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Abstract

Rapid discovery of new reactions and molecules
in recent years has been facilitated by the ad-
vances in high throughput screening, accessibility
to a highly complex chemical design space, and
the development of accurate molecular model-
ing frameworks. A holistic study of the grow-
ing chemistry literature is, therefore, required
that focuses on understanding the recent trends
in organic chemistry and extrapolating them to
infer possible future trajectories. To this end, sev-
eral network theory-based studies have been re-
ported that use a directed graph representation
of chemical reactions. Here, we perform a study
based on representing chemical reactions as hy-
pergraphs where the nodes represent the partici-
pating molecules and hyperedges represent reac-
tions between nodes. We use a standard reactions
dataset to construct a hypergraph network of or-
ganic chemistry and report its statistics such as
degree distribution, average path length, assorta-
tivity or degree correlations, PageRank centrality,
and graph-based clusters (or communities). We
also compute each statistic for an equivalent di-
rected graph representation of reactions to draw
parallels and highlight differences between the
two. To demonstrate the AI applicability of hyper-
graph reaction representation, we generate dense
hypergraph embeddings and use them in the reac-
tion classification problem. We conclude that the
hypergraph representation is flexible, preserves re-
action context, and uncovers hidden insights that
are otherwise not apparent in a traditional directed
graph representation of chemical reactions.

1Department of Chemical Engineering, Columbia University,
New York, USA. Correspondence to: Venkat Venkatasubramanian
<venkat@columbia.edu>.

1. Introduction
With the accelerated discovery of new reactions and com-
plex molecules due to advances in computational methods,
chemistry literature has been growing rapidly. The major
drivers for this growth are the advances in molecule opti-
mization, reaction engineering and optimization resulting in
the discovery of novel reactions that were either unknown
earlier or were infeasible, and high-throughput screening
methods that have led to the re-engineering (or re-wiring)
of existing reactions to make them more cost-effective and
sustainable from an environmental standpoint. Hybrid AI
models have a central role to play in driving chemistry
growth by combining domain knowledge in the form of
symbolic AI with numeric machine learning methods [1],
thus leveraging the expertise of a chemist and the numeric
stronghold of AI methods. Consequently, several hybrid AI-
based methods have been reported for problems including
thermodynamic property estimation [2, 3], reaction predic-
tion and retrosynthesis [4, 5], and chemical product design
among several others as presented in the excellent review
articles [6, 7, 8, 9].

To condense (and make sense of) the huge amount of chem-
istry literature that is available to us mostly in an unstruc-
tured format, we require tools that could be used to repre-
sent this knowledge in a structured format, compute coarse-
grained statistics that summarize the information effectively,
identify general trends on the evolution and growth of the
domain, and discover new chemistry insights that were un-
known earlier. While a framework that addresses these
requirements could be custom-developed, network theory
naturally offers tools and techniques such as – structural
statistics [10, 11], centrality measures [12], clustering [13],
network embedding [14, 15], link prediction [16, 17] – that
could be used to tackle these requirements. There are sev-
eral variations of graph-based representations for chemical
reactions, but the most common is a directed graph represen-
tation where nodes represent molecules and directed edges
from reactant nodes to product nodes represent reactions.
Studies based on such dyadic representations have reported
several interesting properties of the reactions network such
as their scale-free network structure similar to the World
Wide Web (WWW) [18], the existence of core (most useful)
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and peripheral molecules across organic chemistry reac-
tions [19], the small-world nature of reaction networks [20],
which is shown to make a network robust towards node/edge
deletions [21]. [22, 23] demonstrated applications of net-
work theory-based studies in parallel synthesis, reactivity
estimation, and rewiring of synthetic pathways.

The traditional directed graph representation for chemical
reactions has several limitations. First, a directed graph
representation does not capture the complete reaction con-
text, i.e. it introduces independent directed edges for multi-
reactant (or multi-product) reactions from each reactant to
each product, thus losing contextual information on the pres-
ence of other reactants (or products). As a result, several
seemingly independent, directed edges might correspond to
the same reaction. Second, a dyadic graph representation
does not allow for reaction (or edge)-specific molecular (or
node) properties such as relative molecular complexity, reac-
tivity, stoichiometry, reaction kinetics, and other properties
that might be useful for making the graph representation
more complete, rich, and chemistry-aware. Third, due to
the above limitations, the analyses generally could not be
analyzed in a self-contained manner to draw inferences and
identify the trends in chemistry that are not an artifact of the
reaction representation, as observed for degree correlations
in [20].

To address these limitations, we propose an alternative hy-
pergraph representation where molecules are represented
as vertices and an entire reaction is represented as a hyper-
edge. Since hypergraphs allow for an edge (or hyperedge)
to connect multiple vertices together (and not just two), the
entire reaction is represented using just a single, unique
hyperpedge. To address the issue of incorporating reaction-
specific node attributes, we use the recently proposed an-
notated hypergraph framework [24], which allows for each
node to have hyperedge-specific annotations and makes the
representation flexible to allow for reaction-specific contex-
tual information. Therefore, compared with directed graphs,
annotated hypergraphs are much more frugal in terms of the
number of hyperedges, flexible in capturing reaction-level
context, and due to the one-to-one correspondence between
hyperedges and reactions, the statistics are self-contained,
which correspond to underlying chemistry trends.

In this work, we compare and contrast the directed graph
representation of chemical reactions with an annotated hy-
pergraph representation using a standard organic chemistry
reactions database containing nearly half a million reac-
tions. Our work is the first attempt to study the network
of organic chemistry using a hypergraph framework that
we show to be frugal, rich, and chemistry-aware in nature,
making them suitable for deriving chemistry inferences. To
allow for a one-to-one comparison between the dyadic rep-
resentation and the hypergraph representation, we compute

standard network properties for the directed graph represen-
tation and an equivalent hypergraph representation using
the same reactions dataset. At the same time, we also re-
port the time-evolution of these properties. We also show
how a hypergraph could be transformed into a weighted
directed graph to allow for computation of dyadic network
properties that may be ill-defined or difficult to compute
for hypergraphs (at the moment). Finally, to demonstrate
the use-case of such hypergraph representations not just
for understanding chemistry trends but also for reaction
engineering, we show how the hypergraph representation
could be used in the reaction classification problem, i.e.,
predicting the reaction type given participating molecules
which has applications in reaction mechanism generation,
retrosynthetic planning, and feasibility analysis.

The rest of the paper is organized as follows – in Section
1, we first provide a mathematical and visual description of
the directed graph and hypergraph representations using an
example set of four reactions in Section 2.1, followed by
a tutorial-like description of network statistics such as de-
gree distributions, average path length, and assortativity in
Sections 2.2, 2.3, and 2.4; a description of the dataset used
to construct the organic chemistry networks is provided
in Section 3.1 and detailed network statistics along with
their time-evolution and chemistry-inferences derived are
provided in Sections 3.2, 3.3, and 3.4; additional analysis
based on PageRank and community detection are presented
in Section 4. The application of hypergraph in reaction clas-
sification using reaction embeddings generated via random
hyperwalks is presented in Section 5; finally, we present the
conclusions of this study and future direction of our work
in Section 6.

