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Cycloisomerization of Enynones by Aluminum Halides: 
Construction of Bicyclo[3.1.0]hexanes with Introducing Halides†

Daisuke Sato,a Akira Tsubouchi,a Yuichiro Watanabe,b Keiichi Noguchi,c Kazunori Miyamoto,b 
Masanobu Uchiyamab,d and Akio Saito*a

Alkyne π-bond activation by transition metal complexes has been well studied for cycloisomerization of enynes into 
bicyclo[3.1.0]hexanes, which can allow the introduction of carbon and oxygen functional groups concomitant with the 
construction of the core structures. However, the cycloisomerization of enynones through the activation of carbonyl groups 
into bicyclo[3.1.0]hexanes is not achieved. Herein, we report the aluminum halides-mediated cycloisomerization of 7-en-2-
ynones into the halogenated bicyclo[3.1.0]hexanes.

Introduction
Cycloisomerization of enynes provides a variety of cyclic 
compounds via multiple bond cleavage and formation. Since 
these processes are generally induced by alkyne π-bond 
activation, transition metal catalysts have been well studied for 
the selective construction of these cyclic products.1 Among 
them, cycloisomerization of 1,6-enynes with introduction of 
functional groups2 and with hydrogen migration3 has been 
developed for the synthesis of bicyclo[3.1.0]hexanes (Scheme 
1a), which are important core structures found in many 
biologically active compounds.4 However, although the 
methods based on the activation of acyloxy (Scheme 1b)2i or 
hydroxy groups2g,3d of propargyl alcohol derivatives have been 
reported, the cycloisomerization of enynones through the 
activation of carbonyl groups into bicyclo[3.1.0]hexanes is not 
achieved.

Other known approaches to bicyclo[3.1.0]hexanes from 
enynes include the methods triggered by the oxidative addition 
of Pd to propargylic esters or vinyl halides,5 by the insertion of 
alkynes into metal-carbon or metal-heteroatom bonds,6 by the 
formation of metallacycles7 or carbenes,8 and by metathesis 
with metal carbene complexes,9 in addition to radical 
cyclization.10 Nevertheless, the method with the introduction of 
halogens is limited to the TiCl4-mediated cycloisomerization of 

O-acetyl enynols (Scheme 1b),2i although there are some 
methods using substrates such as alkene-tethered ynals,8h,i 
ynones,8j ynoates6e-g,7g,8j and ynamides.2f,6e,f,8j
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Scheme 1. Cycloisomerization of enynes into bicyclo[3.1.0]hexanes.

Recently, as an extension of our research on metathesis-type 
reactions between alkynes and heteroenes catalyzed by σ-
electrophilic acids,11a-d we have reported catalytic 
cycloisomerization of 7-en-2-ynones into six-membered cyclic 
dienes using BF3·MeCN (Scheme 1c).11e This reaction proceeds 
via the activation of the carbonyl group by BF3 followed by the 
generation of a zwitterionic intermediate, in which the 
secondary carbocation of a cyclohexane ring is partially 
stabilized by π-electrons of the allene moiety. Therefore, we 
expected the selection of proper metal halides would lead to 
the formation of halogenated bicyclo[3.1.0]hexanes via the 
intramolecular addition of halides to allene centers of the 
zwitterionic intermediates. Herein, we describe the aluminum 
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halides-mediated cycloisomerization of 7-en-2-ynones into the 
halogenated bicyclo[3.1.0]hexanes (Scheme 1c).

Results and discussion
Initially, metal chlorides were evaluated for the formation of 
chlorinated bicyclo[3.1.0]hexane 2a from 7-en-2-ynone 1a in 
CH2Cl2 (Table 1). In the course of investigating the 
cycloisomerization of 7-en-2-ynones into the endo-type dienes 
in our previous work,11e we found out that the desired product 
2a was formed in 33% yield by the treatment of 1a with AlCl3 
(0.2 equiv.) at room temperature for 24 h (entry 1). Thus, the 
addition of TMSCl (TMS = trimethylsilyl, 2 equiv.) with the 
catalytic amount of AlCl3 (0.2 equiv.) was attempted and 
unfortunately the similar result was obtained (2a: 36%, entry 2). 
On the other hand, when the amount of AlCl3 was increased up 
to 1 equiv., the yield of 2a was improved up to 78% yield (entry 
3). Furthermore, although the use of the other metal chlorides 
resulted in the quantitative recovery of 1a (entry 4) or lower 
yield of 2a (entries 5-8), EtAlCl2 and Et2AlCl were more effective 
(entries 9 and 10). In particular, the use of Et2AlCl afforded 2a in 
excellent yield (94%) without the detection of cyclic dienes 3a 
(entry 10). Note that other solvents such as dichloroethane, 
CHCl3, CCl4, CH2Br2, toluene, MeNO2, MeCN and THF did not give 
good results (See Table S1 in ESI).

