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ABSTRACT

High-valent Fe(IV)-oxo intermediates, found in enzyme active sites, are excellent targets for 

biomimetic design of molecular catalysts for C-H bond activation. C-H bonds in inert aliphatic 

hydrocarbons, such as methane, possess strong bonds that are resistant to chemical 

functionalization. To aid in the screening of potential catalysts for C-H bond activation, 

computational methods, such as density functional theory (DFT) and machine learning (ML), are 

valuable tools for performing high-throughput virtual searches of the vast chemical compound 

space. In this study, we have designed a database of 50 Fe(IV)-oxo species with varying 

coordination environments which are further functionalized for a total of approximately 181k 

structures. DFT calculations are then performed on a subset of the molecular database to determine 

spin states and C-H bond activation energies. The collected data are then curated based on a series 

1 These authors contributed equally to this work
2 Current address: Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, 
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of chemically informed criteria. To avoid performing 181k DFT calculations on the total chemical 

compound space, we developed ML models that utilize a novel molecular representation based on 

persistence homology, called persistence images (PIs). In particular, we have developed a novel 

similarity search algorithm, followed by training a regression model to predict C-H activation 

energies and a classification model to predict the spin states. The priority is to provide high-fidelity 

predictions for C-H activation barriers. For that purpose, we divided the full database into low and 

high fidelity structures and we introduced a metric (δΔG‡) which evaluates the effect of a specific 

ligand modification with respect to the parent, unsubstituted structure. A validation step that 

included additional DFT calculations on 15 structures demonstrated the credibility of the proposed 

methodology.
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1. INTRODUCTION

Methane is the main component in natural gas and methane clathrates, and with the 

depletion of petroleum reserves, it is estimated to become the most important hydrocarbon 

feedstock for the synthesis of fuels and chemicals.1, 2 However, methane is a highly volatile and 

flammable gas at room temperature, two features that introduce storage and transportation issues. 

Methane functionalization to methanol or light hydrocarbons synthesis, which can be used as 

alternative fuels or feedstocks, is of high importance for petroleum chemistry.3-5 For considering 

methane as a sustainable source of raw materials, it should be converted at the place of extraction. 

Thus, novel selective and energetically less demanding catalytic processes are needed for methane 

valorization.6 

One approach is the development of new catalysts that can mimic nature’s enzymes. Non-

heme enzymes, such as α-ketoglutarate (αKG) dependent taurine dioxygenase (TauD)7, 8 and 

syringomycin halogenase (SyrB2),9 form high-valent Fe(IV)-oxo intermediates that are capable of 

abstracting an H-atom from an inert C–H bond as strong as 106 kcal/mol to initiate hydroxylation 

or halogenation.10 Similar to heme chemistry, many stable non-heme Fe(IV)-oxo model complexes 

have been synthesized and characterized.11-16 The high-spin quintet (S = 2) spin state is considered 

the most reactive spin state and important for the iron(III)-hydroxo intermediate formation, which 

is stabilized through an exchange controlled mechanism.17  In 2000, Wieghardt et al.18 reported 

the first non-heme Fe(IV)-oxo model complex [(cyclam-CH2CO2)FeIV(O)]+. Cyclam and cyclam-

based ligands became a widely popular prospect for non-heme Fe(IV)-oxo chemistry. The first 

successful crystallographic characterization of a non-heme Fe(IV)-oxo complex, 

, was achieved by Rohde et al.19 in 2003. The Fe(IV)-oxo [FeIV(O)(TMC)(NCCH3)]2 +

intermediates formed in cyclam-based complexes are relatively stable and feature a pseudo-
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octahedral coordination environment. The Fe-oxygen interaction is considerably strong, leading 

to short bond lengths, and is sterically hindered by the bulky nature of cyclam-based ligands.20 

Numerous successful attempts by synthetic bioinorganic chemists to improve the cyclam ligand 

scaffolds included ring size variation and binding site modification. Tetramethylated cyclam 

ligands (TMC) have shown a degree of catalytic tunability based on the ring size.21 The original 

cyclam ligand and its derivatives stabilize an intermediate spin state (S = 1) in the Fe(IV)-oxo 

intermediate. In many cases, the intermediate spin state is less reactive than the high-spin state for 

the hydrogen atom abstraction (HAA) reaction step which has been attributed to the increased 

exchange interactions present in the high-spin state.22-24 Efforts to increase reactivity have been 

made through replacing one or more of the nitrogen binding sites of TMC with oxygen (TMCO).25 

A different approach is using weak field tripodal ligands to stabilize high-spin Fe(IV)-oxo sites. 