2. Properties of directed graphs and
hypergraphs

In this section, we formally define directed graphs, anno-
tated hypergraphs, and the various network statistics that
we use to characterize the hypergraph network of organic
chemistry. The following sections could also be treated
as a tutorial that motivates various network properties us-
ing an example set of four simple reactions containing five
different molecules.

2.1. Mathematical representation

A directed graph is an ordered pair G = (V,E) of a set of
vertices V and a corresponding set of edges E. Each edge
ei in E connects a source node si to a target node ti, giving
directionality to the set of edges, thus resulting in a directed
graph as opposed to an undirected graph. Chemical reac-
tions could also be represented using such directed graphs
where the reactants and products are represented as vertices,
and directed edges from reactants to products representing

2
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reactions. For reactions with multiple reactants and prod-
ucts, the directed graph is typically constructed using all-to-
all wiring with all reactants of a given reaction connecting
individually to all products in the reaction through inde-
pendent directed edges. Figure 1(a) shows a directed graph
representation for the set of four reactions (R1, R2, R3, R4)
with 5 different molecules (A,B,C,D,E) shown in Equa-
tion 1.

R1 : A −→ B

R2 : B + E −→ C

R3 : C −→ E +D

R4 : D + C −→ A+ E
(1)

(a) (b)

Figure 1. (a) Directed graph-based representation (b) Annotated
hypergraph-based representation where an entire reaction is repre-
sented using a single hyperedge and the annotations indicate the
vertex ‘roles’ as product (P) or reactant (R)

On the other hand, a hypergraph is a generalization of a
graph where each edge is not limited to connecting just two
vertices but could connect any number of vertices via hyper-
edges. Mathematically, a hypergraph is a pair H = (V,E)
where V is a set of vertices and E is the set of edges (or
hyperedges) where each edge contains a non-empty subset
of V . Since each chemical reaction has contextual informa-
tion about molecules along with an inherent directionality,
we use annotated hypergraphs [24] with hyperedge-specific
annotations (or roles) for nodes in a hyperedge. An anno-
tated hypergraph is defined as A = (V,E,X, l) where V is
the set of nodes, E is a labeled hyperedge set where each
hyperedge is a subset of V , X is a finite label set containing
the possible set of labels (or annotations/roles), and l is a
role labeling function for assigning roles to each edge in
the label. It should be noted that each node v would have a
given role x in given edge e, written as l(v, e) = x. Roles
are contextual and they are assigned to node-edge pairs, un-
like node attributes that are defined a priori for each node in
dyadic graphs. For a set of chemical reactions, the set of ver-
tices would be nodes, reactions containing the set of vertices
participating in the reaction are represented as hyperedges,
and the node-edge pair role could either be ‘product (P)’
or ‘reactant (R)’ for nodes that play the role of reactants
or products in a reaction, respectively. Figure 1(b) shows
the equivalent hypergraph representation for the set of four
reactions in Equation 1.

Remark 1: Observe that the number of (hyper)edges in a
hypergraph representation is the same as the number of
reactions, but this is not the case with edges in a directed
graph representation.

Remark 2: One of the primary benefits of using annotated
hypergraphs is the incorporation of contextual information
about reactions and molecules through hypergraph annota-
tions or roles.

2.2. Degree distributions

Degree distributions provide a general sense of the network
structure and its connectivity pattern. Generating a degree
distribution involves computing the degree (or number of
edges) for each node and estimating the underlying proba-
bilistic distribution that they follow. For a directed graph,
each node has two kinds of degrees – incoming degree (num-
ber of incoming edges, din) and outgoing degree (number
of outgoing edges, dout). The sum of the incoming and
outgoing degrees, total degree (din + dout = dtotal), is the
same as the degree of an equivalent undirected graph with
directionality removed from directed edges.

For an annotated hypergraph, equivalent degree distributions
could be defined. The incoming degree for a node in the
annotated hypergraph would involve counting the number of
hyperedges where the node participates with a role ‘product’
(dproduct or din) since products have incoming edges, and
the outgoing degree would involve counting the number of
hyperedges where the node participates with a role ‘reactant’
(dreactant or dout) since reactants have outgoing edges. The
sum of the incoming and outgoing degrees would be the
total degree (dproduct + dreactant = dtotal).

Table 1 shows the incoming and outgoing degrees for each
node in the set of reactions in Equation 1 for directed graph
and hypergraph representations.

Table 1. Degree distributions for the example set of reactions in
Equation 1

Node Directed graph Annotated hypergraph

in out in (P) out (R)

A 2 1 1 1
B 1 1 1 1
C 2 4 1 2
D 1 2 1 1
E 3 1 2 1

2.3. Average shortest path length

The average shortest path length of a network measures the
separation between nodes (on average) in term of the num-
ber of edges between nodes. Since this measure involves
computing the separation between all nodes, the network is
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required to be connected, i.e., there must exist a path from
any node to any other node in the network. For a directed
graph, the average shortest path length is the number of
directed edges between nodes with the constraint that the
distance should be measured along the direction of the edges.
For undirected graphs, this is simply the average number of
edges between nodes, irrespective of the directionality. This
is often referred to as the all pairs shortest path (APSP), and
is defined as,

l =
∑
s,tεV

d(s, t)

n(n− 1)
(2)

where d(s, t) is the distance between nodes s and t, and n
is the total number of nodes in the network.

To define connectivity for hypergraphs, we introduce two
new concepts – dual hypergraphs and linegraphs. First, the
dual hypergraph H∗ of a hypergraph H is a hypergraph
with nodes and edges interchanged. Therefore, in an H∗,
the nodes represent reactions and the hyperedges represent
the set of molecules common between the nodes that it
connects. Second, a linegraph L(H) of a hypergraph H is
defined as a graph whose vertex set is the set of vertices
of H with two vertices adjacent and connected in L(H)
when their corresponding hyperedges have a non-empty in-
tersection, i.e. they have common hyperedges (or reactions
in our context). Therefore, a hypergraph H is said to be
connected if its linegraph L(H) is connected. A general-
ization of linegraphs is the s-linegraph where s (an integer,
≥ 1) indicates the minimum size of the intersection, thus
giving rise to s-linegraphs. Because of the duality property
of hypergraphs, an equivalent linegraph L(H∗) could be
created for the dual hyeprgraph H∗ where the set of vertices
represent hyperedges and adjacent vertices are connected if

they have non-empty intersections, i.e. common molecules
in our context. The s-linegraphs for the example set of re-
actions in Equation 1 for different values of s is shown in
Figure 2 for H and H∗.

Now, for hypergraphs, the average shortest path length could
be defined in the same manner as for dyadic graphs by
computing the distance between nodes in an s-linegraph
of H (known as s-distance). For our purpose, we generate
the 1-linegraph and compute the average shortest 1-distance
between the nodes using Equation 2.

Since the computation of the average shortest path length
requires the graph to be connected, we find out the largest
connected subcomponent both for the directed graph and
the hypergraph and report their respective average short-
est path lengths. For the example set of four reactions in
Equation 1, since both the directed graph representation
and the hypergraphs’s 1-linegraph representations are con-
nected, their largest connected subcomponents are the same
as their respective graphs (or hypergraphs). The average
path lengths computed for the regular (undirected) graph
and the hypergraph is show in Table 2.