Table 1. Screening of metal halides.

TsN
• •

•
• Me TsN

•
• •

Me•

Ph

ClPh

O
O

TsN •
•

•
•

Me

Ph

O

3a

[M]-Cl (1.0 equiv.)

2a1a

+
CH2Cl2, rt
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1 AlCl3
b 24 33 62:38 trace

2 AlCl3
b,c 24 36 59:41 trace

3 AlCl3   4 78 60:40 trace
4 InCl3 24   0d -   0
5 BCl3 0.5 59 56:44 NDe

6 SnCl4   4 50 64:36 trace
7 TiCl4   4 54 47:53 trace
8 FeCl3 24 36 NDe 15
9 EtAlCl2   2 89 56:44 trace
10 Et2AlCl   2 94 56:44   0
a Diastereomeric ratio. b 0.2 equiv. c Addtive: TMSCl (2 equiv.) d 
Recovery of 1a: 99%. e Not determined.

Next, we examined the cycloisomerization of various 7-en-2-
ynones 1 using Et2AlCl (method a), EtAlCl2 (method b) and AlCl3 
(method c) in CH2Cl2 at room temperature (Scheme 2). Similar 
to the phenyl ynone 1a, other aryl ynones 1b, 1c, 1e-g and ethyl 
ynone 1i were treated with Et2AlCl for 2 h giving rise to the 
corresponding chlorinated bicyclo[3.1.0]hexanes 2b, 2c, 2e-g 
and 2i in high yields (81%-quant.). These transformations using 
AlCl3 tended to afford complex mixture and thus relatively mild 
Et2AlCl would be effective on these reactions. On the other 
hand, in cases of nitrophenyl ketone 2d and aldehyde 2h, EtAlCl2 

gave good results likely due to a decrease in the Et ligand 
involved in reduction of carbonyl groups.12 Actually, in the 
Et2AlCl-mediated reactions of 1d and 1h, the reduced products 
of 2d and 2h were observed. Although ene adducts 4m and 4n 
were obtained from prenyl derivative 1m and ynoate 1n in 75% 
and 78% yields, respectively (Scheme 3), Z-alkene Z-1a gave the 
corresponding product cis-2a in 61% yield (Scheme 3) and allyl 
derivative 1j were smoothly converted into the desired product 
2j in 73-75% yields in all cases with EtnAlCl(3-n) (Scheme 2). 
Furthermore, the present method using AlCl3 or Et2AlCl could be 
applied to the synthesis of cyclic ether 2k (85% by method c) 
and carbocycle 2l (45% by method a).13
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Scheme 2. Cycloisomerization of 1 into 2.
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Unfortunately, the use of AlF3 resulted in the quantitative 
recovery of 1a, and AlBr3 and AlI3 in CH2Cl2 brought about the 
production of the chlorinated product 2a as a byproduct or as a 
main product (Scheme 4). The production of 2a is probably due 
to the generation of aluminum chloride by the halogen 
exchange between AlX3 and CH2Cl2 solvent.14 Whereas, by using 
Me2AlX (X = Cl, Br, I) in situ generated from Me3Al (0.67 equiv.) 
and AlX3 (0.33 equiv.),15 the brominated 5 (91%) and the 
iodinated 6 (the yield was not determined) were produced as 
well as 2a (88%) even in CH2Cl2. Notably, the iodinated 6 was 
smoothly converted into the hydrogenated 7 in organic solvents 
such as CHCl3 and MeCN,16 and thus was obtained as 7 in 41% 
yield after the exposure to CHCl3 at rt for 20 h. It should be 
mentioned that the stereochemistries of products 2a and cis-2a 
were determined by single crystal X-ray analysis (for 2a)17 or 
NOESY spectra analysis (for cis-2a, see ESI) and these products 
were found to be obtained as a mixture of epimers having the 
different stereogenic center on α-position of carbonyl groups. 
Furthermore, considering the configuration of 2a, those of 
other products 2b-2l and 5 were determined. 
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• Me
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7 (X = H) 41%f

Scheme 4. Cycloisomerization of 1a into 2a, 5 or 6.

As described above, in contrast to BF3·MeCN giving six-
membered cyclic diene 3,11e aluminum halides led to the 
selective formation of bicyclo[3.1.0]hexanes 2a-l from 7-en-2-
ynones 1a-l. To obtain mechanistic insight, we conducted DFT 
calculations on the AlCl3-promoted cycloisomerization of 7-en-
2-ynone 1k. As shown in Figure 1, the AlCl3-1k complex INT1a 
undergoes C2–C4 bond formation via TS1a to give INT2a with a 

