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Metal-free C(aryl)–P bond cleavage: Experimental and 
computational studies of the Michael addition/aryl migration of 
triarylphosphines to alkenyl esters
Makoto Sako,a† Kyohei Kanomata,b Mohamed S. H. Salem,a,c Tomohiro Furukawa,a Hiroaki Sasai,a and 
Shinobu Takizawa*,a

The nucleophilic addition and aryl migration of triarylphosphines to alkynyl esters in the presence of water results in the 
formation of 3-(diarylphosphoryl)-3-aryl propanoic acid derivatives through a metal-free C(aryl)–P bond cleavage process. 
Experimental and computational investigations of the mechanism indicate that the rapid formation of hydroxy-λ5-
phosphane as a key intermediate plays a crucial role in smooth C(aryl)–P bond cleavage. 

Introduction
Bond cleavage reactions have attracted much attention from 
chemists interested in modern organic synthesis because of 
their potential applications in chemoselective molecular 
transformations.1,† Among the reported examples of carbon–
carbon (C–C)2–4 and carbon–heteroatom (C–X)1,5–7 bond 
cleavage reactions, carbon–phosphorus (C–P) bond cleavage 
reactions8–15,‡ are one of the most important transformations 
because organophosphorus compounds are widely utilized as 
pharmaceuticals,16 phosphine ligands,17,18 organocatalysts,19 
and functional materials.20 Therefore, C–P bond cleavage 
reactions have been developed using various approaches such 
as radicals produced using photolysis8 or peroxides,9 reduction 
using transition metal catalysts10 and alkali metals,11 and via 
P(V) intermediates12–15 (Scheme 1A). However, these synthetic 
methodologies require relatively harsh conditions, leading to 
low functional group tolerance. In addition, they require the use 
of precious transition metals and the formation of highly 
polarized C–P bonds in activated species.
The Wittig reaction, which provides an alkene from a 
phosphorus ylide and an aldehyde or ketone, proceeds via a 
highly reactive intermediate such as a betaine or 
oxaphosphetane (Scheme 1B).21 The driving force for C–P bond 
cleavage in the Wittig reaction is the structural strain in the 
zwitterionic species. In this reaction, tertiary phosphines are 
often utilized as Lewis bases, causing nucleophilic addition to 

activated alkenes, allenes, and alkynes via Michael addition to 
generate phosphonium intermediate I (Scheme 1C).

Scheme 1. Methods of C(aryl)–P bond cleavage.
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Here, an alkynyl ester is employed, and the resulting 
zwitterionic species can react with nucleophiles or electrophiles 
to afford structurally diverse products.19 As part of our 
continuous effort to develop Lewis-base-mediated 
reactions,22,23 we envisioned that by using water as both a 
nucleophile and an electrophile, phosphonium intermediate I 
and a hydroxide ion would be generated in situ (Scheme 1C). 
Owing to the high oxophilicity of the phosphonium and 
neighboring α,β-unsaturated carbonyl moiety (a Michael 
acceptor) in intermediate I, the hydroxide ion could attack the 
phosphonium, and, thus, C(aryl)–P bond cleavage would be 
enhanced and induce the 1,2-rearrangement of the aryl group 
to the Michael acceptor via a hydroxyl-5λ-phosphane24 
intermediate II (Scheme 1C, path a), thus providing 3-
(diarylphosphoryl)-3-aryl propanoic acid derivatives.25-27 As an 
alternative pathway, the high electron demand of the 
phosphonium moiety28 could promote the umpolung-type 
Michael addition29–34 of the hydroxide ion, leading to C(aryl)–P 
bond cleavage via Wittig-type intermediate III (Scheme 1C, path 
b). In this context, we investigated the metal-free cleavage of 
C(aryl)–P bonds in the Michael addition/aryl migration of 
triarylphosphines to alkenyl ester derivatives in the presence of 
water. In addition, we carried out computational studies on the 
reaction mechanism, and this combined experimental and 
computational study provides insights into key questions about 
the rearrangement reaction mechanism and reveals the exact 
reaction pathways of intermediates II or III via cascade 
reactions.35,§