The first S = 2 non-heme Fe(IV)-oxo model complex was the  (TMG3tren [(TMG3tren)FeIVO]2 +

= (1,1,1-tris{2-[N2-(1,1,3,3-tetramethylguanidino)]ethyl}amine) which has a trigonal bipyramidal 

geometry.26 The HAA reactivity of this catalyst is diminished by the significant steric hindrance 

around the Fe-O bond. In 2015, Biswas et al.27 reported one of the most reactive non-heme Fe(IV)-

oxo, [( . The TQA ligand (tris(2-quinolylmethyl)amine) features four TQA)FeIV(NCCH3)O]2 +

weak-field quinoline ligands that stabilizes an octahedral Fe(IV)-oxo. TQA stabilizes the S = 2 

spin state and prevents steric hindrance around the Fe-O bound with a vacant site that is filled by 

a solvent molecule. A recent example of a high-spin (S = 2) Fe(IV)-oxo formed via O2 activation. 

FeIV(O)(Me3TACN)((OSiPh2)2O) is the first species formed via photolytic O-O cleavage of a 

peroxo(diiron) complex.28

Computational studies have provided a comprehensive understanding of the electronic 

structure of the Fe(IV)-oxo site and its role in a large variety of chemical reactions.29-37 However, 
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for the development of novel design strategies that lead to the improvement of catalytic 

performance, a systematic exploration of large number of molecular systems is mandatory. 

Previous studies range from the analysis of a small number of complexes for the development of 

structure-function relations38 to high-throughput virtual screening of large molecular databases 

with the aid of quantum chemical methods and machine learning (ML).39-45 

ML has increased in prevalence in the chemical community due to its ability to perform 

high-throughput evaluation of many chemical species, allowing researchers to shift from the study 

of individual molecules to the exploration of a larger fraction of the chemical space.46-50 One major 

component of data-driven chemistry pipelines is the generation of molecular representations.51  

Common examples include Coulomb matrices (CMs),52 the Smooth Overlap of Atomic Positions 

(SOAPs),53 and the revised autocorrelation functions (RACs) developed by the Kulik group.54 

Recently, we proposed Persistence Diagrams (PDs) and Persistence Images (PIs) as alternative 

molecular representations55 based on persistent homology.56 PDs and PIs encode the topological 

information of molecular functional groups and offer a favorable, similar size representation—an 

advantage over other fingerprinting methods. 

In this study, we have applied PIs as a generalizable featurization method for the 

exploration of Fe(IV)-oxo chemical compound space for the hydrogen atom abstraction reaction 

step. Methane activation was selected as a probe reaction for the extraction of important 

information related to the ligand field effects on the Fe center. The starting point of this work is a 

set of 50 Fe-containing complexes with varying coordination environments, followed by a 

combinatorial database generation of about 300k structures. A similarity search based on 

persistence homology for the removal of duplicate structures and for the selection of data for 

density functional theory (DFT) calculations is introduced. DFT calculations on a small molecular 
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subset provided reliable data for the training of machine learning models on for the prediction of 

C-H activation energies and spin states. The development of ML models for the high-throughput 

virtual screening of approximately 181k structures is presented and a detailed analysis of the 

results is provided in the next paragraphs. Finally, our conclusions are presented at the end of the 

article. 

2. RESULTS AND DISCUSSION

2.1 The Fe(IV)-Oxo Molecular Subspace

Figure 1: The 50 parent Fe-containing molecular structures used in this study.

