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Bayesian Optimization of Electrochemical Devices for Electrons-
to-Molecules Conversions: The Case of Pulsed CO2 
Electroreduction† 
Daniel Freya, K.C. Neyerlinb,*, and Miguel A. Modestino*a

Electrons-to-molecules conversions have emerged as a route to integrate renewable electricity into chemical production 
processes and ultimately contribute to the decarbonization of chemistry. The practical implementation of these conversions 
will depend on the optimization of many electrolyzer design and operating parameters. Bayesian optimization (BO) has been 
shown to be a robust and efficient method for these types of optimization problems where data may be scarce. Here, we 
demonstrate the use of BO to improve a membrane electrode assembly (MEA) CO2 electrolyzer, targeting the production of 
CO through dynamic operation. In a system with intentionally unoptimized components, we first demonstrate the 
effectiveness of dynamic voltage pulses on CO Faradaic efficiency (FE), then utilize BO for 3D and 4D optimization of pulse 
times and current densities to increase CO partial current density by >64% from the initially tested conditions. The 
methodology showcased here lays the groundwork for the optimization of other complex electrons-to-molecules 
conversions that will be required for the electrification of chemical manufacturing.

Introduction
High-performing electrochemical reactors could enable 

electrification and subsequent decarbonization of the chemical 
industry,1-4 a sector responsible for 7% of the global greenhouse 
gas (GHG) emissions and 10% of the worlds energy, primarily in 
the form heat derived from fossil-fuel-combustion.5, 6 Deploying 
electrochemical processes to replace current thermochemical 
routes of chemical production relies on the development of 
continuous reactors that operate at high-throughput, 
selectivity, energy conversion efficiency, and leverage low-cost 
chemical feedstocks. To accelerate the development of such 
reactors, rapid optimization approaches are needed to identify 
conditions of operation that maximize their performance. 
Optimizing these types of reactors is challenging because of the 
large number of design (e.g., electrocatalyst compositions, 
device geometries, membrane chemistry) and operating 
parameters (e.g., temperatures, potentials, flowrates, pressure 
and their dynamic modulation), which often results in an 
intractable experimental design space. A promising data-driven 
optimization strategy to identify global optima with the 
minimum amount of experimental input is Bayesian 
Optimization (BO).7-14 BO methods for reactor optimization rely 
on a surrogate model to statistically predict the mean and 

uncertainty of a desired performance metric for any possible 
combination of operating parameters. These surrogate models 
are then used to decide what experiments will provide the most 
information from the reactors and allow the identification of 
the optimum conditions with the minimum number of 
experiments.15 Many areas of the chemical sciences have 
started to use BO to accelerate optimization campaigns, 
including applications in materials discovery,16-26 design of 
chemical reactions,27-37 and device optimization.38-41 In this 
study, we demonstrate a general methodology to optimize the 
operation of electrochemical conversion devices for chemical 
manufacturing, using dynamic CO2 electroreduction to CO as a 
model reaction. This model reaction was chosen (i) because its 
optimization may lead to a path to upconvert CO2 into useful 
products and possibly reduce carbon emissions,42-47 (ii) because 
stable and efficient silver (Ag) electrocatalysts have been widely 
studied,48-61 and (iii) because learnings from this reaction can be 
translated to the optimization methodology of other emerging 
electrochemical conversion processes of relevance to chemical 
manufacturing (e.g., ethylene or propylene production and 
functionalization).62-68 

To demonstrate the effectiveness of BO in optimizing CO2 
electroreduction, we developed a methodology to maximize CO 
production under dynamic potential pulsing with current 
densities and pulse times as optimization parameters. Pulsed 
potentials, and resultingly current density, can elicit favorable 
transient behavior, affecting hydrodynamics, the 
electrocatalyst double layer, reactant concentration, and the 
presence or absence of different intermediates and adsorbates 
on the electrode surface microenvironment.69-71 More 
specifically, previous studies have shown that the use of 
dynamic voltage pulses can control selectivity and/or stability of 
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CO2 electroreduction.56, 72-84 All of these studies used a 
systematic approach to determine optimal operation conditions 
leading to large information gaps between the tested 
experimental conditions and possibly sub-optimal parameter 
selection. In this study, we leverage these previous findings to 
demonstrate the use of BO to rapidly optimize the dynamic 
operating conditions in industrially relevant zero-gap 
electrochemical conversion devices. Our findings demonstrate 
the ability to map performance metrics in large design spaces 
with high accuracy while also identifying optimal operation 
strategies with a low number of experiments.

