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Abstract
Discerning networks of many reactions among multiple interconverting species is 

challenging. Here, we present a reaction network identification methodology. Our methodology 
enumerates all stoichiometrically and chemically feasible reactions and requires statistical 
evidence from effluent concentrations for the inclusion or exclusion of each from the reaction 
network, contrasting with the commonly seen incremental approach and other work of relying 
heavily upon chemical intuition and assuming the reactions occurring. Using graph theory 
alongside an active learning design of experiments that propose maximally informative feeds, we 
identify the underlying reaction network with minimal laboratory runs. We introduce chemistry-
probabilistic graphical modeling and Boolean reaction circuits to statistically quantify which 
reactions occur from effluent concentrations. Our methodology accurately discerns active 
reactions, as showcased upon a laboratory network of cross-ketonization of furoic and lauric acid 
and validated upon simulated networks of thermal and CO2-assisted ethane dehydrogenation. 
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1. Introduction
 An inherent complexity of many reaction systems is the occurrence of multiple chemical 

reactions among several species in a reaction network. To properly model these systems, each 
reaction within the network must be identified for subsequent rate parameterization.1, 2 

This task of reaction network identification (RNI) is common in catalysis research. Weingarten 
et al. created a kinetic model to explore optimal reactor configurations for the biomass upgrading 
of glucose to 5-hydroxymethylfurfural.3 Comparing their proposed reaction network to those 
conjectured previously, they obtained a more accurate network using product co-feeding 
experiments. Years later, Vlachos and coworkers improved the kinetic model with additional 
reaction identification using isotopic labeling experiments,4 and subsequently improved the 
process yield.5 While investigating bio-oil upgrading with an anisole hydrodeoxygenation reaction 
over a CoMo/Al2O3 catalyst, Marin and coworkers proposed a detailed reaction network,6 which 
they elucidated using delplots.7, 8 

While RNI is a common component of evaluating biomass reaction systems,9, 10 its application 
extends to petrochemical and pharmaceutical processes.11, 12 The research of Bhan and coworkers 
has especially highlighted the importance of identifying the reaction network to construct reliable 
kinetic models.13-17 They effectively confirmed the occurring reactions by applying 
Wojciechowski's criteria to first-rank delplots18, 19 and conducting experiments with product, 
isotopic labeling, and probe molecule co-feeds.20 

Various experimental data collection and analysis techniques exist to enable kinetic model 
development; design of experiments (DOE) can propose optimal experiments to minimize the 
number of measurements. However, most DOE work has focused upon reaction rate equations 
rather than reactions. Such DOE, building from the foundational work of Box, Hunter, Froment, 
Buzzi–Ferraris, and their collaborators,21-25 is well complemented by the incremental approach of 
Marquardt, Bonvin, and coworkers.26-29 This approach effectively attributes measured rate data to 
individual reactions, enabling their independent determination; however, the authors acknowledge 
their incremental approach is vulnerable to inaccurate RNI.30-34 DOE specifically for RNI is 
needed.

Building from the work of Tsu et al.,35 Bourne and coworkers created an automated RNI 
approach.36-38 Their approach assesses full reaction profiles against all stoichiometrically feasible 
kinetic models to identify which fits best. It assumes a rate equation, a common assumption in 
kinetic model discrimination.23, 39, 40 When assuming a rate equation and evaluating its statistical 
evidence, it is unknown whether the lack of fit is due to an incorrect rate equation or the reaction 
not occurring. A rate agnostic analysis is preferable. This limitation, combined with the 
acknowledgement of Bourne et al. that DOE for individual experiments offers potential 
improvement (i.e., inferring reactions from a single experiment rather than their approach requiring 
many experiments at different conversions for full reaction profiles),37 clearly identifies the need 
for improving the RNI methodology.

Herein, we propose a framework for RNI using model-based DOE.41 We introduce chemistry-
probabilistic graphical models42, 43 (PGMs) to propose the causal structure of reactions inducing 
chemical conversion and Bayesian inference to identify the statistically non-zero reaction extents. 
We combine this causal structure with Boolean logic to construct Boolean reaction circuits (BRCs) 
to infer the reactions given effluent concentrations. We recommend implementing both techniques 
using our new DOE methodology based on graph theory; its objective is to identify the reaction 
network graph (RNG) with minimal experiments and maximal certainty. Overall, we perform 
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optimally informative experiments, analyze the effluent data with PGMs and BRCs, update the 
RNG structure, and repeat the process in an active learning cycle until the entire network is 
identified. This RNI methodology is generalizable and applicable to traditional experiments and 
industry’s thrust towards automated, optimized laboratories.44, 45 We demonstrate this RNI 
framework upon a simulated ethane dehydrogenation network in Section 2, new biomass-derived 
cross-ketonization laboratory experiments in Section 3, and a simulated CO2-assisted ethane 
dehydrogenation network in Section S4 of the supporting information (SI). 

2. Demonstration of Reaction Network Identification 
Methodology Upon an Ethane Dehydrogenation Network
2.1 Overview

We propose an RNI methodology that is rate equation agnostic and requires  minimal 
experiments using an active learning cycle until the network is confirmed with statistical 
confidence. Figure 1 depicts the key steps.

