer reaction times 19 contributing to higher yields.

Further, H₂ evolution is observed to increase monotonically with time in mode II. This result also makes sense as we had already established that the kinetics of biomass deconstruction reaction proceeds at this time in cases without an alkaline sorbent. Also, if the reaction proceeds via the

CO pathway in **Figure 2** (b), the rapid increases of H_2 and CO_2 partial pressures coupled with the 1 relatively lesser void volume in mode II may also drive the reaction in the reverse direction at its 2 3 early stages to increase the CO concentration in the reactor, hence leading to lower rates due to higher coverage of CO on the metal surface. Similar effects of CO on metal surface have been 4 reported.⁵⁷ Faster CO₂ capture rates are obtained with Mode I as shown in **Figures 4 (b) & 4 (d)** 5 6 which appears to be consistent with the faster kinetics observed with respect to H_2 yield in **Figure** 7 **3.** This fast kinetics in Mode I appeared to slow down significantly after 60 minutes of reaction, 8 which suggests that we could be experiencing mass transfer limitations likely due to the formation 9 of insoluble carbonates on active catalyst sites, preventing further H₂ production.

10 Progressive increases in calcium carbonate content observed in Modes I and II over Ni or Pt catalysts shown in **Figures 4** (b) & 4 (d) are consistent with observed calcium carbonate phases 11 in X-Ray Diffraction patterns in Figure 4 (e). Stable calcite phases are formed as opposed to 12 metastable aragonite or vaterite phases, which is consistent with higher temperatures aiding the 13 14 formation of stable solid carbonate phases. The stability of the catalyst support is another consideration during oxygenate reforming. From XRD plots in Figure 4 (e) and Figure S10 (b), 15 we observed the conversion of alumina (Al₂O₃) support to a less active crystalline boehmite 16 (AlOOH) phase. The presence of acetate has been reported to be responsible for the deactivation 17 18 of Pt & Ni on alumina catalysts by hydroxylation of the Al_2O_3 surface, which forms crystalline boehmite (AlOOH) and leads to catalyst deactivation.^{20,58} The observations from XRD analyses 19 20 are supported by evidence of bonding behavior of, Al-O vibrations from FTIR spectra in Figure 21 4 (f) and Figure S10 (a). In-situ separation of the spent catalyst and solid carbonate product with 22 Mode II can also be observed by the bonding behavior of, C-O, C=O and O-H vibrations from 23 FTIR spectra in **Figure 4** (f). Further evidence of the conversion of calcium hydroxide to calcium

carbonate and the absence of boehmite (AlOOH) phase in Mode II unlike Mode I is confirmed 1 from Thermogravimetric Analysis (TGA) in Figures 4 (a) & 4 (c). In Mode I with either Ni/Al₂O₃ 2 or Pt/Al₂O₃ catalyst and calcium hydroxide in the aqueous phase, three distinct weight loss regimes 3 are noted in the range of 360°C - 430°C, 440°C - 540°C, and 550°C - 800°C, which correspond to 4 the dehydration of Ca(OH)₂, dehydration of AlOOH, and the dissociation of CaCO₃, respectively. 5 6 In contrast, dehydration of Ca(OH)₂ and the dissociation of CaCO₃ are noted in Mode II. Further, DSC curves confirms an endothermic profile associated with the weight losses observed in DTG 7 8 curves.

9 3.5 Enhanced H₂ production with in-situ carbon removal using heavier aqueous oxygenates

10 Feedstock variability and associated uncertainty in mechanisms and kinetics have been challenges in adapting innovative routes for producing H₂ from biomass feedstocks with inherent carbon 11 removal.⁵⁹ To address this challenge, we investigate the influence of heavier C_1 - C_3 oxygenated 12 hydrocarbons such as glycerol, ethylene glycol, acetate, and formate on enhancing H₂ yields with 13 and without inherent carbon removal. These oxygenates were chosen because they can be readily 14 15 obtained in large quantities from low value biomass feedstocks such as food or municipal waste 16 generated in urban or rural environments, algal sources, and industrial wastewater polluted streams.²⁸ Experiments were conducted over Pt/Al₂O₃ and Ni/Al₂O₃ catalyst at 240 °C, and 50 bar 17 N₂ pressure. Experiments are performed in Mode II since it has been shown that high H₂ yields, 18 19 and selectivity are achieved with in-situ separation of CO_2 as solid carbonate and ease of catalyst 20 recovery. Varying the feedstock has been shown to have a strong influence on H_2 selectivity due 21 to differing deconstruction mechanisms. It has been reported that within the family of polyols, the 22 hydrogen selectivity of aqueous phase reforming decreases with increasing carbon number of the

feed.⁴⁹ Therefore, the influence of these differing deconstruction mechanisms on H₂ yields with
and without CO₂ removal from aqueous biomass oxygenates are investigated. Yields of H₂, CO₂,
CH₄, CO, and CaCO₃ are shown in Figure 5 and summarized in Table S2.