In this study, we are introducing a database of 50 Fe(IV)-oxo complexes (Figure 1) that 

include octahedral (1-15), κ1-trigonal bipyramidal (16-29), square pyramidal (30-34), and κ4-

trigonal bipyramidal or tetradentate tripodal (35-50) molecular structures. This database consists 

of 15 octahedral complexes containing only monodentate water, ammonia, and phosphane ligands 

(1-15), which introduce ligand field strength effects in a systematic manner (H2O, NH3, PH3 as 
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weak, intermediate, and strong ligands, respectively). Additionally, there are 16 trigonal 

bipyramidal complexes containing only monodentate aqua, amino, methanimine, methanol, and 

trimethylamine ligands (16-29). Complexes 1-29 are important for capturing the ligand field 

effects in both octahedral and trigonal bipyramidal geometries. These complexes will serve to 

calibrate the ligand field effects in the evaluation of the extended database (vide infra). Complexes 

30-34 include derivatives of the cyclam and tetramethyl cyclam ligands. These ligands support an 

Fe(IV)-oxo with pseudo-C4v symmetry with a vacant axial binding site. Cyclam and 

tetramethylated cyclams stabilize an S = 1 Fe(IV)-oxo, while many of the TMC and TMCO 

complexes have a transition state with a S = 2 spin state. The remaining complexes (35-50) utilize 

tetradentate tripodal tren-based ligands. The TMG3tren ligand scaffold supports the notion that 

trigonal bipyramidal geometries can stabilize a high spin Fe(IV)-oxo, and may lead to high HAA 

reactivity.

A brute-force combinatorial expansion of the 50 parent structures yields approximately 

300,000 molecular structures (Figure 2(a)). Single and double substitutions of hydrogen atoms 

with fluorine, chlorine, bromine, methyl, or amino groups are introduced in each of the 50 parent 

structures. Additionally, we developed a novel molecular similarity algorithm based on persistent 

homology to remove duplicate structures from the database, which is briefly described here. First, 

each molecular entry is grouped based on their given parent structure and stoichiometry, and their 

respective persistent diagram (PD) and persistent image (PI) are generated (ESI, Section S1). The 

PIs of structures within the same group are compared, and if they have a mean squared error (MSE) 

below a given threshold (here, 10-15), then the structures are considered identical (Figure 2(b)). 

This process significantly reduces the total number of structures in the diluted database as it 
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removes molecules that are identical. The refined database consists of 181,436 unique and diverse 

Fe(IV)-oxo structures (vide infra). 
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Figure 2: Database generation flowchart. (a) A combinatorial expansion of the 50 parent structures 
provides a database of approximately 300,000 molecular geometries with many redundant 
structures. (b) Structure refinement based on persistent homology yields 181,436 unique entries.

2.2 Data Generation from DFT Calculations
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Once redundancies are removed, a fraction of the compound space is chosen for explicit 

calculation of their activation barrier using DFT. We sought to select the most unique structures 

by identifying 30 systems with the largest MSEs from the comparison of PIs within a given parent 

structure (1,500 total). Once structures are selected, subsequent DFT calculations are performed 

for the quintet (S = 2) and triplet (S = 1) spin states of the Fe(IV)-oxo intermediate, as well as for 

the quintet (S = 2) transition state (TS) of the C-H activation step. We chose two different spin 

states for the reaction intermediate to properly consider single-state and two-state reactivity 

channels, which are the two most prominent reaction schemes in Fe(IV)-oxo chemistry. Overall, 

4,500 DFT calculations were performed. From these calculations, we were able to determine the 

activation energy  for each molecular structure. The computed  values and the (Δ𝐺 ‡ ) Δ𝐺 ‡

corresponding spin-states were used to train and test ML models. 

To ensure the integrity of the DFT results, we impose a strict set of four criteria for the 

automated selection of reliable computational data. Two geometric criteria related to the F-O-H 

structural core of the HAA have been applied on the TS and the two Fe(IV)-oxo intermediates (S 

= 1, 2). First, structures are flagged if at least one of the three optimized geometries have an iron-

oxygen bond length that is less than 1.45 Å or greater than 1.8 Å, and second, if the oxygen-

hydrogen bond distance is less than 0.98 Å or greater than 1.5 Å for the optimized TS structure. 

The first geometric constraint identifies when a geometry optimization does not converge to an 

iron-oxo species, while the second identifies cases where the C-H bond remains unactivated. The 

third and fourth criteria ensure the correct TS was found based on the imaginary vibrational modes. 