Experimental
Preparation of Catalyst Inks

BO The cathode catalyst inks were prepared by mixing 
commercial Vulcan supported Ag (40%, Fuel Cell Store), 
deionized water, n-propyl alcohol (nPA), and ionomer (5 wt% 
Sustainion XA-9, Dioxide Materials). The ratio of ionomer, 
catalyst, and Vulcan for the cathode ink was 1:2.6:4. The anode 
catalyst inks were prepared by mixing commercial Iridium(IV) 
oxide (Premion 99.99%, Alfa Aesar), deionized water, nPA, and 
10 wt% PFAEM ionomer(84) together. The ratio of ionomer and 
catalyst for the anode ink was 1:6.6. For both anode and 
cathode inks, the ink was dispersed first with a horn sonicator 
for 20 seconds, and then sonicated in an ice bath for 30 minutes.  

Catalyst GDE Fabrication

For the cathode GDE, a GDL (Sigracet 29BC, Fuel Cell Store) with 
a thickness of 235 μm ± 25 μm was placed on a heated vacuum 
table at 80°C with the micro porous layer (MPL) facing up. The 
catalyst ink was ultrasonically sprayed onto the GDL using an 
automatic Sonotek Spray System. The spray pattern was 
serpentine, switching orientations after each pass. For the 
anode GDE, the same procedure was used except the GDL was 
Toray Paper 060 (5% wet proofing, Fuel Cell Store). The nominal 
cathode loading was 5 mg/cm2 and the nominal anode loading 
was 4 mg/cm2. 

Electrochemical Reactor Configuration and Operation

A custom-built hardware with 25 cm2 active area was used 
to evaluate the performance of the electrochemical reduction 
of CO2. The anode GDE with area of 25 cm2 with a thickness of 
0.009 inches was placed against the anode flow field with triple 
serpentine flow channels and was compressed to 18% using 
0.008 inches of polytetrafluoroethylene (PTFE) gaskets. A 
commercial anion exchange membrane (AEM) (Aemion, 25μm, 
Ionomr Innovations Inc.) was placed next to the anode GDE. A 
cathode GDE with 25 cm2 active area was placed against the 
membrane, sealed with PTFE gaskets, and was compressed to 
18% once the cell was tightened to 40 inch-pound. The 
endplates of the cell were heated to 60°C and the temperature 
was kept constant for all experiments. The flow plates for 
cathode and anode were made from Ti and had 25 cm2 area of 
triple serpentine flow channels. The CO2 gas stream was heated 

to 60°C and was delivered to the cathode GDE through the 
cathode flow plate at a constant flow rate of 1 L min-1. 1 M 
potassium hydroxide (KOH) electrolyte made by dissolving KOH 
pellets (Certified ACS, VWR) in 18 M cm deionized water was 
heated to 60°C and fed to the anode flow plate at 50 mL min-1. 
A Gamry Reference 3000 Potentiostat with a Reference 30K 
Booster was used for the electrochemical measurements. 
Galvanodynamic polarizations were conducted from 0 to 400 
mA cm-2 at a rate of 5 mA cm-2  s-1. For constant current and 
pulse experiments, the different current density settings were 
held for at least 120 s before gas product samples were taken 
and analyzed. To avoid systematic errors from long-term 
degradation of the catalyst layer, the cathode catalyst layer was 
replaced every 20 experiments. Each set of 20 experiments 
consisted of 10 different reactor operation conditions repeated 
twice. In addition, two identical experimental conditions were 
repeated with each of the catalyst layers to monitor possible 
deviation between different experimental sets.