4 In the absence of *in-situ* CO₂ removal, H₂ yields of ~ 15%, 19%, 2%, and 45% are achieved in the presence of Ni/Al₂O₃ catalyst and ~ 49%, 79%, 3%, and 71% in the presence of Pt/Al₂O₃ catalyst 5 for glycerol, ethylene glycol, acetate, and formate respectively. In contrast, H₂ yields when coupled 6 7 to in-situ CO₂ removal are ~ 73%, 90%, 8%, and 65% in the presence of Ni/Al₂O₃ catalyst and ~ 69%, 85%, 9%, and 73% in the presence of Pt/Al₂O₃ catalyst for glycerol, ethylene glycol, acetate, 8 9 and formate respectively. Without *in-situ* CO_2 capture, higher H₂ yields are consistently achieved 10 with formate using either Ni/Al₂O₃ or Pt/Al₂O₃ catalyst since H₂ production proceeds directly through the formate dehydrogenation pathway to produce H_2 and CO_2 as shown in Figure 2 (b). 11 High H_2 yields are also accompanied by relatively lower methane yields ~0.2% and 4.5% with 12 Ni/Al_2O_3 and Pt/Al_2O_3 respectively using formate as the starting feedstock. This is likely due to 13 14 the elimination of possible methane formation via CO methanation in Reaction 3, Further, the 15 formation of water-soluble sodium bicarbonate species from the interaction of bicarbonate and 16 sodium ions in solution as shown in **Table S1** prevents CO_2 production, and subsequently CO_2 methanation which results in low yields of CO_2 and CH_4 (Figure 5 (b)). It is also interesting to 17 18 note that formate is observed to be an intermediate liquid precursor using all oxygenates studied 19 as starting feedstock. This was confirmed by NMR analyses on liquid products obtained postreaction shown in Figure S7. 20

In contrast, lowest H₂ yields are achieved with acetate as the starting feedstock for several reasons.
First, we can observe that either C-C or C-O bond cleavage of acetate results in the preferential
formation of CH₄ prior to CO or CO₂ formation, which limits H₂ production (Figure 2 (b)).

Second, the possibility of regenerating acetate via hydrocarboxylation also exists, which further 1 leads to H₂ consumption.⁵³ Acetate has also been reported to be responsible for the deactivation of 2 Pt–Ni catalysts by hydroxylation of the Al₂O₃ surface.⁶⁰ Subsequent re-deposition of the dissolved 3 alumina on the catalyst causes blocking of active catalytic Ni/Pt sites which leads to catalyst 4 deactivation and hence limits feedstock conversion.⁹ These results show that either biomass 5 6 deconstruction or acetate regeneration could be limiting H_2 evolution and represents an interesting 7 selectivity challenge that requires further investigation in our future work. H₂ yields of 20 - 80 % 8 are also noted with ethylene glycol and glycerol without *in-situ* CO₂ capture, although more 9 methane formation was observed with glycerol. This is most likely due to the higher possibility of methane formation via C-O cleavage with glycerol relative to ethylene glycol, due to the presence 10 of more O-H bonding sites for C-O cleavage in glycerol. Just as in the case of methanol, Figure 5 11 also shows considerable methane suppression with *in-situ* CO_2 removal with all biomass 12 oxygenates except for acetate. Unsurprisingly, lower H₂ yields with acetate were observed even 13 14 after coupling mineralization reactions in the presence of platinum and nickel catalysts. From results shown in Figure 5, we can infer that the selectivity for H₂ production improves in the order 15 acetate < glycerol < ethylene glycol \sim methanol < formate without *in-situ* CO₂ capture and acetate 16 17 < glycerol < methanol < formate < ethylene glycol with in-situ CO₂ capture using Ni and Pt on alumina catalyst. This trend was similar with experimental results obtained via aqueous phase 18 reforming by Davda and co-workers⁴⁹ who reported that the order of biomass oxygenate reactivity 19 20 is as follows: glucose < sorbitol < glycerol < ethylene glycol < methanol.

- 21 3.6 Model waste stream upcycling with carbon mineralization using alkaline rich industrial
- 22 residues

To probe the enhancement in hydrogen production from oxygenates using alkaline industrial 1 residues, ladle slag was used as an alkaline sorbent in the presence of Ni/Al₂O₃ catalysts. Model 2 3 wastewater was also prepared in lab using 3 wt.% of a mixture of formate, acetate, glycerol, ethylene glycol and methanol to show the applicability of this process with heterogenous streams. 4 H₂ yields of 58% and 19% yield are observed with and without ladle slag, respectively. Further, 5 6 methane suppression is also noted as methane yields are reduced from 29 % and 6% in the presence 7 of ladle slag as an alkaline sorbent. We also detected an increase in the solid Ca- and Mg-carbonate 8 content resulting from the capture and conversion of 70% of CO₂ released from the deconstruction 9 of biomass oxygenates.