These consider that the primary imaginary frequency (v1) must be between 100i and 1600i cm-1, 

and for cases where there are two imaginary frequencies, the secondary frequency must be greater 

than 50i cm-1, which typically correspond to a methyl rotational mode. It is important to note that 

Page 9 of 40 Inorganic Chemistry Frontiers



10

numerical frequencies were explicitly calculated for each structure in the DFT training set, which 

allows the implementation of the last two criteria at no additional cost. Structures that did not meet 

the criteria were manually examined and removed if they did not correspond to the correct 

structures for HAA.  

After this initial screening, structures are dropped from the dataset if there is a negative 

C-H activation barrier, or if DFT did not converge. All reaction barriers presented herein 

correspond to thermally corrected ΔG values (in kcal/mol). Negative activation barriers were 

observed in a few cases and have been confirmed as artifacts derived from the high-throughput 

data generation. These artifacts led to ligand decoordination and/or rearrangement, incorrect 

transition state structures, and migration of the transition state active oxo from an axial position to 

an equatorial position. To maintain the integrity of the calculated data, those cases were removed 

from the dataset. While our criteria manage to remove most of the undesirable cases, we also 

removed structures which exhibited ligand decoordination as it was traced to spin contamination 

(difference between ideal and computed expectation value of the S2 operator larger than 0.5) and 

based on the Euclidean distance between the initial and optimized structure (deviations larger than 

2 Å). While there is no linear relationship between these two values and it is difficult to derive 

explicit boundary values for these metrics, we found that the outliers of both metrics tended to be 

structures where the first coordination sphere rearranges during the geometry optimization. Using 

our data curation protocol, we refined our DFT database from 1,500 data points down to 486 data 

points.

2.3 Machine Learning Model Analysis and Validation
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Two ML models have been developed for the prediction of spin states and reaction barriers 

with the DFT data collected from the 486 complexes. Before scanning the database of 181,436 

unique structures, we wanted to determine whether a structure has a triplet or a quintet reactant 

intermediate without explicitly performing 181,436 additional DFT calculations. For that purpose, 

we train and test a spin classification model using ridge classification. The classification step 

provides an overall accuracy of 96.47% for the prediction of triplet/quintet spin states for the 

training set and 91.09% for the test set (Figure 3). Correctly predicted triplets (true positives) make 

up 29.41% and 19.18% of the training and test set data, respectively, while correctly predicted 

quintets (true negatives) are 67.06% and 71.92% of the training and test set, respectively. Upon 

inspection of the triplet-quintet gap (ΔET-Q) of the false positive/false negative cases from the 

training set, we found a very low mean ΔET-Q of 2.6 kcal/mol, which is the source of the 

misclassification of the 13 cases in the test set (mean ΔET-Q of 7.7 kcal/mol).  From the erroneously 

predicted spin states we conclude that the model is more likely to predict a false negative 

(predicting a triplet for a true quintet) than a false positive (predicted quintet for a true triplet), 

which can be attributed to the overall distribution of quintets (70.99%) versus triplets (29.01%) in 

the DFT data (Figure 4 bottom left). The spin states of the full database are predicted to be 57.77% 

quintet and 42.23% triplets (Figure 4 bottom right).
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Figure 3: Confusion matrices represented as pie charts of training data (left) and test data (right). 

A true positive denotes a correctly predicted triplet spin state, whereas a false positive denotes an 

incorrectly predicted triplet spin state instead of a quintet. True negative denotes a correctly 

predicted quintet spin state, while a false negative denotes a wrongly predicted quintet instead of 

a triplet. 

Figure 4 shows the geometric composition of the DFT dataset and database along with the 

spin composition of the DFT dataset and the predicted spin states of the ~181k database. The 

resulting DFT dataset is composed of 38% κ4-trigonal bipyramidal, 27% octahedral, 24% κ1-

trigonal bipyramidal, and 12% square pyramidal geometries. The full database consists of 54% κ4-

trigonal bipyramidal, 17% octahedral, 16% κ1-trigonal bipyramidal, and 14% square pyramidal 

geometries which demonstrates the heterogeneity of the dataset. 
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Figure 4: Breakdown of the geometric (top) composition of the DFT database (left) and the full 

database (right) of 181,436 structures. The spin states (bottom) of the DFT database (left) and the 

predicted spin states for the full database (right).