Figure 1: Workflow of RNI methodology. Information flow is depicted with green arrows; decisions (diamond) and actions 
(rectangle) are depicted with dark blue quadrilaterals. Boxed in purple, steps 3-5 are repeated for all possible experiments to 
implement a combinatorial DOE.

We analyze the ethane dehydrogenation reaction network throughout Section 2, as a simple 
illustrative example upon a simulated system informed from our prior work.46 An initial 
experiment is performed (Step 1) where ethane (C2H6) is fed. Ethylene (C2H4), methane (CH4), 
coke (C), and hydrogen (H2) are observed as products; our objective is to determine the overall 
reactions among these stable species. New species may be measured at new reaction conditions. If 
a new species is detected, then new overall reactions need to be considered and the entire 
methodology needs to be performed from the beginning. Therefore, we recommend performing 
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experiments over a range of conditions for reaction systems until the species present are known 
with confidence. With measured C2H6, C2H4, CH4, C, and H2, there are several potential reactions 
(see below). In addition to the main dehydrogenation reaction, hydrogenolysis involving C-C bond 
scission leading to methane, and coking from the various hydrocarbons, can happen. It is unknown 
at the outset of a new catalyst investigation which reactions occur.46-48 

2.2 Traditional Stoichiometrically Feasible Reactions and Graph Theory-
based Representation of Reaction Networks 

First, we exhaustively list all stoichiometrically feasible, overall reactions (rather than 
elementary, microkinetic ones). The general formula is Eq. (1). 

∀i,k:    ∑
j
νijεjk = 0 (1)

Here, νij is the stoichiometric coefficient of species j in reaction i, and εjk is the number of atoms 
of element k in species j. Specifically, we consider all combinations of two or fewer reactants with 
two or fewer products. In this test case, 20 stoichiometrically feasible reactions are identified (see 
data repository49). For example, the reaction a1H2↔a2CH4 is infeasible, whereas 
a1C2H6↔a2C2H4+a3H2 is stoichiometrically feasible. These 20 stoichiometrically feasible 
reactions are pruned to 4 physically realistic reactions using expert knowledge from the literature: 
ethane dehydrogenation, ethylene coking, ethane hydrogenolysis, and methane coking. While 
reliance upon expert knowledge might be completely removed from this RNI framework in the 
future to facilitate complete automation, for now we include it for two reasons. First, expert 
knowledge can eliminate physically unrealistic reactions and thereby reduce the number of 
required experiments for RNI. Second, the reduction of considered reactions enables showcasing 
our new analyses by reducing linear dependence between reactions. In the future, the role of expert 
knowledge may be filled by using chemistry rules constructed from automated literature searches 
or from software specifying elementary reaction rules such as RING, NETGEN, COMGEN, and 
KING or overall reactions.50-53

These research tools50-53 approach reaction enumeration differently from our method. They 
specify elementary reaction rules that explain how species can interconvert between one another 
and then enumerate reactions consistent with these rules. This contrasts with our enumeration 
approach including all stoichiometrically feasible reactions. Our approach is more inclusive 
ensuring no possible chemistry is overlooked; the traditional approach is more focused, providing 
a smaller subset that likely contains relevant chemistries. Both approaches rely upon regressing to 
experimental data to discern reactions and rate parameters for quality model-experiment 
agreement, but while our approach focuses on overall reactions, the traditional approach can 
identify multiple microkinetic pathways of elementary reactions leading to the same overall 
reaction. Our work can be extended by exploring competing microkinetic pathways after 
identifying the overall reactions, and we recommend our more inclusive enumeration technique to 
mitigate the risk of neglecting key chemistries.

These feasible reactions form a reaction network, displayed in Figure 2a. Arrows indicate 
each reaction’s reversibility, determined using thermodynamics and expert knowledge from the 
literature (discussed in Section S1 of the SI). These traditional reaction networks communicate 
reaction fluxes but lack mathematical uniqueness, i.e., there are multiple, valid depictions since 
species can appear multiple times such as H2 in Figure 2a. In the traditional approach, one typically 
writes overall rate expressions, e.g., power law or Langmuir Hinshelwood, and attempts to regress 
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to experimental data. Experimental data may entail time dependent or space velocity series and/or 
reaction kinetic type (reaction orders, apparent activation energies). More often, one does not even 
invoke exhaustive stoichiometric relations; rather, one simply hypothesizes rate expressions and 
regresses for a single potential network.

Next, we construct a RNG using graph theory (Step 2 in Figure 1) from our list of 
stoichiometrically viable, pruned reactions. We represent each species and reaction as a node. The 
directed edges display the flux within the system, as shown in Figure 2b. These graph theory-based 
RNGs depict the connectivity of the network, preserving mass because the net flux into each 
reaction node is zero, i.e., atomic species in are equal to atomic species out, as prescribed by Eq. 
(1). They also provide mathematical uniqueness since each species, reaction, and flux is 
represented only once, in contrast to the more traditional form of Figure 2a. 

Figure 2: Alternative depictions of the ethane dehydrogenation reaction network. (a) Traditional overall reaction network. Reaction 
1 (R1): ethane dehydrogenation in blue (C2H6 → C2H4 + H2). Reaction 2 (R2): coking from ethylene in red (C2H4 → 2C + 2H2). 
Reaction 3 (R3): ethane hydrogenolysis in orange (C2H6 + H2 → 2CH4). Reaction 4 (R4): coking from methane in magenta (CH4 
→ C + 2H2). (b) Graph theory representation of the reaction network. Each species and reaction are represented as a node. 
Relationships between nodes and colors correspond to (a) using directed edges to represent reaction flux and reversibility. Numbers 
indicate the reaction. 