Remark 3: It is evident from the above table that in a hyper-
graph, the distances between nodes correspond exactly to the
number of reactions that separate the nodes (or molecules),
whereas in the case of a directed graph representation, the
distance between nodes corresponds only to partial reactions
separating the nodes and not the complete reactions.

2.4. Assortativity

Assortativity is a measure of the mixing patterns in networks
that indicates the general mixing behavior of nodes with

(a) Hypergraph (H) (b) 1-linegraph (H) (c) 2-linegraph (H) (d) 3-linegraph (H)

(e) Dual hypergraph (H∗) (f) 1-linegraph (H∗) (g) 2-linegraph (H∗) (h) 3-linegraph (H∗)

Figure 2. The hypergraph (H), dual hypergraph (H∗), and their respective s-linegraphs for the example set of four reactions in Equation 1

4
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Table 2. All pairs shortest distance for the example reactions

Node pairs Graph Hypergraph
in s=1

dA−B 1 1
dA−C 1 1
dA−D 1 1
dA−E 2 1
dB−C 1 1
dB−D 2 2
dB−E 2 1
dC−D 1 1
dC−E 1 1
dD−E 1 1

Average 1.3 1.1

other nodes in the network to give rise to a bigger network.
Assortativity is defined as the degree correlations between
nodes, and therefore, the mixing pattern could either be
assortative (positive correlation) or diassortative (negative
correlation). The assortativity is often computed as the
Pearson correlation coefficient between the degrees of a pair
of nodes and takes values between -1 and 1 – a network
with an assortativity coefficient of -1 indicates a perfectly
disassortative mixing, an assortativity coefficient of 1 points
towards a perfectly assortative mixing, and an assortativity
coefficient of 0 indicates a non assortative graph. Figure 3
shows an example of assortative and disassortative networks.

(a) (b)

Figure 3. Different mixing patterns (a) Assortative (b) Disassorta-
tive. Assortative networks have mixing patterns that arise due to
nodes with similar degree connecting to other nodes with similar
degrees, whereas disassortative networks are a result of mixing
patterns where nodes with dissimilar degrees connect to each other

For a directed graph, the in-assortativity (rin,in), out-
assortativity (rout,out), and in-out assortativity (rout,in)
measures the tendencies of nodes to connect with other
nodes that have similar in-degrees, out-degrees, and out-in
degrees, respectively. For α, β ∈ {in, out}, the assortativity
rα,β for directed graphs is defined as

r(α, β) =

∑
i(j

α
i − j̄α)(kβi − k̄β)√∑

i(j
α
i − j̄α)2

√∑
i(k

β
i − k̄β)2

(3)

where jαi is the α-degree of the source node for edge i,
kβi is the β-degree of the target node for edge i, j̄α is the

average α-degree of source nodes, and k̄α is the average
β-degree of target nodes. For the annotated hypergraph, we
define assortativity with respect to the roles (or annotations)
in a manner similar to the directed graph representation in
Equation 3, replacing the concept of edges with hyperedges
and in-out degrees with role-specific (or annotation-specific)
node degrees.

For the example set of reactions in Equation 1, the assorta-
tivity coefficients for the directed graph and the annotated
hypergraph are reported in the Table 3 below.

Table 3. Degree assortativity coefficients for the directed and hy-
pergraph representations for the example set of four reactions

roles pair directed hypergraph

p-p -0.19 -0.43
r-r -0.53 -0.43
r-p 0.27 0.15

Remark 4: These assortativity values could be used to an-
swer questions such as – how likely is it for products with
high degree to connect to other products with high degrees,
or how likely is it that the reactants would connect to other
reactants of similar degrees (appear in reactions together),
and so on.

3. Network statistics on organic chemistry
dataset

In this section, we study the network of organic chemistry
through the lens of various network statistics defined in
the previous section using a standard organic chemistry
reactions database. The primary objective is to highlight the
differences and similarities between the network statistics
for the directed graph and the hypergraph representations.
At the end of each section, we present chemistry insights that
are drawn from such analyses along with the time-evolution
of these properties.

3.1. Dataset description

The Jin’s USPTO-reactions dataset [25] derived from
Lowe’s text mining work [26] for chemical reactions on
the US patents office applications (1976-2016) is the pri-
mary dataset that we use to report and compare network
statistics. We performed minimal preprocessing (removed
incorrect, incomplete, and duplicate reactions) to allow for
the network statistics to capture network properties without
possibly losing information due to such preprocessing ex-
ercises. Along with information on reactants and products,
the dataset also contained information on the year in which
the reaction was reported, allowing us to investigate the
time-evolution of the network properties. The final dataset
contained 487,724 single-product reactions containing in-
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Table 4. Network structure overview for the directed and hypergraph representation for the USPTO dataset
all 1976-1985 1985-2005 after 2005

graph hypergraph graph hypergraph graph hypergraph graph hypergraph
Num reactions 487,724 69,692 259,214 158,818

Num (hyper)edges 1,245,533 487,724 106,977 69,692 389,072 259,214 289,623 158,818
Num nodes 440,207 440,207 71,268 71,268 238,872 238,872 180,348 180,348

formation on participating reactants, major products of each
reaction, and the year in which the reactions were reported.

Using this dataset, we construct directed graph and an anno-
tated hypergraph-based networks of organic chemistry. The
directed graph representation was constructed using the all-
to-all node connectivity for each reaction. The other wiring
possibilities are one-to-one or many-to-one but it has been
shown previously that the actual connectivity pattern does
not change the network structure and properties [18, 20].
The annotated hypergraph, on the other hand, represents all
the reactants and products as part of the same hyperedge
with node annotations based on

• reaction roles: ‘reactant’ or ‘product’

• relative length of SMILES strings in a reaction with
respect to the median SMILES length per reaction:
‘SMILES short’, ‘SMILES medium’, ‘SMILES long’

• molecular weight across the entire dataset:
‘molwt light’, ‘molwt medium’, ‘molwt heavy’

To perform an analysis of the time-evolution of network
properties over different stages of chemistry research, we
split the data into three time regimes – regime 1 with reac-
tions reported from 1976 to 1985, regime 2 with reactions
reported after 1985 until 2005, and regime 3 with reactions
reported from 2005 until 2016. An overview of the directed
graph and hypergraph representation obtained using the en-
tire dataset and also using dataset in the three time-regimes
is presented in Table 4.

Remark 5: Note that in the case of the hypergraph, the num-
ber of hyperedges exactly equals the number of reactions
in the dataset, whereas for the graph representation, the
number of edges is much higher. Of course, the number
of nodes remain the same in both the representations since
each node corresponds to a unique molecule in both the
representations.

3.2. Degree distributions

3.2.1. DEGREE DISTRIBUTION COMPARISON

We first compare the degree distributions of both the in-
coming and outgoing degrees for the directed graph and
annotated hypergraph representations. Recall from Sec-
tion 2.2 that for the annotated hypergraph, the incoming

degree is the same as the node-degree for annotation ‘prod-
uct’ and the outgoing degree is the same as the node-degree
for annotation ‘reactant’. The degree distributions for the
directed graph and for the various annotations in the hyper-
graph (based on reaction roles, relative SMILES length, and
molecular weights as defined in the foregoing section) are
presented respectively in Figures 4 and 5.