Once the classification model was calibrated, we used kernel ridge regression to predict 

the reaction barriers of the remaining 181,436 molecular complexes within the database. Figure 5 

shows the regression parity plot for the reaction barriers of the trained ML model, where the x-

axis corresponds to the calculated DFT values, and the y-axis represents the ML (predicted) values. 

The regression model is evaluated using the coefficient of determination (R2), mean absolute error 
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(MAE), and root-mean-square error (RMSE). The training set (70% of the data) has an R2 of 0.99 

with a MAE of 0.73 kcal/mol and a RSME of 1.07 kcal/mol. The test set (30% of the data) has an 

R2 of 0.93 with a MAE of 1.69 kcal/mol and a RSME of 2.55 kcal/mol. To further evaluate the 

model over the full DFT dataset, we use 10-fold cross-validation to get average R2 values and 

RMSEs. The average training RMSE is  kcal/mol with an average R2 of . 1.07 ± 0.04 0.99 ± 0.00

The average test RMSE is  kcal/mol with an average R2 of . The four 2.24 ± 0.40 0.95 ± 0.02

largest outliers in Figure 5 correspond to structures 706-(9), 884-(9), 155-(32), and 554-(20) (see 

ESI, section S6 for a more detailed discussion on the outliers). The commonality between these 

four systems is the ligand functionalization with halogens. We believe that this discrepancy in the 

predicted barriers is attributed to ligand combinations that were underrepresented in the training 

set. 

Page 14 of 40Inorganic Chemistry Frontiers



15

Figure 5: Predicted (kernel ridge regression) vs. DFT(OPBE-D3(BJ)/def2-SVP) barrier heights 

(in kcal/mol) for the training data points (blue) and the test data points (orange). 

The trained model was used for the high-throughput computational screening of the 

remaining 181,436 structures. The largest predicted activation barrier is 58.1 kcal/mol (parent 

structure 11 with double amine substituents on two phosphanes in cis positions) while the lowest 

predicted activation energy is 2.1 kcal/mol (parent structure 37 with double chlorine substitutions 

on the two adjacent carbons that connect the equatorial oxygen binding site to the axial nitrogen 

binding site). We have partitioned the range of the predicted activation barriers into three regions: 

(A) activation barriers below 5 kcal/mol, (B) activation barriers between 5 and 25 kcal/mol and 

(C) activation barriers above 25 kcal/mol. Group A consists of low fidelity structures with 

unphysically low C-H activation barrier and is sparsely populated in the DFT dataset (less than 

3%). The cutoff value of 5 kcal/mol was chosen based on the analysis and curation of the data. 
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The value of 5 kcal/mol was utilized during data curation as the structures associated with barriers 

below this threshold were characterized as unphysical. We found that these structures exhibit 

ligand decoordination and/or rearrangement or in some other cases, migration of the oxo from its 

axial position to an equatorial position. Overall, group A consists only of 0.5% of the 181,436 

structures. Group B is the area with the greatest fidelity and the most potential insight for C-H 

bond activation with Fe(IV)-oxo complexes (67.2% of the total database). The complexes in this 

subspace are predicted to have accessible activation barriers. The largest barriers in this subspace 

remain below 25 kcal/mol, which is a threshold for potential catalytic activity at reasonable 

reaction conditions and are above 5 kcal/mol making them more physically meaningful than A. 

The last subspace C (32.3% of the total database) is in an area that is not particularly useful for 

catalyst development and of average fidelity, considering this region populates roughly 16% of the 

DFT dataset used in training.

Going forward, we will focus our analysis on subspace B (high fidelity/low reaction 

barriers) for the reliable extraction of structure-function relations for the purposes of HAA. The 

most commonly observed coordination environment within this subspace is the κ4-trigonal 

bipyramidal geometry (43% of B).   The rest of subspace B consists of 14% octahedral, 22% κ1-

trigonal bipyramidal and 21% square pyramidal complexes.  The square pyramidal and κ4-trigonal 

bipyramidal complexes are of particular interest as they most resemble experimentally 

characterized molecular Fe(IV)-oxo complexes. The optimal candidates, which can be further 

computationally or experimentally examined, are identified based on the previous analysis in 

combination with validation metrics. For that purpose, we have utilized a kernel density estimate 

together with bar plots of the DFT calculated barriers and the predicted barriers of the full 181,436 