2.3 Design of Experiments and Active Learning
Next, we confirm the reactions taking place using maximally informative experiments, i.e., 

the experiments our DOE indicates are the most informative from the combinatoric set proposed. 
The following describes the mathematical operations of Steps 3-5 (Figure 1). 

First, an experiment is proposed (Step 3) by suggesting a feed, for example feeding C2H4. 
The feed space is defined by the stable species of the RNG, but there is no restriction on specific 
concentrations. The RNG is then evolved to show which reactions occur (Step 4), as demonstrated 
in Figure 3, following a simple rule: if all reactants of a proposed reaction are present, we assume 
the reaction occurs and the products form. These products are then evolved; as reactions occur, 
products form, leading to more reactions. For example, feeding C2H4 allows reaction 2 (R2), C2H4 
→ 2C + 2H2 to occur. Then, H2 reacts with C2H4 in R1 to form C2H6, C2H4 + 2H2 → C2H6. This 
evolution of the RNG continues: the C2H6 undergoes hydrogenolysis with H2 to form CH4 in R3, 
C2H6 + H2 → 2CH4, and this CH4 decomposes to C and H2 via R4, CH4 → C + 2H2. At this stage, 
the RNG evolution is complete since no more reactions occur, as shown in Figure 3. It describes 
the causality of chemical reactions, i.e., which reactions are caused to occur by the species present 
and which additional species are produced by the occurring reactions.
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The RNG evolution is evaluated (Step 5) to determine which reactions would be revealed 
if the experiment were run; the number of revealed reactions is the information rating of a proposed 
experiment. For the example of the proposed experiment of Figure 3, the RNG evolution indicates 
that BRC analysis (discussed below) of this experiment’s effluent concentrations would reveal 
three reactions (i.e., it has an information rating of three) while PGM analysis (discussed below) 
would reveal two reactions (i.e., it has an information rating of two). The procedure for obtaining 
these information ratings is discussed in Section 2.4.

Figure 3: RNG representation of the evolution of active species and reactions within the ethane dehydrogenation reaction network. 
Each of the six RNGs represents a different state of evolution, and labeled arrows denote the sequence between states. Species and 
reaction nodes are either currently uninvolved (blue), newly introduced (purple), or previously incorporated (green). The initial 
state shows the initial feed; the final state denotes the active species and reactions given that feed. 

We repeat the procedure for all possible feeds of a single species and two species (feeds of 
more species were found to be less informative). For our test case, this entails feeds of C2H6, C2H4, 
CH4, H2, beginning with coked catalyst, or combinations of any two of these. The RNG evolutions 
of all these feeds considered are documented in Section S2 of the SI. Combinatorically exploring 
the design space of feeds ensures evaluating the information rating of each potential experiment. 
This DOE approach is codified in Section S3 of the SI with algorithms. The maximally informative 
experiment (highest information rating) is identified and performed in the laboratory (Step 6). For 
this example, the experiment selected and conducted is feeding C2H4; the data collected is the 
effluent concentrations.

Analysis of this experiment’s data confirms or rejects proposed reactions within the RNG, 
as detailed in Section 2.4. For this example, R1, R2, and R3 are confirmed from the effluent 
concentrations of the experiment of feeding C2H4. By updating the RNG with this information 
(Step 7), we then determine if any unconfirmed reactions remain (Step 8). If not, the reaction 
network has been fully identified for subsequent kinetic modeling (Step 9). However, if additional 
reactions require identification, the combinatorial DOE is repeated.  This repeat of the DOE is an 
active learning cycle; an initial DOE identifies an informative experiment, the experiment is 
conducted, the RNG is updated, and this new information is used to inform another DOE. In this 
example, R1, R2, and R3 are confirmed, but R4 is still unconfirmed requiring an additional 
experiment. The DOE identifies the promising experiment of feeding CH4, and once performed 
the effluent concentrations confirm R4 occurs. With only two experiments (one feeding C2H4, 
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another feeding CH4), we confirm all four reactions occur to fully identify the ethane 
dehydrogenation network.

Occasionally, specific reactions cannot be identified with this approach, so alternate 
methods are employed. We demonstrate this in Section 3 by employing a modified delplot 
method.7, 20 While these alternate methods may offer less statistical confidence or require more 
experiments, the structure of some RNI problems requires them.

2.4 RNG Trajectory Evaluation Methods
Herein, we present two methods for analyzing evolved RNGs to determine their 

information ratings: BRCs and PGMs. Depending on the RNG, either may provide higher 
information ratings.

Through a one-to-one mathematical transformation, BRCs convert the evolution of the 
RNG (Figure 3) into a Boolean logic circuit (Figure 4); certain species (inputs) must be present 
(on) to produce additional species (outputs). Even if one of the reactants is missing, the reaction 
does not occur. This behavior makes an “and” gate appropriate to describe each chemical reaction. 
Depending on which reactions occur (i.e., which “and” gates are activated), the effluent differs. 
For the  ethane dehydrogenation network, if R2 does not occur, the effluent only contains C2H4, 
whereas if R2 occurs, H2 and C are produced. Evaluating the effluent identifies the reaction(s) in 
a rate equation agnostic approach. The proposed experiment of feeding C2H4 is evaluated as having 
an information rating of 3 (i.e., this experiment identifies 3 reactions: R2, R1, and R3, as shown in 
Figure 4). 