Results and discussion
Optimization of reaction conditions and substrate scope

In our work directed toward the development of metal-free 
C(aryl)–P bond cleavage, the reaction of tri(p-tolyl)phosphine 
(1a) and ethyl propiolate (2a, 2.0 equiv), an electron-deficient 
alkyne, was initially attempted in the presence of H2O (2.0 
equiv) (Table 1). The reaction in toluene at 10 °C afforded the 
desired adduct 3aa in 88% yield (entry 1). After screening the 
reaction solvents (CH2Cl2, N,N-dimethylformamide (DMF), Et2O, 
tetrahydrofuran (THF), cyclopentyl methyl ether (CPME), and 
tert-butyl methyl ether (TBME)), 3aa was isolated in 94% yield 
using TBME (entry 7). When the reaction was performed at 0 
and 20 °C instead of 10 °C, 3aa was obtained in 87% and 86% 
yields, respectively (entries 8 and 9). The use of lower quantities 
of 2a (1.5 equiv) or H2O (1.5 equiv) decreased the yield of 3aa 
to 91% (entry 10).
Next, we investigated the scope of the phosphine reagents 
under the optimal conditions (Scheme 2). Reactions using 
triphenylphosphine (1b) afforded the desired product 3ba in 
95% yield. Triarylphosphines bearing methoxy, fluoro, and 
chloro groups at the para-positions also furnished the 
corresponding rearrangement products 3ca–ea in good yields 
(71–95%), whereas tris(p-(trifluoromethyl)phenyl)phosphane 
(1f) with highly electron-withdrawing group was converted to 
3fa in only 31% yield, probably because of the lower 
nucleophilicity of 1f to 2a.36,37

Table 1. Optimization of reaction conditionsa.

OEt

O

OEt

O

P

Ar
O

ArAr
+

H2O
(2.0 equiv)

solvent
temp, 24 h

1a
(Ar = p-tolyl)

2a (2.0 equiv) 3aa (Ar = p-tolyl)

P

Ar

ArAr

Entry Solvent Temp (°C) Yield (%)b

1 Toluene 10 88
2 DCM 10 84
3 DMF 10 26
4 diethyl ether 10 94
5 THF 10 90
6 CPME 10 91
7 TBME 10 98 (94)c

8 TBME 0 87
9 TBME 20 86

10d TBME 10 91

aThe reaction of 1a (0.1 mmol), 2a (0.2 mmol, 2.0 equiv), and H2O (0.2 mmol, 
2.0 equiv) was conducted in 0.5 mL of solvent. bYields were determined by 1H-
NMR spectroscopy using 1,3,5-trimethoxybenzene as an internal standard. 
cIsolated yield. d2a (0.15 mmol, 1.5 equiv) or H2O (0.15 mmol, 1.5 equiv) were 
used. DCM: dichloromethane. DMF: N,N-dimethylformamide. THF: 
tetrahydrofuran. CPME: cyclopentyl methyl ether. TBME: tert-butyl methyl 
ether

Scheme 2. Substrate scope for phosphines 1. In the ORTEP plot of compounds 3ba and 
3na, the ellipsoids are plotted at 50% probability (H atoms have been omitted for clarity). 
dr = diastereomeric ratio.
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When meta-substituted triarylphosphines 1g–j were employed, 
the products 3ga–ja were obtained in moderate-to-good yields 
(59–93%). The reactions using tri(o-tolyl)phosphine (1k), tris(o-

Page 2 of 5Organic Chemistry Frontiers

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

Please do not adjust margins

fluorophenyl)phosphine (1l), and tri(2-naphthyl)phosphine 
(1m) afforded products 3ka, 3la, and 3ma, respectively, in only 
28%, 7%, and 36% yields, respectively. These results suggest the 
nucleophilic attack of water on the phosphonium moiety in 
intermediate I or steric repulsion between the o-position and 
the β-position during the migration process in intermediate II or 
III. We also attempted to use alkyl-substituted phosphines 
under the present reaction conditions. When 
monoalkyldiphenylphosphines such as MePPh2 (1n) and n-
PrPPh2 (1o) were employed under the optimal conditions, the 
aryl group was preferentially rearranged to afford the 
corresponding products 3na and 3oa, which have two chiral 
centers on the phosphorus and carbon atoms, in 88% and 90% 
yields, respectively, as mixtures of diastereomers. These results 
differ from those of the Wittig reaction product via cleavage of 
the C(alkyl)–P bond. The structures of products 3ba and 3na 
were identified by X-ray crystallographic analysis.
Next, we examined the use of various activated alkynes 
(Scheme 3). Thus, reactions involving a series of propiolate 
esters 2b–f having methyl, benzyl, bromoethyl-, allyl-, and 
phenyl groups were conducted in the rearrangement reaction 
to form the corresponding products 3ab–af in good yields (76–
97%). Instead of propiolate esters, propiolamides can also be 
utilized as activated alkynes. In particular, amides 2g and 2h 
afforded the corresponding products 3ag and 3ah in 60% and 
90% yields, respectively. Further, when chiral propiolate ester 
2i bearing a menthyl group was used, the reaction proceeded 
to give 3ai in 95% yield as a mixture of diastereomers (53:47 
diastereomeric ratio (dr)). Finally, under these reaction 
conditions, internal alkynes such as ethyl 3-phenylpropiolate 
and dimethyl but-2-ynedioate were unsuitable for the creation 
of a chiral quaternary carbon center under our optimized 
reaction conditions.