small activation energy (8.7 kcal/mol). Considering the 
elongated C2–C3 bond distance (1.64 Å) and the near-linearity 
(173.2º) of the allenyl moiety, INT2a would be a zwitterionic 
intermediate, in which the secondary carbocation at the C3 
position is partially stabilized by the C1–C2 double bond. INT2a 
is the bifurcating intermediate for bicyclo[3.1.0]hexane and 
cyclic diene products. In the case of cyclic diene product, C1−C3 
bond formation with C1−C2 π-bond cleavage (INT3a’) followed 
by C2−C4 π-bond formation with C3−C4 bond cleavage and an 
electron donation of the enolate anion to C3 cation center give 
rise to the AlCl3-3k complex INT4a’ with a high stabilization 
energy (45.3 kcal/mol). Notably, INT2a, TS2a’, INT3a’ and TS3a’ 
are present as nonclassical structures between homoallyl, 
cyclopropylcarbinyl and cyclobutyl cations and such a 
delocalized cation species has been recognized as a reactive 
intermediate in various types of cycloisomerization of 
enynes.1,18

On the other hand, the positively charged C1 carbon in 
INT2a undergoes chlorination by AlCl3 associating with the 
enolate moiety to produce INT3a with 3.9 kcal/mol of an 
activation energy, which is lower than that of TS2a’ by 2.6 
kcal/mol. Thus, the formation of the bicyclo[3.1.0]hexanes is 
favored kinetically in this system. This is because a Cl ligand of 
AlCl3 is located in a direction near-vertical to sp-like C1 carbon 
(93.3º, Figure 2). According to DFT calculations on the BF3-
promoted skeletal rearrangement of 1k, the zwitterionic 
a n a l o g  I N T 2 b  ( C 2 –C 3 :
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Figure 2. Conformations of INT2a and INT2b in AlCl3- or BF3-
promoted reactions of 1k calculated by M062X/6-31+G*.
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Figure 1. DFT calculations on AlCl3-promoted conversion of 1k into cyclic diene and into bicyclo[3.1.0]hexane at the M062X/6-31+G* level.
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1.65 Å, C1-centered angle: 168.9º, Figure 2) is a reactive 
intermediate for cyclic diene 3k.11e However, the B–F bond 
distance (INT2b: 1.41 Å) is much shorter than the Al–Cl bond 
distance (INT2a: 2.16 Å) and thereby the corresponding F ligand 
of BF3 is deviated from the direction vertical to sp-like C1 carbon 
(100.8º, Figure 2). Consequently, BF3·MeCN would lead to the 
formation of cyclic diene 3. These calculated results are 
consistent with the experimental observations.

In order to better understand the involvement of aluminum 
enolate intermediate such as INT3a, we carried out deuterium 
labeling experiments using 1a (Scheme 5). Consequently, after 
1a was treated with Et2AlCl at rt for 2 h, the exposure of the 
reaction mixture to D2SO4 was found to afford the deuterated 
product d-2a (>99%D) quantitatively. This result supports the 
involvement of aluminum enolate intermediate.19 In addition, 
the use of N-chlorosuccinimide (NCS) and benzoyl chloride 
instead of D2SO4 afforded dichloro product 8 and enol benzoate 
919a in 72% and 90% yields, respectively.
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• Me TsN

•
• •

Me•

Ph

Ph

O O

CH2Cl2
rt, 2 h

1a

Et2AlCl
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Scheme 5. Quenching of aluminum enolate with electrophiles.

Conclusions
In conclusion, we have developed a synthetic method of 
halogenated bicyclo[3.1.0]hexanes by aluminum halides-
mediated cycloisomerization of 7-en-2-ynones. This work 
represents the first report of selective formation of 
bicyclo[3.1.0]hexanes from enynones through the activation of 
carbonyl groups. Since aluminum halides gave different 
products from those obtained by using BF3 as a homologous 
element halide,11e we believe that our findings would open a 
new window on cycloisomerization based on the activation of 
carbonyl groups as well as a powerful procedure for accessing 
bicyclo[3.1.0]hexanes. Furthermore, on the basis of DFT 
calculations and experimental data, we proposed a reaction 
mechanism involving the branching zwitterionic intermediate 
(INT2a), and concluded that different bond lengths between 
group 13 elements and halogens lead to cycloisomerization into 
different products. Studies on other cycloisomerization of n-en-
2-ynones are underway.

Experimental
Representative procedure for cycloisomerization of 1a into 2a.
To a solution of enynone 1a (147.0 mg, 0.4 mmol) in CH2Cl2 (2 mL) 
was added Et2AlCl (1.0 M in hexane solution, 0.4 mL, 0.4 mmol) at 0 
ºC. After being stirred at room temperature for 2 h, the reaction 
mixture was quenched with sat. NaHCO3 and sat. Rochelle salt, and 
extracted with AcOEt. The organic layer was dried over MgSO4 and 
concentrated in vacuo to dryness. The residue was purified by MPLC 
(hexane:AcOEt = 88:12) to give 2a (151.7 mg, 94%)  as an epimeric 
mixture (56:44).
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