Product Analysis

The effluent of the gas stream from the cathode flow plate 
was separated from the liquid effluent using a gas trap. Gas 
samples were analyzed in a 4900 Micro GC (10m, molecular 
sieve, Agilent). Samples were collected in Supel™ Inert Multi-
Layer Foil Gas Sampling Bags (Sigma-Aldrich) for a recorded 
time (30 s) and manually inserted into the Micro GC with an 
injection time of 100 µs. The injection temperature was set to 
110°C. Carbon monoxide (CO) was detected using a 10 m MS5A 
column, heated (105°C) and pressurized (28 psi) with Argon as 
carrier gas (Matheson Gas- Matheson Purity). The compounds 
were detected on an integrated thermal conductivity detector 
(TCD).

Bayesian Optimization Process

The Bayesian optimization (BO) process used in this study 
was based on the BO algorithm used in Frey et al.2 BO 
algorithms consist of two main components: a surrogate model 
(SM) and an acquisition function. The SM is used to predict the 
value of the experimental objective function for any set of 
experimental conditions, x. x is bounded by lower and upper 
bounds for each dimension, xLB and xUB, which are arrays of the 
same dimensionality of x. For example, for the two-dimensional 
(2D) design space used in this study (active pulse time and 
resting pulse time), the xLB was [10 ms, 10 ms] and the xUB was 
[1500 ms, 1500 ms]. The SM was trained using the experimental 
evaluations of the experimental objective function. As the SM 
in this study we use a Gaussian process regressor (GPR) using 
the radial basis function (RBF) kernel with noise added to the 
experimental values. The RBF kernel equation is:

𝑘(𝑥𝑖,𝑥𝑗) = 𝑒𝑥𝑝( ―
𝑑(𝑥𝑖,𝑥𝑗)2

2𝑙2 )
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where xi and xj are any two locations in the design space, d 
is the Euclidean distance between the two locations, and l is a 
length scale parameter that is optimized by the GPR algorithm. 
The added noise was calculated as:

𝑘(𝑥𝑖,𝑥𝑗) = 𝑛𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙 if𝑥𝑖 == 𝑥𝑗 else 0

meaning that a certain level of noise in the experimentation 
was assumed. 

An acquisition function is used to select the next design 
condition(s) to evaluate based on how informative the design 
conditions will be in the goal of optimizing the cost function. 
Here, we chose to select a batch of four design conditions, as it 
was more convenient to run multiple experiments at one time 
before selecting the next batch. We used an in-house 
acquisition function called modified ranked-batch (MRB) which 
was inspired by the work of Cardoso et al..3 In general, an 
acquisition function uses the current information (experimental 
conditions already studied) and the SM predictions to calculate 
how informative a possible design condition is expected to be 
based on the criteria for the respective acquisition function. To 
determine the most informative design point to sample next, a 
maximization method was used to find a local maximum of the 
acquisition function score. This process was repeated 25 times 
at different initiation points to ensure we achieve a value closer 
to the global maximum. The design point with the maximum 
score was subsequently added as one of the next design points 
to test. Multiple design points were added by repeating this 
acquisition function maximization step. After the new batch 
was selected, the experiments were performed, and the results 
were added to the known experimental conditions.

The MRB acquisition function calculated a score 
consisting of three normalized parameters: a distance score, ∆, 
an uncertainty score, Γ, and the objective function prediction, 
Ω. The distance score was calculated as:

𝛥 = 1 ― 1/(1 + 𝑚𝑖𝑛
𝑑

∑
𝑖 = 1

(𝒙𝒊 ― 𝒙𝒆𝒙𝒑
𝒊 )2)

where  is the minimum distance 𝑚𝑖𝑛 ∑𝑑
𝑖 = 1(𝒙𝒊 ― 𝒙𝒆𝒙𝒑

𝒊 )2

between the proposed set of conditions, x, and each of the 
known sets of conditions, xexp. The uncertainty score, Γ, is the 
standard deviation of the GPR prediction at x normalized 
compared to the maximum and minimum observed standard 
deviation. The objective function prediction, Ω, is the predicted 
experimental objective function from the GPR at x normalized 
compared to the maximum and minimum observed prediction. 
The score that is calculated at each step in the minimization 
process for the respective x is:

Score = βΔ + βΓ + Ω

where β is a tradeoff value. A high value of β encourages 
more exploration — i.e., encourages searching unknown areas 
of the design space. A lower value of β encourages exploitation 
— i.e., searching locally near the current maximum prediction. 
For MRB, β changes linearly from 1 to 0 as more batches are 
completed.  