Figure 4. Degree distributions for outgoing (reactants) and incom-
ing (product) edges in a directed graph

Figure 5. Degree distributions for the various hypergraph node-
annotations (or roles)

Remark 6: Note that since our dataset only contains single-
product reactions, the outgoing degree distribution (reac-
tants) is the same in both representations, and only the
incoming (product) degree distributions differ. This is be-
cause the directed graph representation for a reaction would
have as many incoming edges for the product as the number
of reactants whereas in the hypergraph representation the
product would have just one incoming edge.

6
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3.2.2. POWER LAW FIT FOR DEGREE DISTRIBUTIONS

A visual inspection of the degree distributions indicates a
possible power law distribution, which is defined as

p(k) ∝ k−α (4)

where p(.) is the degree distribution, k is the degree, and α
is the scale-free or power law distribution parameter. The
existence of a power law distribution points towards an un-
derlying network structure known as the scale-free network
structure [11], ubiquitous in real-world networks that often
results in ‘small-world’ behavior. We perform a mathemat-
ically rigorous fit to ensure the existence of a power law
using the powerlaw package in Python and estimate the un-
derlying scale-free distribution parameter. The power law fit
for the incoming degrees (products) for the directed graph
and the hypergraph-based network of organic chemistry are
shown in Figure 6.

(a) (b)

Figure 6. Scale-free distribution fit on incoming (products) degrees
for (a) Directed graph (b) Hypergraph; Km is the minimum de-
gree cutoff threshold that is required as a hyperparameter in the
powerlaw package

We observe that the degree distributions for both the directed
graph and hypergraph incoming degrees could be assumed
to be coming from a power law distribution, thus pointing
towards an underlying scale-free network structure, agreeing
with several other studies that have shown that chemistry
networks exhibit a scale-free or small-world behavior [20,
18, 22]. However, the scale-free parameter, α differs in both
the cases – α is 2.51 for the directed graph (close to 2.7
reported in [22, 18] on another reactions dataset) and 3.1 for
the hypergraph.

In order to ascertain the difference in α values for the de-
gree distributions, we estimate the scale-free parameter by
randomly sub-sampling different fractions of the network
in a step-forward manner in time, i.e., by utilizing the re-
action year information, we sample reactions starting from
1976 sequentially sampling additional reactions from the
following years. We sub-sample 0.1 − 1.0 fraction of the
network in steps of 0.1 and repeat this 10 times to perform
bootstrapping and compute the deviations in α. The results
are presented in Table 5. It is clear from the table that the

scale-free distribution is indeed different in the two repre-
sentations and remains the same irrespective of the fraction
of network sub-sampled for estimating the distribution.

Table 5. Scale-free distribution parameter values, α, for different
fractions of the network sampled using step-forward sampling in
time using 10 bootstrapped samples for each fraction

frac graph α hyeprgraph α

mean std mean std

0.1 2.54 0.0009 3.1 0.0014
0.2 2.54 0.0003 3.18 0.0013
0.3 2.48 0.0008 3.13 0.0021
0.4 2.48 0.0005 3.1 0.0013
0.5 2.47 0.0001 3.02 0.0003
0.6 2.48 0.0004 3.03 0.0014
0.7 2.49 0.0005 3.04 0.0014
0.8 2.5 0.0003 3.07 0.0005
0.9 2.51 0.0001 3.1 0.0001
1.0 2.52 0.00014 2.97 0.0034

3.2.3. TIME-EVOLUTION OF SCALE-FREE NETWORK
PROPERTY

Next, we study the time-evolution of the scale-free parame-
ter α by computing it across the three time regimes – before
1985, 1985 – 2005, and after 2005. The degree distributions,
power law fit, and the estimated α values for the power law
fit are show in Figure 7. We observe that the scale-free
parameter α has been increasing over the years with sig-
nificant increase post 2005, pointing towards accelerated
growth nature of the hypergraph network [10] and a simi-
lar observation has been made on reactions dataset in [22].
The accelerated growth of the network of chemistry is also
evident from the average path length analysis presented in
Section 3.3.

3.2.4. INFERENCES FROM DEGREE DISTRIBUTIONS
ANALYSIS

First, we observe that the degree distributions in both the
cases follow a scale-free distribution, pointing towards an
underlying mechanism of ‘preferential attachment’ or ‘pref-
erential linking’ where new nodes attach to existing nodes in
the network with probability proportional to their connectiv-
ity or node degrees. Mathematically, preferential attachment
is characterized by

Π(k) ∼ kc (5)

where Π(k) is the probability of a new node attaching to an
existing node with degree k, and c is a constant controlling
the degree of non-linearity in preferential attachment. This
expression translates to the inference that chemistry growth
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(a) Directed graph incoming degrees

(b) Hypergraph ‘product’ degrees

Figure 7. Scale-free fit for reactions reported in the three regimes
with estimated α in inset

is largely driven by a relatively small set of highly important
molecules that are highly connected (higher degree, k) and
they have a higher likelihood of playing a central role in
the discovery of new molecules or reactions because of the
underlying phenomenon of preferential linking.

Second, for the directed and hypergraph representations,
the parameter characterizing the scale-free distributions is
higher for the latter. This could be related to chemistry by
looking at the concept of ‘initial attractiveness’ in scale-free
networks that assigns a non-zero probability of connecting
to an isolated node, given by

Π(k) = A+ kc (6)

which ensures that, for non-zero values of A, Π(k) 6= 0 for
disconnected nodes. The presence of A in the expression for
preferential attachment Π(k) does not affect the scale-free
structure of the network but has a direct-impact on the α
parameter as,

α = 2 + (k1 +A)/k2 (7)

where k1, k2 are constants with values depending on the
underlying generating model and A characterizes the initial

attractiveness of nodes. Thus, it could be inferred from
Equation 7 that the initial attractiveness based on the hyper-
graph representation is higher than that of the directed-graph
representation since the former has a higher α of 3.1 charac-
terizing the scale-free distribution compared with α of 2.51
for directed-graph representation. Moreover, the gradually
increasing α values for the scale-free distribution in both
directed and hypergraph representations indicates that the
initial attractiveness has been increasing over time, with the
trend being much more evident in the latter representation
where α grew from 2.98 in regime 1 to 3.75 in regime 3.

Third, a higher initial attractiveness translates to a higher
likelihood of discovering new connections (or reactions)
to isolated nodes (rare or complex molecules). Since the
initial attractiveness is the highest and much different in
regime 3 (after 2005) than the other two regimes, it could be
inferred that in the recent years, there has been an emphasis
on the rewiring of existing reactions to create connections
between previously disconnected nodes, or the synthesis
of rarer molecules. It will become clear from the analysis
in the next section on average shortest path length that the
major driver of chemistry evolution in the recent years is
the rewiring of existing reactions.

3.3. Average path length

3.3.1. AVERAGE PATH LENGTH COMPARISON

The average separation between the molecules (vertices)
in terms of number of reactions (edges) is captured by the
average path length of the network. We compute the average
path length on the largest connected subgraph for both the
representations. Recall from the Section 2.3 that for the
hypergraph, in order to make a one-to-one comparison, we
choose s = 1 to generate a 1-linegraph and compute the 1-
distance between nodes to compute the average shortest path
length for the hypergraph. The average shortest path lengths
for the largest connected subgraph obtained for the two
representations for different fraction of nodes sampled from
the entire dataset using step-forward sampling is shown in
Table 6.