10 The solid product collected post-reaction is characterized by X-Ray Diffraction (XRD), as shown in Figure 6 (b). The main crystalline phases of fresh ladle slag are Ca(OH)₂ (portlandite), SiO₂ 11 (Silica), Mg(OH)₂ (brucite), and MgO (magnesia). Post reaction, a significant increase of peak 12 intensities for $CaCO_3$ (calcite), and the appearance of phases such as $Mg_2CO_3(OH)_2 3H_2O$ (artinite) 13 14 is observed, while peak intensities corresponding to both, $Ca(OH)_2$ and MgO are significantly reduced. These results agree with the FTIR spectra analyses. Doublet O-H peaks at 3580 - 3650 15 and 3650 - 3720 cm⁻¹ are observed in the FTIR spectra of freshly milled ladle slag in **Figure 6** (d) 16 which corresponds to the vibrations from Ca(OH)₂, and Mg(OH)₂ respectively, Si-O vibrations are 17 also observed at $900 - 1000 \text{ cm}^{-1}$. The asymmetric stretching vibration band of C-O at 1420 - 148018 cm^{-1} bands and the bending vibrations of CO_3^{2-} peaks at 873 and 712 cm⁻¹ are prominent in the 19 20 carbonate product. Post reaction, we observe a decrease in the intensity of Ca(OH)₂ and an increase 21 in the intensity of Mg(OH)₂. This increase in O-H intensity associated with Mg(OH)₂ is due to both the synthesis of Mg(OH)₂ via the reaction of MgO with water, and the simultaneous formation 22 23 of Mg₂CO₃(OH)_{2.}3H₂O via carbon mineralization of Mg(OH)₂. Further evidence of carbon

mineralization are observed with TGA plots in Figures 6 (a) and 6 (c), which shows four distinct
weight loss corresponding to Mg(OH)₂, Ca(OH)₂, MgCO₃, and CaCO₃ respectively. These results
conclusively demonstrate that the Ca- and Mg-bearing phases in Ladle Slag are the main reacting
components with CO₂ to form the carbonate minerals, as shown by Reactions 8 – 12.

5 4. Conclusion

6 This study has shown that high purity H₂ can be produced with inherent CO₂ removal from various biomass oxygenate sources including methanol, glycerol, ethylene glycol, acetate, and formate 7 8 using alkaline industrial residues (Ladle Slag) as Ca- & Mg- bearing sources. As opposed to conventional high temperature reforming processes (>500 °C) at atmospheric pressure, we 9 10 investigated the effect of maintaining fluids in the aqueous phase under N_2 pressure of 50 bar and at significantly lower temperature of 240 °C. Coupling aqueous phase biomass oxygenate 11 reforming with thermodynamically downhill carbon mineralization reactions for *in-situ* CO₂ 12 capture successfully enhanced H₂ production. For example, $\sim 90\%$ vs $\sim 19\%$ H₂ yield was obtained 13 14 with and without in-situ CO₂ capture respectively using ethylene glycol as starting feedstock, over Ni/Al₂O₃ catalyst. Further, methane formation has been a long-standing challenge with Ni based 15 catalysts. Our study also showed suppressed methanation rates (~4% vs 30% CH₄ yield) with and 16 17 without in-situ CO₂ capture respectively using ethylene glycol as starting feedstock, over Ni/Al₂O₃ catalyst. H₂ evolution is also studied using two modes of operations. While Mode I which favors 18 the formation of carbonate species in solution showed faster kinetics, *in-situ* product separation is 19 also shown to be achievable via Mode II in which mineralization proceeds after CO₂ ex-solution. 20 H₂ yields as high as 79% and 74% are achieved using ethylene glycol and methanol in the presence 21 of Ni or Pt/Al₂O₃ catalyst and Ca(OH)₂ as the alkaline sorbent. Approximately 53% H₂ yield was 22 obtained from model C₁ - C₃ carbon bearing wastewater stream using ladle slag as the alkaline 23

sorbent, with over 70% of CO₂ released from the deconstruction of biomass oxygenates captured
and converted as solid Ca- or Mg-carbonates. This study provides a novel pathway in which large
amounts of low value residues such as Ca-rich alkaline residues and wastewater streams bearing
biomass oxygenates can be successfully upcycled to produce high value H₂ with inherent CO₂
removal.