database. A plot for each parent structure 1-50 can be found in ESI, Section S2. Here, we analyze 
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three representative cases from the high-fidelity region of subspace B which correspond to parent 

structures 1, 27, and 30. The selected plots (Figure 6) provide metrics and descriptors that highlight 

the performance of the ML model on a given parent structures chemical space, i.e., the reliability 

of prediction. These plots can be used in identifying areas where the machine learning model is 

likely to provide more reliable predictions, indicated by the overlap of the orange (DFT data) and 

blue (predicted data) densities and bars. For complexes 1, 27 and 30, the difference in mean errors 

is 0.94, 1.12 and 4.10 kcal/mol, respectively. For validation of our computational methodology 

and extracting useful information, we have selected 15 functionalized complexes from parent 

structures 1, 2, 4, 27 and 30 (high fidelity regions), and DFT calculations were employed to 

explicitly calculate the activation barriers (see ESI, Table S6). The ML predicted barriers show 

good agreement with DFT, with a MAE of 2.18 kcal/mol, a minimum error of 0.17 kcal/mol, and 

a maximum error of 8.60 kcal/mol. The MAE of the validation step (2.18 kcal/mol) is comparable 

to the MAE from of the full model (1.64 kcal/mol), which indicates that the reliability metrics can 

identify areas where our model provides high accuracy. Additionally, the tested complexes have 

relatively small activation barriers and may provide additional insights for catalyst development. 

The change in ligand field effects observed in each entry varies based on the parent structure. In 

complexes 1 and 2, the activation barriers increase by 3-4 kcal/mol through the addition of an 

electron withdrawing group (halides) cis to an electron donating group (amino or methyl). The 

barriers in complex 4 are lowered by 3-4 kcal/mol with the addition of two electron withdrawing 

groups to trans aqua ligands. In complex 30, the activation barrier is lowered when electron 

donating groups (methyl or amino) are added into the backbone of the ligand (i.e., to one of the 

carbon atoms that connect the binding sites). This model exhibits the ability to predict subtle 
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changes to Fe(IV)-oxo complexes. In the next section, a detailed analysis of the model predictions 

with respect to ligand field effects is presented.

2.4 Ligand Field Exploration

First and second coordination effects on the electronic structure and oxidation strength of 

the Fe(IV)-oxo site vary significantly based on the identity and position of functional groups and 

the overall ligand architecture. To quantify the functionalization effects, we introduce the δΔG‡ 

metric to denote the change in the C-H activation energy as the result of the functional groups 

introduced in the parent molecular structures. Thus, δΔG‡ is computed from the difference between 

the ΔG‡ of the unsubstituted, parent complex and a given functionalized complex. The average 

δΔG‡ as a function of the substituent type is shown in Figure 7. The most favorable changes in 

δΔG‡ derive from substituting hydrogen atoms with fluorine and bromine while the least favorable 

changes in δΔG‡ result from addition of amino group. 

Figure 6: Spread of the DFT activation barriers (orange) and predicted database activation barriers 

(purple) using histograms and kernel density estimates. Complexes 1 (left), 27 (center) and 30 (right) 

were selected as representative examples.
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Figure 7: Average changes in the activation barrier (in kcal/mol) between the 50 parent structures 

and the 181,436 unique entries. Negative values correspond to reduced C-H reaction barriers.

Figure 8 includes the largest positive and negative changes in activation energy for each of 

the 20 possible group combinations considered in this study. The largest negative δΔG‡ for pure 

halide (X/X) substitutions were found for parent structure 23, which is a trigonal bipyramidal 

coordination complex with three equatorial methoxy ligands and an axial aqua ligand. The 

incorporation of halides to this ligand architecture is predicted to have favorable changes in 

activation energy. This is a consequence of their electron withdrawing character which reduces the 

electron density of atoms coordinated on the Fe center. Therefore, the functionalized complexes 

have weaker ligand fields with respect to their parent structure equivalent, an effect that yields 

more reactive Fe(IV)-oxo active sites. In a previous study, we explained this effect by monitoring 
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the electronic structure of Fe(IV)-oxo complexes with strong and weak ligand fields31. The Fe(IV)-

oxo reaction intermediates evolve into a Fe(III)-oxyl radical in order to activate a C-H bond, an 

effect that is enhanced under a weaker coordination ligand field.27 Additionally, we found common 

trends regarding the halide position in the functionalized ligands. Seven of the nine most favorable 

mono- or dihalide substitutions utilize the same position, on a carbon atom adjacent to the nitrogen 

that is directly coordinated to the Fe center (for example, see structure 3558-(23) in Figure 8, first 

column, first row). 