Figure 4: BRC corresponding to the evolved RNG of Figure 3. C2H4 is fed as the leftmost value node. Each “and” gate (reaction) 
has a unique color. The color of a species value node corresponds to the “and” gate that first generates it. While using single value 
nodes for each species is more structurally accurate, we allow repeat value nodes for visual clarity. R1 is the only reversible reaction 
as inferred from thermodynamics (Section S1 in the SI), which is implemented using diodes. 

PGMs are more complex. They also employ a mathematical one-to-one transformation of 
the RNG’s evolution but only require the final evolved state. A strength of PGMs is their focus on 
reaction extents, similar to the incremental approach for modeling reaction kinetics.27, 28, 30 In 
contrast to other approaches,23, 35-40 the extents do not assume a rate equation or information about 
the rates. It relates directly to experimental measurements of species concentration changes. The 
generalized formula relating the vector of reaction extents (ξi) to the vector of net changes in 
species j concentration (Δ[C]j) depends upon the stoichiometric matrix Ai×j, as shown in Eq. (2). 
The number of rows and columns reflect the species j and reactions i, respectively. An example of 
this formulation is displayed in Figure 5a.

Ai × j ∙ ξi = Δ[C]j (2)

This formulation is similar to the traditional method of rates balancing, i.e., relating species 
rates (wj) to reaction rates (rj) as shown in Eq (3). 
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Ai × j ∙ wi = rj (3)

With noise-free experimental data and a full rank stoichiometric matrix, the solution of Eq. 
(2) would be exact, and linear algebra would identify the reactions: reactions with non-zero extents 
occur, and reactions with extents of zero do not. However, significant noise generally accompanies 
laboratory measurements, so we require a statistically rigorous evaluation using PGMs. This is the 
first challenge in analyzing experimental data. This noise of the measured concentration changes 
is generally evenly distributed around values that fall within the column space of the stoichiometric 
matrix; systematic noise (i.e., a significant offset from the column space) indicates there may be 
an issue measuring species and requires additional analysis, as demonstrated in Section 3.2. 

Our PGM approach uses the same core formulation of Eq. (2) but implements a Bayesian 
framework to provide probability distributions for each reaction extent.42, 43, 54 We constrain the 
prior distributions of each reaction extent with the reversibility of the reaction (a prior probability 
bias) inferred by thermodynamics. The PGM expresses Eq. (2) with statistical deviation from noisy 
experimental measurements (σ), as shown in Eq. (4), where P() denotes a probability.

P(ξi,σ|Δ[C]j) ∝ P(Δ[C]j|ξi,σ) × P(ξi,σ) (4)

The Bayesian formulation is expressed visually with a probabilistic graphical model 
(Figure 5a) displaying the causal relations of the reaction extents changing the species 
concentrations. The posterior distribution of the reaction extents accounts for the correlations 
between the estimated extents while probabilistically quantifying their estimated values. These 
probability distributions enable statistical conclusions regarding which reactions occur. 

To evaluate the PGM information rating, we calculate the rank of the stoichiometric matrix. 
If the matrix is full rank, the PGM analysis promises a fully determined result with an information 
rating equal to the rank. However, if the rank of the stoichiometric matrix is less than the number 
of reactions, then the extents are linearly dependent with infinite linear combinations. This results 
in an underdetermined PGM with extents not probabilistically quantifiable. This is the second 
routine challenge in chemical kinetics.

With reaction stoichiometries often possessing linear dependence, obscured identifiability 
is common in kinetics, as demonstrated in Figure 5a. The incremental approach, i.e., decomposing 
measurements to individual rates, addresses this concern by assuming an identifiable set of 
reactions from the possible linear combinations.30 For the example in Figure 5a, the stoichiometric 
matrix is underdetermined; the rank is three while there are four reactions. Therefore, the reaction 
extents cannot be solved for uniquely because the reactions’ stoichiometries are linearly 
dependent. For example, suppose ΔC2H6, ΔC2H4, ΔCH4, and ΔH2 are measured as -6M, 1M, 4M, 
and 8M, respectively. These changes correspond exactly to values of 3M, 2M, 3M, and 2M for the 
extents of ξ1, ξ2, ξ3, and ξ4, respectively. However, the measured changes in species also 
correspond to extents of 4M, 3M, 2M, and 0M, wherein R4 does not occur. These scenarios are 
indistinguishable given the underdetermined structure. To ensure unique solutions for each 
reaction extent, the incremental approach might assume R1, R2, and R3 occur while R4 does not; 
this would eliminate the linear dependence, but at the cost of an inaccurate RNI since R4 does 
occur. To avoid this inaccuracy, we must create a different approach for analyzing 
underdetermined systems.    