6 Authors' contributions

Conceptualization. G.G., and P.O.; Data curation: G.G., and P.O.; Formal Analysis: G.G., P.O.,
S.M., A.M., and C.N.; Funding acquisition: G.G. and P.O.; Methodology: G.G. and P.O.; Project
administration: G.G.; Resources: G.G., P.O.; Supervision: G.G.; Visualization: G.G., P.O., S.M.,
A.M., C.N.; Writing – original draft: G.G., and P.O.; Writing – review & editing: G.G., P.O., S.M.,
A.M., C.N.; contributed equally to this work. All authors contributed to the discussion and
provided feedback on the manuscript.

13 Conflicts of interest

14 There are no conflicts to declare.

15 Acknowledgment

The authors also acknowledge the use of the shared facilities at the Cornell Center for Materials Research (CCMR) which are supported through the National Science Foundation Materials Research Science and Engineering Centers (NSF MRSEC) program (DMR-1719875). G. G.'s contributions are supported by the DOE CAREER Award through the Office of Science DE-658308. P. O.'s efforts are supported by the Cornell Atkinson Small Grant Program through the Reducing Climate Risk initiative funded by the Cornell Atkinson Center for Sustainability, Cornell University, and the Link Foundation Energy Fellowship. C. N.'s effort was supported by the

1	Cornell University Luis Stokes Alliance for Minority Participation (LSAMP) Program. We would				
2	also like to thank Ivan Keresztes, current director for the NMR facility at the Department of				
3	Chemistry and Chemical Biology, Cornell University for supporting our NMR experiments and				
4	analy	vses. Finally, we would like to thank Cord Heine, the environmental supervisor at Nucor Inc.,			
5	in Au	burn, NY for providing us with industrial residues used for this study.			
6	Refe	rences			
7	1	S. J. Davis, N. S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I. L. Azevedo, S. M. Benson,			
8		T. Bradley, J. Brouwer, Y. M. Chiang, C. T. M. Clack, A. Cohen, S. Doig, J. Edmonds, P.			
9		Fennell, C. B. Field, B. Hannegan, B. M. Hodge, M. I. Hoffert, E. Ingersoll, P. Jaramillo,			
10		K. S. Lackner, K. J. Mach, M. Mastrandrea, J. Ogden, P. F. Peterson, D. L. Sanchez, D.			
11		Sperling, J. Stagner, J. E. Trancik, C. J. Yang and K. Caldeira, Science (80)., ,			
12		DOI:10.1126/science.aas9793.			
13	2	M. A. R. S. Koohi-fayegh, Energy, Ecol. Environ., 2016, 1, 10-29.			
14	3	M. A. Pellow, C. J. M. Emmott, C. J. Barnhart and S. M. Benson, Energy Environ. Sci.,			
15		2015, 8 , 1938–1952.			
16	4	L. Chen, Z. Qi, S. Zhang, J. Su and G. A. Somorjai, Catalysts, ,			
17		DOI:10.3390/catal10080858.			
18	5	B. Parkinson, P. Balcombe, J. F. Speirs, A. D. Hawkes and K. Hellgardt, Energy Environ.			
19		<i>Sci.</i> , 2019, 12 , 19–40.			
20	6	F. Eljack and MK. Kazi, <i>Front. Sustain.</i> , 2021, 1, 1–15.			
21	7	S. Zhang, Y. Liu, M. Zhang, Y. Ma, J. Hu and Y. Qu, Nat. Commun.,			

1		DOI:10.1038/s41467-022-33186-z.
2	8	P. D. Vaidya and J. A. Lopez-Sanchez, ChemistrySelect, 2017, 2, 6563-6576.
3	9	T. M. C. Hoang, A. K. K. Vikla and K. Seshan, Aqueous-phase reforming of sugar
4		derivatives: Challenges and opportunities, 2016, vol. 2016- Janua.
5	10	A. I. Osman, N. Mehta, A. M. Elgarahy, M. Hefny, A. Al-Hinai, A. H. Al-Muhtaseb and
6		D. W. Rooney, Hydrogen production, storage, utilisation and environmental impacts: a
7		review, Springer International Publishing, 2022, vol. 20.
8	11	G. Zoppi, G. Pipitone, R. Pirone and S. Bensaid, Catal. Today, 2022, 387, 224–236.
9	12	J. Plácido and S. Capareda, Bioresour. Bioprocess., 2016, 3, 1-12.
10	13	U.S. Energy Information Administration, Monthly Biodiesel Production Report, 2015.
11	14	F. Yang, M. A. Hanna and R. Sun, <i>Biotechnol. Biofuels</i> , 2012, 5, 1–10.
12	15	J. Moestedt, B. Müller, Y. Nagavara Nagaraj and A. Schnürer, Front. Energy Res., 2020,
13		8 , 1–15.
14	16	T. Uekert, F. Dorchies, C. M. Pichler and E. Reisner, Green Chem., 2020, 22, 3262–3271.
15	17	I. Coronado, M. Stekrova, L. García Moreno, M. Reinikainen, P. Simell, R. Karinen and J.
16		Lehtonen, Biomass and Bioenergy, 2017, 106, 29-37.
17	18	Z. Xiong, Z. Fang, L. Jiang, H. Han, L. He, K. Xu, J. Xu, S. Su, S. Hu, Y. Wang and J.
18		Xiang, <i>Fuel</i> , 2022, 314 , 122746.
19	19	L. André, S. Abanades and G. Flamant, Renew. Sustain. Energy Rev., 2016, 64, 703-715.
20	20	D. A. Boga, F. Liu, P. C. A. Bruijnincx and B. M. Weckhuysen, Catal. Sci. Technol.,