Table 6. All pairs shortest path (or APSP) on the entire dataset

Fraction Reactions Directed Hypergraph

nodes APSP nodes APSP

1% 4,877 7,528 6.62 7,516 3.99
5% 24,386 26,222 5.98 26,176 3.75

10% 48,772 47,043 5.69 47,069 3.64
20% 97,544 91,903 5.36 91,870 3.52
50% 243,862 209,790 5.16 209,790 3.372

100% 487,724 411,396 5.11 411,396 3.252
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3.3.2. TIME EVOLUTION OF AVERAGE PATH LENGTH

Similar to the degree distribution analysis, we study the
time-evolution of the average path lengths of the networks
in the three time regimes. The average path length as a func-
tion of the number of nodes in the network using time-based
step-forward sampling is shown in Figure 8 for both the rep-
resentations for different fractions of the networks, namely
1%, 5%, 10%, 20%, 50% and 100% of the network in each
regime. We observe that across both the representations, the

(a) Graph

(b) Hypergraph

Figure 8. Average shortest path lengths for various regimes as func-
tion of the number of nodes in the sub-sampled graph

average path length between the nodes decreases exponen-
tially as the number of nodes in the networks is increased.
Moreover, in both the cases, the average path lengths for the
time regimes 1 and 2 are very similar to each other but the
average path length for regime 3 is significantly higher than
those in other two across all values of N. The phenomenon
of decreasing path length as number of nodes is increased
has been reported in the literature as network densification
[27] where the network grows more and more dense over
time – this makes sense for the USPTO dataset containing
patented reactions where the nodes are mostly sparsely con-
nected and they get more connected over time after either
new reactions discovered, or existing nodes become more
connected.

2extrapolated values since the network size was prohibitively
large for the hypernetX package in python with no C-optimized
libraries

In terms of differences, the average path length is much
smaller for the hypergraph representation than for the di-
rected graph. This could be an outcome of the frugal repre-
sentation of hypergraphs where number of edges is the same
as number of reactions but that is not the case with graphs.
This is one of the major advantages of using hypergraphs –
the edges-based analysis has a one to one correspondence
with reactions-based analysis, meaning that the separation
in terms of hyperedges between nodes corresponds exactly
to the separation between molecules in terms of reactions.
Therefore, the average separation between nodes in a hyper-
graph not only differs from a dyadic graph representation,
but the separation corresponds to the number of reactions
(on average) the separate the nodes in the network.

3.3.3. INFERENCES FROM AVERAGE PATH LENGTHS
ANALYSIS

First, we observe that as expected, the average shortest path
length for the directed graph representation is higher than
that of the hypergraph representation. This again is an arti-
fact of the directed graph representation which introduces
several additional edges for each reaction depending on the
number or reactants and products per reaction. On the other
hand, in the hypergraph representation, since each hyper-
edge connects all the molecules taking part in a reaction
using a single hyperedge, the separation exactly equals the
number of reactions separating any two given nodes. Thus,
in the directed graph average shortest path length for the
entire network is 5.11 while in the hypergraph it is 3.25.

Second, the average all pairs shortest distance for the hyper-
graph could be interpreted as separation between nodes (or
molecules) in terms of number of reactions. Recall that since
each hyperedge corresponds to a unique reaction, there ex-
ists a one to one mapping between the number of reactions
and the number of hyperedges separating the molecules.
Thus, the hypergraph network of organic chemistry indi-
cates that the network of organic chemistry is much more
compact than previously understood with nearly 3.25 de-
grees of separation between molecules, pointing towards an
even stronger small-world nature than previously observed
with five degrees of separation [20].

Third, in both the cases, the time-evolution of the network
suggests that over time, network densification takes place
primarily due to the creation of links between existing nodes
in the network rather than by the addition (or discovery)
of new nodes. A characteristic of network densification is
shrinking diameter [27], i.e., the average separation between
nodes decreases as the network grows, similar to the expo-
nential decrease in average shortest path length reported in
Table 6 and Figure 8. This phenomenon is observed for
both the representations and across time-regimes, pointing
towards an underlying process causing the densification.
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There exist models for explaining such densification such
as the community guided attachment similar to preferential
attachment but at a bigger community (or cluster) level with
separation between the communities [27]. However, the
exact quantitative model guiding densification in reaction
chemistry network needs further studies. Nevertheless, den-
sification suggests that chemistry has been evolving mostly
based on the rewiring of existing reactions (edges) rather
than the discovery of completely new molecules (nodes ad-
dition), that has brought the molecules closer to each other
over time. This is intuitive for the reaction patents dataset
that we worked with since most molecules are initially well
separated given that they are patented molecules/reactions
which get more connected (reachable) over time due to the
discovery of new reactions over the years.

Third, the time-evolution analysis of the average shortest
path length in Figure 8 suggests that in regime 1 and 2, the
average separation between molecules was nearly the same
for a given number of nodes, N in the network. However,
in regime 3, there was a significant upward shift of average
separation across all values of N . This suggests that the
time-regime post 2005 is characterized by the discovery of
complex chemistry leading to the synthesis of molecules via
complex routes that has led to the increase in their average
separation, possibly due to significant advances in computa-
tional capabilities around this time. This increase in average
separation is more evident in the hypergraph representation
than the directed-graph representation.

3.4. Assortativity

3.4.1. ASSORTATIVITY COMPARISON

To understand the mixing patterns of nodes in the two net-
work representations, we compute the assortativity values
between different node-type (or role) combinations – ‘in’
and ‘out’ degree roles for directed graphs and pairwise roles-
based node degrees for the annotated hypergraph. Table 7
shows the assortativity values for the two representations
on the entire network. The assortativity values for the two
representations agree qualitatively with each other but differ
in terms of their relative strengths. From Table 7, we see that
in the hypergraph representation, the reactant nodes exhibit
strong assortative mixing (out-out). On the other hand, the
product-product and reactant-product exhibit very weakly
assortative or non-assortative behavior pointing towards a
lack of degree correlation between such nodes. Owing to
the flexibility offered by annotations in the hypergraph, we
computed additional assortativity between node roles of re-
actant/product with roles based on molecular weights and
relative SMILES length of molecules, as shown in Tables
8 and 9. We observe that reactant-MWlight and reactant-
SMILESshort exhibit strong assortative mixing whereas this
is not usually the case with other node-role pairs.

Table 7. Assortativity values on the entire dataset

node-pairs directed graph hypergraph

in-in 0.0107 0.0734
out-out 0.0049 0.1159
out-in 0.0187 0.0032

Table 8. Hypergraph assortativity between reactant & product roles
with roles based on molecular weights

MWlight MWmedium MWheavy

reactant 0.1337 0.0074 0.0061
product 0.0119 0.0003 0.0004

Table 9. Hypergraph assortativity between reactant & product roles
with roles based on relative SMILES lengths

SMILESshort SMILESmedium SMILESlong

reactant 0.1782 0.0713 0.0015
product 0.0237 0.0083 -0.0009

3.4.2. TIME EVOLUTION OF ASSORTATIVITY

To study the evolution of mixing patterns in the network over
time, we study the time-evolution of assortativity during the
three time regimes. The assortativity values for the in-in,
out-out, and out-in node-role pairs are shown in Table 10
below.