Leveraging PGMs, we propose a new approach. If an evolved RNG shows an active species 
node with only one active flux edge directed into it, then a single reaction contributes to this 
species’ generation. Similarly, if an evolved RNG shows a fed species node with only one active 
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flux edge directed away from it, then there is a single reaction responsible for this species’ 
consumption. In these cases, the physics offers only one possible cause to explain the observed 
effect, and the evolved RNGs indicate that PGM analysis can identify these reactions, despite the 
PGM being underdetermined. 

In our example, the stoichiometric matrix (Figure 5a) rank is three, indicating the PGM is 
underdetermined. However, the production of C2H6 and CH4 (Figure 3) can only be causally 
explained by R1 and R3, respectively. Therefore, this underdetermined PGM possesses an 
information rating of 2 (i.e., revealing 2 reactions). We validate this information rating by 
performing a hypothetical underdetermined PGM analysis (Figure 5b-e) using simulated effluent 
concentrations from the proposed experiment of feeding C2H4; simulated data is available in the 
data repository accompanying this work.49 The resulting distributions confirm that R1 and R3 have 
statistically non-zero extents, while the extents of R2 and R4 cannot be discerned from zero due 
to the identifiability issue. 

Figure 5: PGM analysis of the evolved RNG of Figure 3. (a) Matrix and PGM formulation of the reaction extents. The rows and 
columns of the matrix are labeled with their corresponding species and reactions. The same stoichiometric relationships described 
in the matrix formulation are embedded within the PGM edges connecting the corresponding nodes. The standard deviation of the 
experimental noise (σ) is omitted for clarity. (b-e) Probability distribution and histogram of extent of R1-R4, respectively. 
Histograms are included for clarity in b-e to show for R2 and R4 that no extents less than zero are included in the estimations 
following their irreversibility. Vertical dashed lines in b-e denote the 95% credible intervals, which do not overlap with zero for 
R1 and R3.

Predicting the information rating of hypothetical experiments from the BRC and PGM 
analyses screens proposed experiments to enable DOE for RNI. With these information ratings, 
the experiment is conducted and the resulting data is processed with BRC or PGM analysis to 
confirm the reactions. These hypothetical experiments also provide an initial guess of how many 
experiments will be required for RNI by cataloging which reactions can be identified using PGM 
or BRC analysis and which require other methods such as delplot analysis. Reaction networks with 
linear dependence and high connectivity are less compatible with PGM and BRC analysis. 
However, this initial guess should be treated with caution. As experiments are conducted and 
reactions are eliminated from consideration, the RNG structure is updated. DOE is performed upon 
the updated RNG, and new informative experiments are identified, as demonstrated in Section 3.3. 
Leveraging the strength of this active learning approach, the methodology consistently identifies 
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the full reaction network in fewer experiments than predicted by the initial guess in our experience; 
therefore, we recommend using such initial guesses as a qualitative metric prone to overestimation.  

To summarize, this simulated ethane dehydrogenation network is identified with our RNI 
methodology using only two experiments. We feed C2H4 and use BRC to confirm the occurrence 
of R1, R2, and R3 (Figure 4); the underdetermined PGM analysis also statistically confirms R1 
and R3 as active (Figure 5). The second experiment, feeding CH4, confirms the occurrence of R4 
by BRC analysis once H2 is measured at the effluent. From only two sets of experimental 
measurements, all four reactions composing the underdetermined system are statistically and 
logically discerned as active.

2.5 RNI for CO2-Assisted Ethane Dehydrogenation 
An additional, more complex RNI example is provided in Section S4 of the SI upon a 

simulated system of CO2-assisted ethane dehydrogenation network. With fifteen proposed 
reactions in the RNG, seven of which occur, the reaction network is challenging to identify. From 
noisy concentration data of our simulated reactor’s outlet, we attempt to discern the active 
reactions using fully determined and underdetermined PGMs, detailed BRCs, and supplementary 
delplots. Specifically, we use simulated effluent concentrations from twenty experiments for PGM 
analysis (five feeds each measured four times), eight experiments for BRC analysis (two feeds 
each measured four times), and sixty-four experiments for delplot analysis (four feeds each 
measured four times at four conversions). The PGM and BRC analyses inform the RNG of nine 
reactions from their twenty-eight experiments, while the sixty-four delplot experiments inform the 
RNG of the remaining eight reactions. This highlights the significant reduction of number of 
experiments necessary for PGM and BRC analyses compared to delplots, which are only employed 
when all informative PGM and BRC experiments are exhausted. We validate our RNI 
methodology by correctly identifying the reactions present in the underlying model generating the 
effluent data (Figure 6).  

Figure 6: Overview of the RNI performed on the CO2-assisted ethane dehydrogenation network. From a proposed RNG of fifteen 
reactions, the correct seven are identified (green) from the effluent measurements collected as directed by our DOE and analyzed 
by PGMs, BRCs, and delplots. Details are provided in Section S4 of the SI.
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3. RNI for the Cross-Ketonization of Furoic and Lauric Acids
3.1 Reaction Network  Introduction

Herein, we demonstrate our RNI methodology upon a cross-ketonization network with 
laboratory data. This reaction produces a precursor toward the production of detergents, analogous 
to linear alkylbenzene sulfonates (LAS). LAS are the world’s largest biodegradable surfactant 
commodity commonly used in cleaners, detergents, and laundry powders.55 The global market for 
LAS was estimated at $6.74 billion in 2011 and was projected to be over $8 billion in 2020.56 
However, their continued use is undesirable due to their dependence upon non-renewable 
feedstocks and toxicity concerns.57, 58 