 The largest favorable changes in activation energy for the amino/methyl, amino/halide or 

methyl/halide substitutions correspond to parent structures 26, and 29, which are trigonal 

bipyramidal complexes with amino and phosphane ligands. Even if the effect on the C-H activation 

barrier for these cases is lower on average than the pure halide cases, on an individual basis they 

yielded some of the most favorable δΔG‡ values. The four largest favorable changes derive from 

methyl/methyl and methyl/halide substitutions on parent structure 12 (2535-(12), 837-(12), 836-

(12) and 4845-(12)). Parent structure 12 is comprised of four phosphane ligands and one equatorial 

amino ligand arranged in an octahedral coordination environment. All four of these complexes 

share a methyl substituent at the equatorial amino group. In the methyl/methyl case (Figure 8, third 

column, first row), the second methyl is found on a cis equatorial phosphane group. Methyl 

functionalized amino and phosphane ligands become weaker π-accepting ligands, which leads to 

increased electron density in the π-antibonding orbital and weakens iron(IV)-oxo bond. All three 

of the methyl/halide substitutions occur in the same position, with the methyl group added to the 

amino ligand, and the halide added to the axial phosphane ligand. 
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Figure 8: Functionalization type, database ID (integer-letter combination) with the parent 

structure in parenthesis, largest positive (unfavorable) and negative (favorable) changes in 

activation energy (δΔG‡ in kcal/mol) and activation energy of the complex of interest (ΔG‡ in 

kcal/mol)). Groups and bonds displayed in blue indicate the location of functionalization and 

identity of the group.
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The distributions of the δΔG‡ values for each of the 50 different parent structures are shown 

as violin plots in Figure 9. The violin plots show a quantitative distribution of the data using 

symmetric kernel density estimates, where more densely populated areas are shown as wider areas 

on the graph, and the minimum (bottom line), median (middle line), and maximum (top line) from 

a box and whisker plot are shown as horizontal lines. The octahedral complexes (1-15) have the 

largest range (13.97 kcal/mol) and the most favorable δΔG‡ values on average (-1.72 kcal/mol). 

The κ1-trigonal bipyramidal complexes (16-29) and κ4-trigonal bipyramidal complexes (35-50) 

exhibit similar ranges of δΔG‡ (10.40 and 10.18 kcal/mol, respectively). However, on average, the 

κ1-trigonal bipyramidal complexes experience a more negative δΔG‡ than κ4-trigonal bipyramidal 

complexes (-1.47 and 0.68 kcal/mol, respectively), with the κ4 complexes exhibiting the least 

favorable δΔG‡ of any group. These tetradentate complexes are likely the most susceptible to 

change in the activation energy due to the proximity and connectivity to the axial ligand. A large 

majority of the functionalization sites are within 1-2 atoms of the axial ligand, where the effects 

of varying ligand fields are experienced more directly by the oxo ligand. The square pyramidal 

complexes (30-34) are likely the least susceptible to changes in the activation energy, as they 

experience the tightest spread of values, with an average range of 8.33 kcal/mol. The average δΔG‡ 

within this group is -0.47 kcal/mol, which is less favorable than both the octahedral and 

monodentate trigonal bipyramidal complexes but is an improvement to the κ4-trigonal 

bipyramidal. 
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Figure 9: Violin plots of the change in C-H activation energy (δΔG‡) in kcal/mol, to highlight the 

range, spread and average changes in each parent structure. Complexes grouped based on their 

molecular geometry.