Data Availability

The code used to run this algorithm and resulting data are 
provided on the Github repository in reference (86).

Results
Baseline performance of CO2 electroreduction device

To understand the baseline performance of the reactor, 
constant current experiments were performed to characterize 
the CO Faradaic efficiency (FECO). Figure 1A shows that the FECO 
increases with current density until 200 mA cm-2, and then 
decreases as the current density increases to 500 mA cm-2. This 
trend is consistent with observations from other studies on CO 
production on silver electrodes.48, 51, 52, 57, 59 As an initial 
comparison of constant current operation versus pulsed 
operation, six combinations of active pulse time (tact) and 
resting pulse time (trest) were tested. For these experiments, the 
active voltage was set to 3 V and the resting voltage set to 1.1 
V, leading to an active total current density of 200-240 mA cm-

2. Our results show that FECO can be improved when appropriate 
pulsed potentials are applied [Figure 1(B)], as previously 
demonstrated in other reactor configurations56, 69, 76, 81-83. These 
initial results serve as a baseline for determining the optimal 
combination of active and resting pulse durations using BO. 

Pulse duration effects

Figure 1. Faradaic efficiency of CO for (A) constant current experiments and (B) pulsed 
experiments. For the pulsed experiments, the active voltage was set to 3 V and the 
resting voltage was set to 1.1 V. The error bars indicate the standard deviation from the 
average of 3 experiments.
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In order to gain insights on the effects that active pulse 
duration and rest pulse duration have on FECO and production 
rate, two-dimensional (2D) maps were constructed based on a 
Gaussian process regressor surrogate model (GPR SM) trained 
with experimental data. Figure 2 shows scatter plots of FECO and 
CO partial current density obtained from 34 experiments where 
operating conditions were randomly selected throughout the 
design space (i.e., Pulse times in the range 10-1500 ms). The 
background of each plot shows the SM predictions based on the 
experimental data collected. Figure 2A shows the relationship 
between the pulse times and FECO. These results suggest that 
pulse time combinations with similar tact and trest have the 
highest FECO. 

Figure 2B shows that the average CO partial current 
density (jCO) generally improves as the total active time 
increases. jCO averages the partial current density over both the 
active and resting pulse times. This result is likely because 
longer active times allow for a larger quantity of CO2 to be 
reduced, despite the fact that maximum FECO may be achieved 
with lower active times. To better understand the effect of the 
total active time on reactor performance, Figure S1 in the 
Support information shows FECO and jCO as a function of the ratio 
between tact and trest. As the ratio increases, the jCO increases 
monotonically, until it reaches a value of 2.5 when it 
asymptotically starts to approach the limit of jCO at a constant 
current of 200 mA cm-2. This result suggests the main driver of 
performance is the amount time the cell is active. However, 
analyzing CO partial current density during the active time 
(jCO

act) at various pulse time combinations (Figure S2), it is 
evident that longer rest duration allowed for higher jCO

act, 
possibly due to an increased CO2 concentration near the 
electrode. Our results identified conditions with maximum FECO 
of 0.79 at trest = 170 ms and tact = 350 ms, and maximum jCO of 
126 mA cm-2 at trest= 10 ms and tact= 830 ms. While FECO is an 
important metric for some applications where maintaining 
maximum energy efficiency is desirable, we decided to focus 

this study on the optimization of jCO to achieve reactor 
operations with high throughput.  