1		2016, 6 , 134–143.
2	21	R. R. Davda and J. A. Dumesic, Chem. Commun., 2004, 4, 36–37.
3	22	M. Alvear, A. Aho, I. L. Simakova, H. Grénman, T. Salmi and D. Y. Murzin, Catal. Sci.
4		<i>Technol.</i> , 2020, 10 , 5245–5255.
5	23	H. Xiong, A. DeLaRiva, Y. Wang and A. K. Datye, Catal. Sci. Technol., 2015, 5, 254-
6		263.
7	24	T. Nozawa, Y. Mizukoshi, A. Yoshida and S. Naito, "Applied Catal. B, Environ., 2014,
8		146 , 221–226.
9	25	H. Harju, G. Pipitone and L. Lefferts, Front. Chem., 2020, 8, 1-13.
10	26	J. Zhang, W. Yan, Z. An, H. Song and J. He, ACS Sustain. Chem. Eng., 2018, 6, 7313-
11		7324.
12		
	27	S. Jeon, H. S. Roh, D. J. Moon and J. W. Bae, <i>RSC Adv.</i> , 2016, 6 , 68433–68444.
13	27 28	 S. Jeon, H. S. Roh, D. J. Moon and J. W. Bae, <i>RSC Adv.</i>, 2016, 6, 68433–68444. P. Ochonma, C. Blaudeau, R. Krasnoff and G. Gadikota, <i>Front. Energy Res.</i>, 2021, 9, 1–
13 14	27 28	 S. Jeon, H. S. Roh, D. J. Moon and J. W. Bae, <i>RSC Adv.</i>, 2016, 6, 68433–68444. P. Ochonma, C. Blaudeau, R. Krasnoff and G. Gadikota, <i>Front. Energy Res.</i>, 2021, 9, 1–16.
13 14 15	27 28 29	 S. Jeon, H. S. Roh, D. J. Moon and J. W. Bae, <i>RSC Adv.</i>, 2016, 6, 68433–68444. P. Ochonma, C. Blaudeau, R. Krasnoff and G. Gadikota, <i>Front. Energy Res.</i>, 2021, 9, 1–16. F. Raganati, F. Miccio and P. Ammendola, <i>Energy and Fuels</i>, 2021, 35, 12845–12868.
13 14 15 16	27 28 29 30	 S. Jeon, H. S. Roh, D. J. Moon and J. W. Bae, <i>RSC Adv.</i>, 2016, 6, 68433–68444. P. Ochonma, C. Blaudeau, R. Krasnoff and G. Gadikota, <i>Front. Energy Res.</i>, 2021, 9, 1–16. F. Raganati, F. Miccio and P. Ammendola, <i>Energy and Fuels</i>, 2021, 35, 12845–12868. T. Yin, S. Yin, A. Srivastava and G. Gadikota, <i>Resour. Conserv. Recycl.</i>, 2022, 180,
13 14 15 16 17	27 28 29 30	 S. Jeon, H. S. Roh, D. J. Moon and J. W. Bae, <i>RSC Adv.</i>, 2016, 6, 68433–68444. P. Ochonma, C. Blaudeau, R. Krasnoff and G. Gadikota, <i>Front. Energy Res.</i>, 2021, 9, 1–16. F. Raganati, F. Miccio and P. Ammendola, <i>Energy and Fuels</i>, 2021, 35, 12845–12868. T. Yin, S. Yin, A. Srivastava and G. Gadikota, <i>Resour. Conserv. Recycl.</i>, 2022, 180, 106209.
13 14 15 16 17 18	27 28 29 30 31	 S. Jeon, H. S. Roh, D. J. Moon and J. W. Bae, <i>RSC Adv.</i>, 2016, 6, 68433–68444. P. Ochonma, C. Blaudeau, R. Krasnoff and G. Gadikota, <i>Front. Energy Res.</i>, 2021, 9, 1–16. F. Raganati, F. Miccio and P. Ammendola, <i>Energy and Fuels</i>, 2021, 35, 12845–12868. T. Yin, S. Yin, A. Srivastava and G. Gadikota, <i>Resour. Conserv. Recycl.</i>, 2022, 180, 106209. S. Fujikawa, R. Selyanchyn and T. Kunitake, <i>Polym. J.</i>, 2021, 53, 111–119.
13 14 15 16 17 18 19	 27 28 29 30 31 32 	 S. Jeon, H. S. Roh, D. J. Moon and J. W. Bae, <i>RSC Adv.</i>, 2016, 6, 68433–68444. P. Ochonma, C. Blaudeau, R. Krasnoff and G. Gadikota, <i>Front. Energy Res.</i>, 2021, 9, 1–16. F. Raganati, F. Miccio and P. Ammendola, <i>Energy and Fuels</i>, 2021, 35, 12845–12868. T. Yin, S. Yin, A. Srivastava and G. Gadikota, <i>Resour. Conserv. Recycl.</i>, 2022, 180, 106209. S. Fujikawa, R. Selyanchyn and T. Kunitake, <i>Polym. J.</i>, 2021, 53, 111–119. S. Kodama, T. Nishimoto, N. Yamamoto, K. Yogo and K. Yamada, <i>Energy</i>, 2008, 33,