We observe from the table above that the directed-graph
representation does not show any strong trend in various
assortativity values, an observation also reported in [20].
On the other hand, the hypergraph representation shows
a decreasing assortativity of in-in nodes over time and an
increasing assortativity of out-in nodes. A further analy-
sis on additional assortativity values with different node-
role pairs reveal additional trends as shown in Figure 9.
We observed that reactants show assortative mixing with
nodes with MWlight across time regimes, whereas products
show assortative mixing with MWheavy before 1985. Simi-
larly, we also observe that reactants show assortative mixing
with nodes with SMILESshort and SMILESmedium across
time regimes, whereas products show assortative mixing
with SMILESshort and SMILESlong before 1985 and with
SMILESmedium from 1985-2005.

3.4.3. INFERENCES FROM ASSORTATIVITY ANALYSIS

The assortativity analysis highlights another limitation of
the directed-graph representation in terms of obscuring the
underlying network characteristics induced by the network
wiring scheme. Based on the observations in Table 7 for the
directed-graph representation, it appears that the network is
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Table 10. Time evolution of assortativity for the directed graph and hypergraph for various node-role pairs

node-pairs Directed graph Hypergraph

before 1985 1985-2005 after 2005 before 1985 1985-2005 after 2005

in-in 0.0630 0.0157 0.0175 0.3623 0.2302 0.1674
out-out 0.0047 0.0042 0.0069 0.2368 0.2241 0.2259
out-in 0.0274 0.0257 0.0286 0.0005 0.0057 0.0076

(a) Assortativity between MW and reactant/product roles. Reactants show assor-
tative mixing with nodes with MWlight across time regimes, whereas products
show assortative mixing with MWheavy before 1985.

(b) Assortativity between relative SMILES length and reactant/product roles.
Reactants show assortative mixing with nodes with SMILESshort and
SMILESmedium across time regimes, whereas products show assortative mixing
with SMILESshort and SMILESlong before 1985 and with SMILESmedium

from 1985-2005.

Figure 9. Time evolution of assortativity for reactants and products
with respect to additional node annotations (or roles)

non assortative or very weakly assortative with respect to
all the node-role pairs. It was shown in [20] that this is an
artifact of the network preprocessing and the assortativity
values change drastically if one chooses to perform network
preprocessing to remove parallel edges. On the contrary,
the hypergraph representation shows that the network is
assortative with respect to certain node-role pairs such as
out-out degree assortativity indicating that commonly used
reactants tend to take part in reactions together.

Second, due to the flexibility of the hypergraph representa-
tion in terms of allowing additional node annotations, we
performed additional assortativity analysis with respect to
different node-role pairs as shown in Tables 8 and 9. It
was observed that reactants are assortative with molecules

of light molecular weight and relatively short/medium
SMILES length, highlighting the mixing patterns of reactant
nodes in the network. Products, on the other hand, seem
to be non-assortative with these properties, thus highlight-
ing the wide spectrum of products with varying degrees of
complexity present in the dataset.

An analysis of the time-evolution of assortativity presented
in Table 10 shows node-mixing trend across time-regimes,
with no clear trend in assortativity for directed-graphs. How-
ever, from the hypergraph representation it is observed that
the reactants exhibit assortative mixing at nearly the same
level across time regimes, whereas the products show a de-
creasing assortativity over time. The latter points towards
the general trend in earlier years (regime 1) to discover
several different routes for synthesizing a given molecule,
which has been decreasing over the years (but still signifi-
cant) due to the synthesis of new products molecules with
different chemistry.

Finally, based on the time-evolution of assortativity with re-
spect to additional node annotations in Figure 9, we observe
that reactants are assortative at the same level with heavy
molecular weight as well as relative molecular complexity
across time regimes, with decreasing assortativity as the
molecular weight or complexity is increased. Products on
the other hand, show a positive assortativity before 1985
with heavy and complex molecules, in regime 2 assortative
with medium complexity, and non-assortative in regime 3
with all roles. The latter indicates towards the diversity of
products synthesized in the recent years.

4. Additional hypergraph statistics
Even though many dyadic network properties could also be
defined equivalently for hypergraphs, sometimes it is neces-
sary to work with the directed graph framework for reasons
among – interpretability from a traditional graph-theoretic
standpoint, easy availability of tools for computation of
dyadic properties, or aversion towards adopting hypergraphs
due to their seemingly high complexity. The annotated hy-
pergraph could, therefore, be projected as a directed graph
with edge-weights defined using a role-interaction kernel
[24]. The role-interaction kernel defines the mapping of
the annotated hypergraph to a projected-directed graph, that
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maps various nodes to annotations in the hypergraph using
weighted edges. We work with the following three kernels:

• R1 =

[
1 0
0 0

]
: each hyperedge split into multiple

weighted directed edges from reactants to products
each with weight 1; emphasis is on forward reactions
only

• R2 =

[
0 0.75

0.25 0

]
: each hyperedge split into multi-

ple weighted directed edges with directed edges from
reactants to products with weight 0.75 and also directed
edges in the reverse direction (from products to reac-
tants) with weight 0.25; unequal emphasis on forward
and inverse reactions

• R3 =

[
0 0
0 1

]
: each hyperedge split into multiple

weighted directed edges in the reverse direction (from
products to reactants) each with weight 1; emphasis on
inverse reactions only

Using such projected dyadic graphs, we perform two addi-
tional studies on the entire network – first, a PageRank [12]
analysis of reaction nodes to identify the most important
molecules, and second, a graph-based community-detection
(or clustering) [13] to identify clusters in the reaction net-
works based on their connectivity patterns.

4.1. PageRank analysis

The PageRank algorithm was originally proposed for rank-
ing of webpages on the internet [12] based on the number
and quality of links to webpages and is based on a random-
surfer model that performs random walks along incoming
and outgoing edges from webpages. A page that has a higher
likelihood of being visited by a random surfer is therefore
considered more important by PageRank, thus requiring
both higher connectivity as well as connectivity to other
important webpages for higher PageRank.

Extending the idea of PageRank to chemical reactions and
molecules, we could find the set of molecules that are
most important based on their connectivity (high reactivity)
as well as their connectivity to other important molecules
(chemical importance due to ease of synthesizability or crit-
icality for other compounds). Thus, a molecule with high
PageRank in a network of chemical reactions should be
crucial both from a reactivity/synthesizability as well as
reachability/criticality standpoint. In contrast, a molecule
with merely the highest degree does not say much about
the molecule except that the molecule participates in many
reactions.

Using the three role-interaction kernels – R1, R2 and R3
defined above, we compute the PageRank and degree cen-

trality of nodes in the resulting network defined as dv/dmax
where dv is the degree of node v and dmax is the maximum
degree across all nodes in the network. Since PageRank and
degree centrality are two different measures, their absolute
values should not be compared and only the relative values
or ranked order of molecules should be compared. The
top-5 molecules based on PageRank and degree centralities
computed using the weighted directed reaction networks
obtained using different role-interaction kernels are shown
in Figure 10.