Recent work has demonstrated biomass-derived oleo-furan sulfonate surfactants 
outperforming commercial LAS in detergency and showing greater stability in hard water 
conditions.59 Targeting the bottleneck reaction in their production, Nguyen et al. developed a new 
synthesis of 2-alkoyl furan via cross-ketonization of 2-furoic acid (FA) and lauric acid (LA) using 
earth-abundant, commercially-available iron oxides.60 A promising alternative to LAS, these oleo-
furan sulfonate surfactants suffered from a low yield of 41% due to competitive side reactions. 
Chen et al. applied similar chemistry at milder reaction temperatures to synthesize short-chain 
alkyl furan ketones in higher yields of 80% with a nanoparticle magnesium oxide (MgO) catalyst.61 
While reaction networks have been proposed, rigorous RNI has not been performed. 

3.2 The Initial Experiment and RNG Construction
An initial experiment over MgO is performed at 350 °C at 0.25 M FA and 0.15 M LA. 

Experimental methods are detailed in Section S5 of the SI and are the same as used in prior work.62 
Effluent analysis with the GCMS reveals in the liquid phase 2-dodecanoyl furan (Dod), 12-
tricosanone (Tri), and furan (F). Prior work identified carbon dioxide (CO2) and water (H2O) as 
additional products.60 With stables species identified, reaction enumeration commences. 

Combinatorically listing all stoichiometrically feasible reactions,63 we find six reactions 
with two or fewer reactants. The six reactions are diagrammed in Figure 7 with arrows indicating 
thermodynamic reversibility, as evaluated from reaction quotients and equilibrium constants 
estimated by the machine learning toolkits of Green and coworkers (details in Section S1 of the 
SI).64-67 From the stoichiometry matrix (Eq. (2)) of the six potential reactions, the rank is evaluated 
to be three, indicating the system is underdetermined.
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Figure 7: Reaction network depicting potential overall reactions between 2-furoic acid (FA), lauric acid (LA), 2-dodecanoyl furan 
(Dod), 12-tricosanone (Tri), and furan (F) over MgO. Thermodynamic reversibility is indicated by the directionality of the reactive 
flux arrows. (a) Reaction network diagramed with each reaction represented with a labeled arrow. (b) Reaction network graph with 
each reaction represented with a labeled node. Labeled chemical structures are on the periphery. The reversibility of R3 is shown 
using arrows in both directions rather than bidirectional arrows for convenience. 
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First, we analyze the initial experimental data to ensure the measurements fall within the 
stoichiometry matrix column space. Specifically, we examine the measured effluent 
concentrations of three repeat experiments with a feed of FA and LA, as described above. If the 
concentration changes deviate strongly from the stoichiometric subspace, this indicates a mass 
balance violation stemming from a calibration issue or an unaccounted reaction, e.g., coke or 
humins formation. Subspace evaluation is performed using a full rank PGM; with a stoichiometric 
matrix of rank three, we select the three linearly independent reactions R1, R4, and R6 to define 
the PGM structure (Figure 8a). 

Evaluating the PGM, we identify a significant offset in the measured change of FA (Figure 
8e); specifically, there is more FA consumed than can be explained by the generated products. FA 
and LA form complexes with the catalyst, preventing their quantification in the effluent. We 
classify these species’ concentrations as “hidden data,” denoted by rounded edges in the PGM 
(Figure 8a). This is yet another challenge in RNI common in catalysis. Reactive species and 
intermediates often preferentially adsorb and block active sites, leading to undetected products, 
mass imbalances, or catalytic deactivation. Deactivation will not introduce errors in our rate 
agnostic analyses, and errors from mass imbalances caused by undetected products or 
complexation with catalytic sites are mitigated by this check on hidden data. While not measured 
in the effluent, these undetected species can be determined through PGM analysis; using the 
estimated extents of reactions, the unmeasured species FA, LA, H2O, and CO2 are inferred. The 
reminder of our analysis depends only upon the measured concentrations of Dod, Tri, and F, 
showing the adaptability of the RNI methodology in the context of physical constraints.

Figure 8: PGM analysis of an initial experiment to perform a stoichiometry check. (a) PGM structure. Reactions extents (ξi) are 
parent nodes (circles) and change in species concentrations are child nodes (squares). Unmeasured species nodes are rounded to 
denote them as hidden data. (b)-(d) Probability distribution of extent of R1, R4, and R6 with dashed vertical lines denoting the 95% 
credible intervals. (c) Probability distribution of the offset of FA with dashed vertical lines denoting the 95% credible interval. The 
credible interval does not overlap with zero indicating a statistically significant mass imbalance in FA consumed. 

This physical example of concentration data with significant offsets highlights two 
concerns of relying upon more traditional fittings of different proposed rate models for RNI. First, 
if unsupervised fittings of proposed rate equations are implemented without evaluating how well 
the measured concentration changes fall within the stoichiometric subspace, offsets such as this 
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one caused by reactants complexing with the catalyst would not be detected and fitted rate models 
would be inaccurate. At best, these rate models would over-predict the rate of reactions consuming 
FA; at worst, these unsupervised fits might select a different and inaccurate set of reactions that 
better explain the non-physical concentration offset. Second, even if the offset is identified from 
data supervision before rate model fitting, it can be challenging to discern if the offset is 
statistically significant or can be discounted as noise (i.e., if the offset is a fundamental issue 
requiring further investigation, or if the concentration data can be used as is by relying on the 
fitting to provide an average within the noise). This approach we present in Figure 8 demonstrates 
how both concerns can be overcome: implementing a PGM to provide a Bayesian quantification 
of the statistical significance of potential offsets. 