Scheme 3. Substrate scope for alkynes 2. dr = diastereomeric ratio.
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Computational studies of the reaction mechanism

To verify the reaction pathway in our Michael addition/aryl 
migration reaction, density functional theory (DFT) calculations 

were performed using model structures, namely methyl 
propiolate and triphenylphosphine (Scheme 4). After conjugate 
addition of the phosphine to the propiolate ester to form IntA, 
complexation with a water molecule forms IntB. Subsequently, 
the protonation of the α-carbon via TS1 is immediately followed 
by the addition of a hydroxy group to the phosphonium moiety 
to form IntC. Finally, 1,2-rearrangement of the phenyl group 
through C(aryl)-P bond cleavage via TS2 and subsequent 
intramolecular proton migration from the phosphorous oxygen 
to the α-carbon would provide product 3. Therefore, the 
present reaction took place through reaction path a shown in 
Scheme 1C.38

 
Scheme 4. Calculated energy diagram. The Gibbs free energies (kcal/mol) of 
intermediates and transition states are shown relative to the sum of the free energies of 
the starting materials (1, 2, and H2O). All calculations were performed at B3LYP/6-31G(d) 
level of theory in the gas phase.

IntC
-19.2

TS2
+4.8

3
-79.9

CO2Me
Ph3P

CO2Me
Ph2P

OH

Ph

CO2Me
Ph2P

O

Ph

H

CO2Me
Ph2P

Ph

O
H

H
O H

CHO2Me
Ph3P

TS1
+3.6

H
O

H

IntA
+9.8

IntB
-0.8

CO2Me
Ph3P

H2O

Reaction coordinate

G (kcal/mol)

As control experiments, allenic ester 4 and vinyl ketone 
derivatives 5, which are also activated Michael acceptors, were 
employed instead of propiolate esters 2 (Scheme 5A). In both 
cases, the corresponding rearrangement products were not 
obtained, probably owing to the difficulty of rearrangement of 
the phenyl group in each intermediate. Thus, the intermediate 
derived from PPh3 and allenic ester 4 suffers from the steric 
hindrance of the methyl group at the β-position of the carbonyl, 
and the intermediate derived from PPh3 and vinyl ketone 
derivatives 5 do not include a Michael acceptor moiety. The 
reaction of ethynylbenzene (6) as a non-activated alkene under 
the optimized conditions afford no desired product at all. When 
deuterium oxide or O-isotopic labelling water was used instead 
of water, the scrambling of hydrogen and deuterium at the α- 
and β-positions and the scrambling 16O and 18O on the 
phosphine atom were observed (Scheme 5B). This result 
indicates that the exchange of hydrogen from the terminal 
alkyne with deuterium occurs rapidly during the reaction.
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Scheme 5. (A) Control and (B) D2O or H2
18O experiments.
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Conclusions
In conclusion, we investigated the scope and mechanism of the 
C(aryl)–P bond cleavage reaction of arylphosphines with 
activated alkynes in the presence of water. The C(aryl)–P bond 
cleavage proceeded under metal-free and mild reaction 
conditions with high functional group tolerance. The 
computational study supported the rapid formation of a 
hydroxy-λ5-phosphane intermediate, enabling 1,2-aryl 
migration through smooth C(aryl)–P bond cleavage. The 
investigation of these catalytic and enantioselective 
rearrangements is ongoing in our laboratory.
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