Based on the above ranked order of molecules, we first ob-
serve that the molecules that are important from a PageRank
standpoint are not the same as those important from a degree
centrality standpoint. Second, across the role interaction
kernels, the ranked order changes, i.e., molecules critical
based on R1 kernel-based projection (forward edges) of
hypergraph differ from those based on R3 kernel-based pro-
jection (retrosynthetic edges). This highlights the flexibility
of the hypergraph reaction representation in incorporating
custom importance for forward and retrosynthetic reaction
directions through role-interaction kernels. Such an anal-
ysis of molecular importance in a reaction network would
have application in optimizing reaction networks, design-
ing robust supply chain networks, and performing efficient
product design.

4.2. Community detection analysis

To study the formation of communities or clusters in the
reaction network based on the mutual connectivity patterns
and node-densities, we perform graph-based clustering on
the network of reactions. We use the Leiden algorithm [13]
to perform optimal graph partitioning that results in well-
connected set of dense nodes in the network (called com-
munities) and is a suitable algorithm for weighted, directed
networks. For this study, we use the R2 role-interaction
kernel to preserve both forward and retrosynthetic edges
but with unequal weights in the network. The applications
of such a graph-based community detection exercise is to
get a general sense of the distribution and connectivity pat-
terns of reactions in a large reactions dataset and understand
the possible different types of reactions in the absence of
any other information about the reactions. Note that the
projected hypergraph is a dyadic, weighted directed graph
obtained by using a role-interaction kernel that decomposes
a hyperedge into a set of weighted directed edges. We per-
form community detection on such projected hypergraph.
The alternative is to perform clustering directly using the
hypergraph representation. However, given the scale of
the hypergraph network of organic chemistry, the current
clustering methods are computationally prohibitive.

For the entire network, the Leiden algorithm identifies
nearly 65, 000 communities with a size-distribution as
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Figure 10. PageRank and degree centrality analysis for the three role interaction kernels with R1 =

[
0 1
0 0

]
, R2 =

[
0 0.75

0.25 0

]
, and

R3 =

[
0 0
1 0

]
corresponding to forward edges only, forward and retrosynthetics edges, and retrosynthetic edges only.

shown in Figure 11(a); the top-8 largest communities are
shown in Figure 11(b) with different color for each identi-
fied community, and the top-100 communities are show in
Figure 11(c).

We observe from Figure 11(a) that most of the communities
are really small in size consisting of less than 10 reactions,
whereas there are around 8 biggest communities contain-
ing over 60 reactions in each of them, as shown in Figure
11(b). The close-knit nature of these communities point
towards a possible segregation of different types of reac-
tions just based on their connectivity patterns and the nodes
(molecules) that take part in those reactions. This is the
idea that we utilize to perform reaction type classification
in the next section. Finally, the top-100 communities visual-
ized in Figure 11 shows clear regions of high density with
highly connected and localized clusters, and regions of low
density further apart from the biggest clusters. In addition,
it is also observed that there is a cluster that is completely
separated from all the other communities and is therefore
an island community. The existence of core-periphery re-
gions in the reaction network was also shown in [19] but
the analysis was not based on graph clustering but on iden-
tifying strongly connected components in the network by
representing reactions using a single directed edge from the
heaviest reactant to the heaviest product in each reaction. In
the community detection algorithm that we work with, we
take into account the directionality as well as the weights

of the edges, making it more flexible and the results more
generalizable.

5. Application in reaction class prediction
problem

In the foregoing sections, we have shown how the hyper-
graph representation could be used to uncover hidden in-
sights contained in large reactions datasets and study their
time-evolution through network-theoretic properties. In
this section, we demonstrate the usefulness of the hyper-
graph representation in capturing the context of reactions
and thereby their reaction type or class. We, therefore, use
the hypergraph representation in the reaction-type classifica-
tion problem where the objective is to estimate the reaction
class from a given set of reactants and products. This prob-
lem has practical applications in retrosynthetic planning
where several different routes could be eliminated just by
knowing the possible reaction types. The other problems
where such a problem would find significance is the reac-
tion feasibility estimation problem where the objective is
to estimate the feasibility of a reaction given the possible
participating molecules. Other studies that have proposed
data-driven frameworks for reaction classification problems
are [28, 29, 30].
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5.1. Dataset description

For this problem, since we require reaction class informa-
tion for reactions, we use a subset of the USPTO reactions
dataset that is typically used for retrosynthesis problem,
containing about 50K reactions annotated with their cor-
responding reaction class from 10 possible classes. We
generate the equivalent reaction hypergraph network for this
dataset and work with the largest connected component in
the hypergraph since the hyperedge (or reaction) embedding
framework that we use to represent reactions subsequently
in the classification framework is dependent on the con-
nectivity and neighborhood contextual information. The
distribution of reactions across different reaction classes in
the sub-hypergraph is shown in Table 11 below.

Table 11. Distribution of reactions across different reaction classes
in the largest connected subcomponent

Rxn class Rxn name Num rxns

1 Heteroatom alkylation and arylation 11,526
2 Acylation and related processes 8,488
3 C–C bond formation 3,909
4 Heterocycle formation 588
5 Protections 646
6 Deprotections 760
7 Reductions 459
8 Oxidations 305
9 Functional group interconversion (FGI) 1,168
10 Functional group addition (FGA) 196

5.2. Reaction embeddings using random hyperwalks

To perform reaction classification by training a data-driven
classifier, we need numeric representations for reactions
that are generated from their hypergraph representations
and would, therefore, be used as features to train a classi-
fier. We generate hyperedge (or reaction) embeddings by
adapting the deep hyperedges framework [15] and modify-
ing it to incorporate the contextual information contained in
chemical reactions, as explained in the pseudocode provide
in Algorithm 1.

The hyperedge embeddings are generated by performing
random hyperwalks that capture the co-member information
in each vertex by traversing hyperedges in the hypergraph
network of chemical reactions. For each hyperedge, the
hyperwalk starts at a randomly selected reactant node that
is part of the current hyperedge, and either hops to a node
in the adjacent hyperedge or stays in the current hyperedge
to select another reactant node in the current hyperedge.
This is repeated until the desired length of the hyperwalk
is achieved. The adjacent hyperedge traversal is done only
with respect to reactants since this would – first, differenti-
ate reactants from products, and second, mimic chemistry
more realistically where only those reactions are accessible
where either the current reactants participate as reactants or
the product of the current reaction participates as reactant.

Such a random hyperwalk would closely mimic a chemist
performing experiments randomly.

Formally, we start at a node vm selected at random with the
annotation ‘reactant’ in a hyperedge ei. The probability of
traversing an adjacent hyperedge is inversely proportional
to the cardinality of the current vertex; i.e. p = min( α

|vm| +

β, 1) where α and β are tunable hyperparameters and |
vm | is the cardinality of the vertex vm. As in a random
walk, if p is less than a randomly generated number, the
traversal is performed to an adjacent hyperedge; otherwise
the current hyperedge is added to the random walk and the
next is chosen randomly from the adjacent hyperedges of
the current vertex vm. For each hyperedge ei, we construct
50 random walks of length 50 each. Examples of such
hyperedge random walks on the four example reactions in
Equation 1 is shown in Table 12. The hyperwalks are then
embedded into dense vectors of dimension R256 using skip-
gram approach for generating embeddings [31]. At the end
of the hyperedge embedding exercise, we would have a 256
dimensional vector for each hyperedge in the network.