3D optimization of CO partial current density

While results presented above demonstrated the potential 
to modulate reactor performance by controlling pulse times, to 
achieve higher production rates it was important to include the 
current density of active pulses (jact) as an optimization 
parameter. Given the increase in design space and the resulting 
requirement for larger data sets, we implemented a BO 
approach to identify the optimal conditions for maximum jCO. A 
total of 50 experiments were performed in the optimization 
campaign in batches of four. Figure 3A shows how the 
experiments selected by the BO algorithm explored the entire 
design space initially and focused on parameters with high CO 
production during later stages of the search. Figure 3B shows jCO 
during the optimization process. The maximum production rate 
was found at trest = 10 ms, tact = 435 ms, and jact = 300 mA cm-2 
at experiment 42, leading to a jCO = 189 mA cm-2, representing 
only a small increase from the case where a constant total 
current density of 300 mA cm-2 was applied and jCO = 180 mA 
cm-2. 

2D slices of predictions from SM trained with data from the 
50 experiments performed are shown in Figure 3C-E. The 
predicted jCO are shown in Figure 3C at jact = 100 and 300 mA cm-

2. For jact = 300 mA cm-2, the predicted maximum jCO was at tact 
= 545 ms and trest = 48 ms, while for jact of 100 mA cm-2, the 
optimum jCO was at tact = 545 ms and trest = 10ms. As jact 
increases, the predicted maximum jCO increased from 53.5 to 
119 mA cm-2. These results agree with the results from the 2D 
experiments, in which the tact/trest ratio and jCO increase 
together. The FECO predictions are shown in Figure 3D. At jact = 
100 mA cm-2, the maximum FECO is predicted to be 0.83 at tact = 
1500 ms and trest = 736 ms. As jact increases, the location in the 
pulse time design space of the maximum FECO shifts towards a 

Figure 2. 2D maps of (A) FECO and (B) CO partial current density while varying tact and trest. Experimental conditions are shown with a black outline. 
The background displays the GPR prediction based on the observed experimental values. Active current density was set to 200 mA cm-2 and resting 
current density was set to 0 mA cm-2.
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shorter tact. This results in the predicted maximum FECO at jact = 
300 mA cm-2 to be 0.84 at tact = 583 ms and trest = 660 ms. The 
shift towards shorter tact at higher jact is likely due to the faster 
depletion of CO2 which results in the need for lower tact to not 
deplete the CO2 concentration at or near the electrocatalyst 
surface. In order to provide insights into the prediction accuracy 
of the GPR SM, Figure 3E shows the normalized standard 
deviation of the predictions throughout the design space. At jact 
= 100 mA cm-2, the predictions in a large fraction of the space 
have near-average standard deviations due to extensive 
exploration around this jact by the BO algorithm, while at 300 
mA cm-2, accurate predictions are mostly concentrated near the 
optimal conditions due to the large numbers of experiments 
performed around optimal conditions during the exploitation 
stage of BO.

4D optimization of CO partial current density

Having identified optimal tact, trest, and jact with a fixed 
resting current density, jrest = 0 mA cm-2, the next step in the 
optimization was to explore possible improvements by 
modulating jrest. Figure 4A presents the 50 experimental 
conditions tested in the entire design space, showing a few 
conditions dispersed in the entire design space that were 
selected during the exploration stage of BO, and a 
concentration of experiments near high jact and tact, and low trest 
during the exploitation stage when the algorithm seeks to 
identify the optimal conditions. Figure 4B displays the 

improvement in jCO as a function of experiments performed and 
identifies conditions that lead to a CO partial current density of 
166 mA cm-2 after the 50 experiments. It must be noted that 
this jCO is lower than the one found in the 3D optimization 
campaign with the same number of experiments. This suggests 
that the increased dimensionality of the optimization problem 
requires a larger number of experiments to approach the 
optimum. Furthermore, our results demonstrate that the 
impact of jrest is not significant in the performance of the 
reactor, possibly because optimal trest values are small and thus 
any change in jrest would only impact a small fraction of the 
operation time. These results underscore the need to carefully 
select optimization parameters so that the tradeoff between 
potential performance improvements and the need for larger 
experimental campaigns is balanced.