- 1 33 G. Gadikota, *Commun. Chem.*, 2021, **4**, 1–5.
- 2 34 M. Liu and G. Gadikota, *Fuel*, 2020, **275**, 1–37.
- 3 35 G. Gadikota, *Nat. Rev. Chem.*, 2020, **4**, 78–89.
- 4 36 G. Gadikota, J. Matter, P. Kelemen and A. H. A. Park, *Phys. Chem. Chem. Phys.*, 2014,
 5 16, 4679–4693.
- 6 37 V. Nikulshina, M. E. Gálvez and A. Steinfeld, *Chem. Eng. J.*, 2007, **129**, 75–83.
- 7 38 A. Stefánsson, P. Bénézeth and J. Schott, *Geochim. Cosmochim. Acta*, 2014, **138**, 21–31.
- 8 39 T. N.Borhani and M. Wang, *Renew. Sustain. Energy Rev.*, 2019, **114**, 109299.
- 9 40 J. W. Shabaker, G. W. Huber and J. A. Dumesic, J. Catal., 2004, 222, 180–191.
- 10 41 B. Roy and C. A. Leclerc, J. Power Sources, 2015, 299, 114–124.
- 42 R. L. Manfro, T. P. M. D. Pires, N. F. P. Ribeiro and M. M. V. M. Souza, *Catal. Sci. Technol.*, 2013, 3, 1278–1287.
- 13 43 R. Ragipani, S. Bhattacharya and A. K. Suresh, *React. Chem. Eng.*, 2021, 6, 1152–1178.
- 14 44 B. Xu and Y. Yi, *Chemosphere*, , DOI:10.1016/j.chemosphere.2021.132274.
- 45 G. Gadikota and A. hyung A. Park, *Accelerated Carbonation of Ca- and Mg-Bearing* Minerals and Industrial Wastes Using CO2, Elsevier B.V., 2015.
- 46 S. Y. Pan, T. C. Chung, C. C. Ho, C. J. Hou, Y. H. Chen and P. C. Chiang, *Sci. Rep.*,
 2017, 7, 1–11.
- 19 47 M. Fridahl and M. Lehtveer, *Energy Res. Soc. Sci.*, 2018, **42**, 155–165.

1	48	J. Rogelj, D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi,
2		S. Kobayashi and E. Kriegler, Glob. Warm. 1.5° C, 2018, 93–174.
3	49	R. R. Davda, J. W. Shabaker, G. W. Huber, R. D. Cortright and J. A. Dumesic, Appl.
4		Catal. B Environ., 2005, 56, 171–186.
5	50	J. De Heer, J. Chem. Educ., 1957, 34 , 375–380.
6	51	A. Korchef and M. Touaibi, Water Environ. J., 2020, 34, 331–341.
7	52	G. Gravogl, F. Birkelbach, D. Müller, C. L. Lengauer, P. Weinberger and R. Miletich,
8		Adv. Sustain. Syst., 2021, 5, 1–11.
9	53	Q. Qian, J. Zhang, M. Cui and B. Han, Nat. Commun., 2016, 7, 1–7.
10	54	D. Li, Y. Li, X. Liu, Y. Guo, C. W. Pao, J. L. Chen, Y. Hu and Y. Wang, ACS Catal.,
11		2019, 9 , 9671–9682.
12	55	N. D. Subramanian, J. Callison, C. R. A. Catlow, P. P. Wells and N. Dimitratos, Int. J.
13		<i>Hydrogen Energy</i> , 2016, 41 , 18441–18450.
14	56	G. Pipitone, G. Zoppi, R. Pirone and S. Bensaid, Int. J. Hydrogen Energy, 2022, 47, 151-
15		180.
16	57	A. Patra, H. Peng, J. Sun and J. P. Perdew, <i>Phys. Rev. B</i> , 2019, 100 , 1–8.
17	58	C. Liu, K. Shih, Y. Gao, F. Li and L. Wei, J. Soils Sediments, 2012, 12, 724–733.
18	59	J. Fermoso, L. He and D. Chen, J. Chem. Technol. Biotechnol., 2012, 87, 1367–1374.
19	60	D. J. M. De Vlieger, B. L. Mojet, L. Lefferts and K. Seshan, J. Catal., 2012, 292, 239-
20		245.
		Page 37 of 48