3.3 DOE and RNG Active Learning 
To determine the first optimal experiment, we perform DOE. Every combination of one or 

two stable species are proposed as a feed; each of these feeds is used to simulate an RNG evolution 
trajectory, which in turn yields an information rating for the proposed experiment. All proposed 
experiments feeding CO2 or Dod are eliminated from consideration to reflect the physical 
constraint that the experimental setup and supplies cannot facilitate feeding these species.

We determine that the highest information rating is one, i.e., even the most informative 
experiment can only guarantee the identification of a single reaction. From multiple proposed 
experiments with information ratings of one, we choose a feed composed of FA and Tri to confirm 
R2. We perform this experiment three times for statistical confidence. The results of the 
experiment are conclusive: no Dod is measured in the effluent. Thus, the BRC analysis confirms 
R2 is inactive; R2 is removed from the RNG. 

With an updated RNG, we perform a new round of DOE in an active learning approach. 
While again no proposed experiment has an information rating higher than one, there is a surprising 
finding: the previous experiment can now identify R1. In the previous RNG including R2, the feed 
of FA and Tri led to an RNG evolution where multiple reactions produce F. In the updated RNG 
excluding R2, the feed of FA and Tri leads to an RNG evolution where only R1 produces F. This 
result emphasizes the importance of performing DOE after every RNG update, in an active 
learning framework.

We reanalyze the previously collected experimental data rather than obtain new data, as 
suggested by the DOE. BRC analysis of the previous results of feeding FA and Tri now confirms 
R1 occurs since significant F is produced. A PGM analysis confirms it as shown in Figure 9; R1 
is active (non-zero extent) and R2 is inactive (zero extent). 

Figure 9: PGM analysis of feeding FA and Tri over MgO. (a) PGM structure of measurable species assuming only R1 and R2 may 
occur. (b) Probability density of extent of R1. (c) Probability density of extent of R2. The 95% credible intervals denoted by dashed 
vertical lines indicate that ξ2 cannot be statistically distinguished from zero since the left bound is zero. While there is some 
probability density of a non-zero ξ2 value, we attribute this to experimental noise in mass loss of Tri rather than activity of R2.
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With no new reactions excluded, there is no need to run new DOE; the RNG has not been 
changed. From the previous round of DOE, there are multiple proposed experiments with 
information ratings of one. We select the feed of LA and F and perform the experiment in triplicate. 
BRC analysis confirms R3 does not occur since no Dod is produced. 

With the elimination of R3, our next DOE active learning cycle is conducted: the RNG is 
updated and DOE is performed. Again, the DOE identifies that a previous experiment can be 
reevaluated in the context of the updated RNG; without R3 occurring, only R4 can possibly 
produce Tri from a feed of LA and F. With significant Tri measured in the effluent of the previous 
experiment, BRC analysis confirms R4 occurs. This conclusion is supported by additional PGM 
analysis in Figure 10 showing that the extent of R4 can be statistically distinguished from zero 
while the extent of R3 cannot. 

Figure 10: PGM analysis of feeding LA and F over MgO. (a) PGM structure of measurable species assuming only R3 and R4 may 
occur. (b) Probability density of extent of R3. (c) Probability density of extent of R4. The 95% credible intervals denoted by dashed 
vertical lines indicate that ξ3 cannot be statistically distinguished from zero since the left bound is zero. While there is some 
probability density of a non-zero ξ3 value, we attribute this to experimental noise in mass loss of F rather than activity of R3.

Revisiting the proposed experiments’ information ratings from the DOE, R6 can be 
identified by feeding LA and FA; according to BRC analysis, if Dod is produced, R6 occurs but if 
Dod is absent, then R6 does not. Fortunately, we can again return to a previous experiment, this 
time the initial experiment, for the required data. Dod is measured in significant quantities, 
confirming the occurrence of R6 within the system.

Having confirmed the occurrence of R1, R4, and R6 along with the inactivity of R2 and 
R3, only R5 remains unconfirmed. However, our DOE indicates there are no experiments that can 
identify R5 using BRC or PGM analysis. Therefore, we must employ an alternate technique. We 
select the delplot method7, 8 instead of other options such as isotopic labeling or probe molecule 
co-feed experiments20 because delplots can be constructed without requiring additional species be 
procured.

A first rank delplot is constructed from reactor effluent concentration data collected at low 
conversions. To create this delplot, the product species’ selectivity (Eq. (5)) is plotted against a 
reactant’s conversion (Eq. (6)) relative to the reactant’s initial concentration (R0), where P and R 
are the product and reactant species’ effluent concentrations respectively. 

y = selectivity =  

P
R0

1 ― R
R0

(5)

x = conversion = 1 ― R
R0

(6)
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Applying Wojciechowski's criteria18, 19 to such a delplot can identify reactions: a negative 
slope indicates the product species is consumed in a later reaction while a slope of zero indicates 
there are no secondary consumption reactions.20 Delplot analysis is less preferred to BRC or PGM 
analysis because it is less statistically reliable:  its conclusion depends upon the evaluation of a 
line’s slope, which is more susceptible to experimental noise. Additionally, delplot analysis 
requires more experiments to construct the plot at a range of conversions. However, when BRC 
and PGM analyses cannot identify specific reactions, delplot analysis often can.