To gain insights into the effects of the 4 optimization 
parameters on the CO partial current density, Figure 4C shows 
the SM predictions of jCO as 2D slices at the optimal location of 
the other two variables. These results are consistent with those 
of the 2D and 3D optimizations, where the high jCO values are 
found at low trest, and high tact, and jact. 2D slices of the FECO 
predictions are shown in Figure 4D. The trends observed for 
FECO predictions are different than for jCO, with high FECO found 
at low trest, tact and jact. Figure 4E shows the standard deviations 
from the SM predictions of the 2D slices. As observed from the 
results, the increase in dimensionality results in larger standard 
deviations for a large fraction of the design space, underscoring 
the need for large datasets when the number of optimization 
parameters increase. 

Conclusions
The study described above introduces a BO methodology to 
improve the performance of dynamic electrochemical 
conversion devices for electrons-to-molecules conversions. This 

Figure 3. (A) Location in 3D design space of the 50 experimental conditions studied in 
the optimization campaign, varying jact, tact, and trest. Color of the marker indicates the 
CO partial current density at that condition. (B) CO partial current density throughout 
the optimization campaign.  Black markers indicate the experimental points and the 
blue line indicates the highest value achieved. (C-E) 2D slices at jact = 100 mA cm-2 and 
300 mA cm-2 showing the GPR predictions of (C) CO partial current density, (D) COFE, 
and (E) normalized standard deviation, based on the 50 observed experiments. Resting 
current density was set to 0 mA/cm2.

Figure 4. (A) Location in the 4D design space of the 50 experimental conditions studied 
in the optimization campaign, varying jact, tact, and trest. Size of the marker indicates the 
jrest value and the color of the marker indicates the CO partial current density at that 
condition. (B) CO partial current density throughout the optimization campaign. Black 
markers indicate the experimental points and the blue line indicates the highest value 
achieved. (C-E) 2D slices at the optimal locations for CO partial current density of the 
other two variables, which are shown on the graph. The slices show the GPR 
predictions of (C) CO partial current density, (D) COFE, and (E) normalized standard 
deviation, based on the 50 observed experiments.
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methodology allowed us to identify pulsed operation regimes in 
a CO2 electrolyzer with improved selectivity and production 
rates. 3D optimization of trest, tact and jact with only 50 
experiments showed improvements from jCO = 115 mA cm-2 in 
the initial set of 10 experiments, to a maximum of 189 mA cm-

2.  In the case of 4D optimization of trest, tact, jact and jrest, the 
optimization campaign achieved an improvement from jCO = 91 
mA cm-2 in the initial set of 10 experiments, to a maximum of 
jCO = 166 mA cm-2. Because of the lower optimum value 
discovered in the 4D optimization, the 50 experiments in this 
case were not as effective at searching the design space as the 
3D optimization.  This result underscores the need for larger 
datasets at higher dimensions, and the need to carefully select 
optimization variables or to implement dimensionality 
reduction approaches (e.g., principal component analysis) to 
minimize the number of experiments required in high 
dimensionality space. Furthermore, the statistical GPR 
surrogate models used in the BO methodology allowed us to 
develop performance (i.e., jCO or FECO) maps covering conditions 
beyond the ones tested. These maps provide further insights 
into the behavior of electrochemical devices across the 
parameter space. While this study focused on implementing a 
BO methodology for pulsed CO2 electrolyzers in a 3 and 4D 
parameter space, BO can be easily extended to optimize other 
operational parameters such as potentials, gas flowrates, 
pressure and temperatures. Similar BO methods may also prove 
useful to optimize materials used as electrodes, electrocatalyst 
layers, and membranes but modifying these device parameters 
is more complex and would require innovative approaches to 
achieve high-throughput device assembly and testing. 
Integrating the BO framework presented here with high-
throughput experimentation tools could enable rapid 
optimization of other electrochemical devices for the 
production of high-value chemicals that require complex 
reactions and the delicate control of the electrode 
microenvironment.   
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data are provided in a Github repository with DOI 
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