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	Table 1 . Major elemental compositions of ladle slag (wt. %) using X-ray fluorescence analyses (XRF).
19	Ladle slag is a by-product of Nucor's electric arc furnace steel making process.

		Compositions	Nucor Electric Arc	
		(%)	Furnace Ladle Slag	
		SiO ₂	9.66	
		Al_2O_3	11.20	
		Fe ₂ O ₃	5.35	
		MgO	31.30	
		CaO	33.40	
		Na ₂ O	0.08	
		K ₂ O	0.10	
		TiO ₂	0.51	
		P_2O_5	0.09	
		MnO	0.92	
		Cr_2O_3	0.11	
		V_2O_5	0.02	
		LOI	6.40	
		C (t)	0.34	
		S	0.14	
1				
2				
-				
3				
4				
5				
6				
7				
8				
~				, .
9	LADIE 2. Surface area,	pore size volume, and	average pore diameter of the	e materials in this

Table 2. Surface area, pore size volume, and average pore diameter of the materials in this study.

	Surface Area ^a	Pore size volume ^b	Average Pore
Samples	(m ² /g)	(cc/g)	Diameter ^c (nm)
Alkaline Feedstock(Ca(OH) ₂)	31.35	0.13	3.85
Raw Catalyst (Ni)	259.08	0.42	6.30
Raw Catalyst (Pt)	174.37	0.28	5.83
Catalyst (Ni) + Ca(OH) ₂	174.18	0.30	6.29
Catalyst $(Pt) + Ca(OH)_2$	112.94	0.20	5.83
Product (CaCO ₃)	8.38	0.02	2.75
Used Catalyst (Ni)	30.53	0.10	3.92
Used Catalyst (Pt)	15.69	0.10	3.07
Used Catalyst (Ni) + Product (CaCO ₃)	10.83	0.07	4.00
Used Catalyst (Pt) + Product (CaCO ₃)	9.18	0.04	2.99
Ladle Slag	9.18	0.03	3.84
Ladle Slag after reaction	38.41	0.08	3.85

² ^aCalculated using the BET equation. ^bBJH pore desorption volume. ^cDesorption average pore

3 diameter.

4 Measurements are reported within BET error range of $\pm 2.2\%$

5

6

7 Captions for Figures

Figure 1. Schematic representation of integrated H₂ production from aqueous biomass oxygenates
with in-situ CO₂ capture using alkaline industrial residues.

10 **Figure 2**. (a) Reaction configurations for H₂ evolution with in-situ CO₂ capture and mineralization.

- 11 In Mode I, the catalyst, alkaline sorbent, and oxygenate feedstock are mixed to form a slurry. In
- 12 Mode II, the alkaline sorbent is suspended in the gas phase, while the catalyst and feedstock are

- 1 mixed in the liquid phase. (b) Reaction pathways associated with the deconstruction of oxygenates
- 2 to produce H_2 from aqueous biomass oxygenates are shown.
- 3 Figure 3. (a) Gas product yield for base case (without a catalyst) H₂ production from the
- 4 hydrothermal treatment of 3 wt.% methanol with and without an alkaline sorbent (Ca(OH)₂). (b)
- 5 H₂O Suppressed NMR spectra of liquid products from temporal evolution resulting from the
- 6 deconstruction of oxygenates in the presence of alkaline sorbents in contact with fluid phase (Mode
- 7 I). Only the dominant vibrations are labeled, and the spectra are offset for clarity. (c) Product yields
- 8 in the gas phase when Ni/Al_2O_3 catalyst is used during the hydrothermal treatment of 3 wt.%
- 9 methanol with and without an alkaline sorbent $(Ca(OH)_2)$ (d) Product yields in the gas phase when
- 10 Pt/Al₂O₃ catalyst is used during the hydrothermal treatment of 3 wt.% methanol with and without
- 11 an alkaline sorbent (Ca(OH)₂). Alkaline sorbent reactions are carried out in Mode I (catalyst,
- sorbent and feedstock are mixed to form a slurry), and Mode II (sorbent is suspended in the gas phase, while the catalyst and feedstock are mixed in the liquid phase), at temperatures of 240 °C
- 14 and pressures of 50 bar N_2 pressure.
- 15 NA: No Alkalinity, NC: No Catalyst, M1: Mode I, and M2: Mode II.