The pseudocode for the hyperwalk generating algorithm is
presented in Algorithm 1 and example hyperwalks using the
example set of four reactions in Equation 1 is shown in Table
12. A 2D visualization of the resulting 256-dimensional
hyperedge embeddings on the entire dataset of reactions is
visualized in Figure 12.

Algorithm 1 Pseudocode for generating random hyper-
walks for each hyperedge in the hypergraph
Input :

walkLength:length of each hyperwalk
hyperEdges: set of hyperedges in the hypergraph
vertexMemberships: membership dictionary for each vertex indexed by vertex id and
vertex role (product, reactant)
α and β: probability distribution parameters

Initialize :
walks all = [ ] ; // stores all the hyperwalks generated

for hyperedge id in hyperEdges do
curr walk = [ ] ; // stores hyperwalk for the current hyperedge
hyperEdge = hyperEdges[hyperedge id]

curr vertex = randomly chosen ‘reactant’ vertex in hyperEdge ; // hyperwalk
always starts from ‘reactant’ nodes

curr hyperEdge = hyperEdge
while len(hyperWalk)< walkLength do

proba = α/len(vertexMemberships[curr vertex][‘reactant’]+
vertexMemberships[curr vertex][‘product’])+β
if random.random()< proba then

adjacent vertices = curr hyperEdge[‘reactant’]+curr hyperEdge[‘product’]
; // switch to one of the adjacent vertices in
current hyperedge

curr vertex = random.choice(adjacent vertices)
end
curr walk.append(curr hyperedge)

adjacent hyperedges = vertexMemberships[curr vertex][‘reactant’] ; // adjacent
hyperedges defined with respect to reactant roles

curr hyperedge = random.choice(adjacent hyperedges) ; // randomly choose
from one of the adjacent hyperedges

end
walks all.append(walk hyperedge)

end
Output :walks all
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Table 12. Two example hyperwalks generated for each reaction
(hyepredge) in the example set of reactions. For each walk, vi

ek−→
vj represents a walk along hyperedge ek via nodes vi and vj . The
hyperwalks for each hyperedge are the sequential collection of
such ek’s starting at that hyperedge.
Hid Hyperwalk

0 B, 0
1−→ C

2−→ C
2−→ C

3−→ D
3−→ A

0−→ A
3−→ A

3−→ A
3−→ A

B, 0
1−→ B

1−→ C
2−→ C

2−→ C
3−→ C

3−→ C
1−→ C

2−→ C
1−→ C

1 E, 1
2−→ E

1−→ C
2−→ C

1−→ C
2−→ D

3−→ D
3−→ D

2−→ E
1−→ E

B, 1
1−→ E

3−→ E
2−→ E

1−→ E
1−→ E

2−→ D
3−→ A

3−→ A
0−→ A

2 E, 2
1−→ B

1−→ B
0−→ B

0−→ A
0−→ A

0−→ A
3−→ D

2−→ D
2−→ D

C, 2
2−→ C

1−→ C
3−→ C

3−→ C
2−→ E

1−→ E
2−→ C

2−→ C
3−→ A

3 A, 3
3−→ A

0−→ A
0−→ A

0−→ B
0−→ B

1−→ B
0−→ A

3−→ D
3−→ D

C, 3
2−→ C

2−→ E
2−→ E

3−→ C
1−→ C

3−→ C
1−→ B

0−→ A
0−→ A

5.3. Reaction class prediction results

To predict the reaction classes, we train a one-vs-rest clas-
sifier based on support vector machines (SVM) that learns
a multi-class classification decision boundary. We used a
randomized cross validation search strategy to perform hy-
perparameter tuning of the SVM model with a radial basis
function. A detailed description of the SVM model and the
mathematical framework that underlies it is provided in [2].

The precision and recall metrics for each of the reaction
classes computed using the test-set containing unseen reac-
tions at the training stage are shown in Figure 13 below.

From the results above, we observe that the trained model
accurately predicts the reaction class for most of the re-
action classes except for the reaction classes – reductions,
deprotections, and heterocycle formation. The precision
metrics across all 10 reaction classes shown in Figure 13(a)
highlights the model’s high precision in identifying the cor-
rection reaction class. However, since the recall shown in
Figure 13(b) is lower for the three underperforming classes,
there could be overlapping reaction classes in the feature
(embedding) space. This is indeed observed for these classes
in 2D visualization of the learned embeddings in Figure 12.
The separation between various reaction classes could be
addressed in future by also incorporating additional molec-
ular descriptors that, in combination with the connectivity-
specific embeddings, would more accurately distinguish
the different reaction types. Nevertheless, the embeddings
generated just based on the reactions and node-connectivity
information in the hypergraph representation seems to have
separated a majority of the reaction types into distinct clus-
ters, consequently resulting in the model learning to predict
them accurately. This again highlights the ability of hyper-
graphs to capture reaction context accurately.

6. Conclusions and future work
Network theory offers natural tools and techniques for under-
standing the growth of chemistry over time by representing
reactions as time-evolving real-world networks. Though
most of the work in this area has been done using a dyadic
graph representation, a hypergraph representation with hy-
peredges between nodes for representing reactions is a more
natural, intuitive, and flexible representation that allows for
the incorporation of additional reaction context.

We have shown that the hypergraph representation is more
flexible, allows for incorporation of reaction-specific node
context, and facilitates one-to-one correspondence of net-
work properties with chemistry. We have computed detailed
network statistics of the resulting hypergraph network of
organic chemistry and studied the time evolution of these
properties. As with several previous studies, we observed
that the network exhibits a scale-free behavior with prefer-
ential attachment of nodes, has small average path length
indicative of small-world nature, and shows assortative mix-
ing with respect to certain node types. For all the network
statistics presented, namely, degree distributions, average
path length, assortativity or degree correlations, PageRank
analysis, and community detection, we have correlated them
with chemistry inferences that could be drawn from such
analysis. In addition, we discovered that the network ex-
hibits the phenomenon of initial attractiveness and network
densification as chemistry evolves over time time.

To demonstrate the AI-applications of the hypergraph rep-
resentation of chemical reactions, we performed reaction
classification using embeddings generated from chemistry-
informed random walks on hyperedges. The embeddings
resulted in well-separated clusters for different reaction
classes and consequently accurate reaction classification
results. In future, we plan to extend this study on diverse
(and possibly bigger) datasets across various subdomains,
incorporate additional molecular descriptors for generating
hyperedge embeddings for reaction classification, utilize the
results in a retrosynthestic planning framework, and perform
hyperedge prediction to discover new reactions.
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(a) Size distribution of identified communities (b) Top-8 largest communities with nodes in each com-
munity in a different color

(c) Top-100 largest communities indicating showing clear regions of high and low densities along with an island
community disconnected from the rest of the network

Figure 11. Community detection results on the weighted projected directed graph obtained using role-interaction kernel R2
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Figure 12. A 2D t-SNE projection of the 256-dimensional hyperedge embeddings

(a) (b)

Figure 13. Performance metrics for the multi-class reaction classification on the test-set (a) Precision (b) Recall

19

Page 19 of 19 Reaction Chemistry & Engineering