Feeding FA and LA and evaluating the effluent’s Dod concentration at six different 
reaction times, we construct the delplot shown in Figure 11a. Given the potential reaction network 
diagramed in Figure 7, if R5 occurs then Dod will be consumed in a secondary reaction and have 
a negative delplot slope. Performing Bayesian inference upon the delplot, we determine the 
distribution of best fit lines (visualized in Figure 11a) and the probability distribution of the slope 
(Figure 11b). With a slope indistinguishable from zero, there is no evidence of the consumption of 
Dod with increasing conversion. R5 is eliminated from consideration, and the RNG is fully 
identified. Our RNI methodology required 15 total experiments to be conducted (including the 
triplicate experiments): the initial experiment (3), feeding FA and Tri (3), feeding LA and F (3), 
and feeding FA and LA (6). This number could have been reduced further since BRCs do not 
require replicates and the delplot could have been constructed with only three measurements 
instead of the nine we chose. However, to demonstrate our PGM analysis and improve the 
statistical confidence of our conclusions, we elected to include more replicates.

Figure 11: Delplot analysis of Dod for a feed of FA and LA over MgO. (a) Delplot showing the selectivity of Dod versus the 
conversion of FA (red data points). Consistent with delplot construction, selectivity is calculated as the yield of Dod divided by the 
conversion of FA. Black dashed lines indicate the 95% credible intervals of the best fit line for the data; from the sampled best fit 
lines, five were randomly selected and plotted in light blue for visualization. (b) Probability distribution of the slope of the delplot. 
With the 95% credible intervals (vertical dashed lines) encompassing zero, the slope cannot be statistically distinguished from zero 
and there is no evidence of the occurrence of R5.

3.4 Kinetic Modeling
With the reaction network identified (Figure 12a) and confirmation of no mass transfer 

limitations obtained (see Section S5 in the SI), a kinetic model can be constructed. Assuming 
power law kinetics and fitting to the delplot concentration data with Bayesian inference,54 we 
construct the kinetic model detailed in Eq. (7). With an R2 value of 0.94 and mean absolute error 
of 0.005 M, the model agrees well with the limited data (Figure 12b).
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rate1 = k1[FA]            where k1 = 3.03 × 10 ―3 s ―1

rate4 = k4[LA]2          where k4 = 6.66 × 10 ―2 M ―1s ―1

rate6 = k6[FA][LA]    where k6 = 2.18 × 10 ―1M ―1s ―1
(7)

Figure 12: Reaction network model. (a) Identified reaction network with R1, R4, and R6. (b) Concentration profiles fit to data with 
colors corresponding to panel a. The hidden data species of FA and LA are inferred and plotted, but no data can be measured for 
comparison since these species complex with the catalyst.

Subsequent model refinement DOE and kinetic parameter estimation must be performed 
to obtain a reliable kinetic model for optimization, for which there are multiple developed 
techniques.68-71 As more data is collected and the model is refined, the rate equation form may 
change, the reaction orders will be reassessed, the rate constants will update, and temperature 
dependence will be incorporated. However, the reactions being modeled will not change unless 
significantly new regimes are explored (i.e., temperatures or concentrations change enough to alter 
which reactions occur). The RNI methodology provides statistical confidence in the identified 
network establishing the foundation for future process optimization of this cross-ketonization 
network.

4. Conclusions
We constructed and demonstrated a methodology for reaction network identification. 

Using stoichiometry, chemical knowledge, and thermodynamics, we combinatorically enumerated 
possible reactions. Leveraging graph theory with rate equation agnosticism, we created a DOE 
approach of optimal experiments for identifying which of these reactions occur, simulating 
hypothetical reactions and ranking them on their information potential. Once run, these 
experiments’ effluent concentrations were analyzed with BRCs and PGMs, methods we introduced 
for discerning reactions in complex networks. When feasible, these methods are preferred 
alternatives to delplots as our examples showed that they provide comparable reaction 
identification with at least a factor of two fewer experiments. The analysis identified a reaction, 
the RNG was updated, and a new iteration of DOE selected the next maximally informative 
experiment in an active learning framework that continued until the entire RNG is identified. We 
introduced our RNI methodology upon a simulated ethane dehydrogenation network, and we 
further validated it upon a simulated CO2-assisted ethane dehydrogenation network and  a biomass-
derived cross-ketonization network in the laboratory. For the cross-ketonization network with six 
potential reactions, we showcased how all can be identified using minimal experiments. Upon 
confirming this RNG, a simple rate model was constructed showing good agreement with 
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measured concentrations. These results were obtained within the physical constraints of the 
laboratory system including unquantifiable species, linearly dependent reactions, and experimental 
noise. This reaction network methodology is general, providing a path forward for accurate reactor 
simulations and efficient automated laboratories in future catalysis research. 
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