Figure 4. Evidence of calcium carbonate formation in the solid product obtained from H₂ production via hydrothermal treatment of 3 wt.% methanol based on: (a) thermo gravimetric analysis of solid calcium carbonate product from Mode I, (b) calculated extent of calcium carbonate formation in solid product obtained from Mode I, (c) thermo gravimetric analysis of

- solid product from Mode II, (d) calculated extent of calcium carbonate formation in solid product
- 21 obtained from Mode I, (e) XRD analyses showing calcium carbonate phases formed post-reaction,
- and (f) FTIR analyses of solid calcium carbonate products obtained post-reaction.
- Figure 5. Yields of H₂, CO₂, CH₄, CO, and CaCO₃ resulting from the hydrothermal conversion of 3 wt.% biomass oxygenates to H₂ with inherent carbon removal using Ca(OH)₂ sorbent where (a), (b), (c), and (d) represent glycerol, formate, acetate, and ethylene glycol, respectively. NA represents the scenario when there is no alkalinity in the system. M2 represents Mode II in which the alkaline sorbent is suspended in the gas phase, the catalyst and feedstock are mixed in the liquid phase, and the reaction temperature and N₂ pressure are 240°C and 50 bar, respectively.

Figure 6. Contrasting unreacted and reacted ladle slag obtained after H₂ conversion from model wastewater and CO₂ removal from ladle slag with *in-situ* CO₂ capture using (a) DSC measurements, (b) XRD analyses, (c) DTG curves, (d) FTIR analyses, (e) product yields on using Ni/Al₂O₃ catalyst, and (f) H₂O suppressed NMR spectra of liquid products. Only the dominant vibrations are labeled, and the spectra are offset for clarity in (f). Reactions are carried out in Mode II where the sorbent is suspended in the gas phase, while Ni/Al₂O₃ catalyst and mixture of biomass oxygenates ae mixed in the liquid phase, at temperatures of 240 °C and N₂ pressure of 50 bar.

- 36
- 37
- 38

- -

- ~-

- Figure 1. Schematic representation of integrated H₂ production from aqueous biomass oxygenates
 with in-situ CO₂ capture using alkaline industrial residues.

- .

1

2 **Figure 2**. (a) Reaction configurations for H₂ evolution with in-situ CO₂ capture and mineralization.

- 3 In Mode I, the catalyst, alkaline sorbent, and oxygenate feedstock are mixed to form a slurry. In
- 4 Mode II, the alkaline sorbent is suspended in the gas phase, while the catalyst and feedstock are
- 5 mixed in the liquid phase. (b) Reaction pathways associated with the deconstruction of oxygenates
- 6 to produce H₂ from aqueous biomass oxygenates are shown.
- 7
- 8
- 9

Figure 4. Evidence of calcium carbonate formation in the solid product obtained from H₂ production via hydrothermal treatment of 3 wt.% methanol based on: (a) thermo gravimetric analysis of solid calcium carbonate product from Mode I, (b) calculated extent of calcium carbonate formation in solid product obtained from Mode I, (c) thermo gravimetric analysis of solid product from Mode II, (d) calculated extent of calcium carbonate formation in solid product obtained from Mode I, (e) XRD analyses showing calcium carbonate phases formed post-reaction, and (f) FTIR analyses of solid calcium carbonate products obtained post-reaction.

Figure 5. Yields of H₂, CO₂, CH₄, CO, and CaCO₃ resulting from the hydrothermal conversion of 3 wt.% biomass oxygenates to H₂ with inherent carbon removal using Ca(OH)₂ sorbent where (a), (b), (c), and (d) represent glycerol, formate, acetate, and ethylene glycol, respectively. NA represents the scenario when there is no alkalinity in the system. M2 represents Mode II in which the alkaline sorbent is suspended in the gas phase, the catalyst and feedstock are mixed in the liquid phase, and the reaction temperature and N₂ pressure are 240 °C and 50 bar, respectively.

- 9
- 10
- ___
- 11

Figure 6. Contrasting unreacted and reacted ladle slag obtained after H₂ conversion from model
wastewater and CO₂ removal from ladle slag with *in-situ* CO₂ capture using (a) DSC
measurements, (b) XRD analyses, (c) DTG curves, (d) FTIR analyses, (e) product yields on using
Ni/Al₂O₃ catalyst, and (f) H₂O suppressed NMR spectra of liquid products. Only the dominant
vibrations are labeled, and the spectra are offset for clarity in (f). Reactions are carried out in Mode
II where the sorbent is suspended in the gas phase, while Ni/Al₂O₃ catalyst and mixture of biomass
oxygenates ae mixed in the liquid phase, at temperatures of 240 °C and N₂ pressure of 50 bar.