3. CONCLUSIONS

In this work, we have explored a large ligand space of Fe(IV)-oxo complexes by combining 

quantum chemical data and novel chemical machine learning methodologies. Our primary aim was 

to extract relations between molecular structure and C-H activation for catalyst optimization. Our 

previous work on Fe(IV)-oxo chemistry and how the ligand field strength gives access to multiple 

reaction channels was the starting point of this project. Here, we began with 50 Fe(IV)-oxo parent 

structures and we developed a molecular database via combinatorial expansion. The ~300,000 
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structures were examined via a novel similarity metric that we developed for this project. This 

metric allowed the further refinement of the chemical space of interest that includes a total of 

181,436 unique entries. DFT computations were performed on a representative subspace, which 

were further reduced to 486 by following an automated data curation protocol. Two ML models 

were developed based on the 486 data points, a spin state classification model and a C-H activation 

barrier regression model. Input data were introduced in both models by utilizing the PI molecular 

representation that encodes geometric and topological information of molecular structures. The 

trained classification and regression models achieved high accuracy, with 91% confidence for spin 

state prediction and 1.69 kcal/mol mean absolute error for C-H activation barriers (test data). Both 

models were further applied for the high-throughput virtual screening of the full ~181k database. 

We divided the molecular structures into three groups based on the C-H activation barriers: low 

fidelity/low barrier predictions (group A, barrier less than 5 kcal/mol), high fidelity/low barrier 

predictions (group B, between 5 and 25 kcal/mol), and high fidelity/high barrier predictions (group 

C, more than 25 kcal/mol). We then selected 15 structures from group B and validated the 

prediction with additional DFT calculations. Indeed, the largest deviation was 8.6 kcal/mol, while 

the lowest was only 0.17 kcal/mol. Thus, our model was able to reproduce DFT C-H activation 

barriers within a small statistical deviation. Based on these findings, we were able to provide an 

examination of the average change in activation energy and functionalization type, which enable 

us to highlight key substituents and their most and least effective positions. For example, in strong 

ligand fields methyl functionalization to phosphanes and other strong field ligands are heavily 

favorable in octahederal, and both κ1- and κ4-trigonal bipyramidal geometries. Conversely, with 

weak to moderate field ligands halide functionalization to the second coordination sphere are 

heavily favorable for each of the four explored coordination environments. In moderate to strong 
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field ligands a combination of halide/methyl substituents were found to be most favorable in anti 

positions, whereas halide/halide groups are generally more favorable in syn positions. For that 

purpose, we introduced the δΔG‡ metric which describes the net difference on the C-H activation 

reaction step between the initial parent structure and a particular molecular modification of the 

ligand. 

Overall, the topology-based tools and metrics introduced in this work have helped us 

explore the target chemical space of the Fe(IV)-oxo complexes and enable us to develop a 

computational methodology for the fast and reliable examination of ligand field effects for 

improved C-H bond activation. We are currently exploring the transferability of the PI-based tools 

for other chemical applications, including catalyst optimization for more complex chemical 

reactions and ligand environments.

4. EXPERIMENTAL SECTION

4.1 Persistent Homology for Molecular Representations

In this work, we have extensively applied the persistence image (PI) molecular 

representation, which is based on persistent homology, a mathematical tool that allows the 

computation of topological features of a space at different spatial resolutions. A detailed 

description of the method can be found in Ref. 55, and a representative example is given in the 

ESI, Section S1. In short, the geometrical and topological information of a molecular structure are 

encoded into a 2D diagram, the persistent diagram (PD). The generation (birth) and the elimination 

(death) of the topological features included in a PD are tracked though a filtration parameter. For 

this project, we have chosen to include zeroth- and first-order topological features. The zeroth-
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order features are called “connected components” and encode the atom connectivity (bonds) of a 

molecule. The first-order topological features are called “holes” and encode the topology of atoms 

that form rings in a molecular structure. Each molecular functional group has distinct “hole” birth 

and death coordinates in the PD which are used as molecular fingerprints. The PDs are then 

converted into vectorized 2D images, the persistence images (PIs), that are used as input in ML 

models.

4.2 Database Generation

Molecular substitutions were performed on each of the 50 parent structures using 

molSimplify,57 which utilizes OpenBabel in the backend,58, 59 to generate force field optimized 

structures. Either one or two of the ligand’s hydrogen atoms were substituted with a fluorine, 

chlorine, or bromine atom(s) or a methyl or amino group(s). This was performed for each hydrogen 

atom and for each combination of hydrogen atom pairs (Figure 10). Structure generation in this 

manner is highly comprehensive, but also generates redundancies. The naming conventions 

utilized in the full database (181,436 molecular complexes) for each entry is listed as an integer-

integer pair, e.g. 0-(1), 1-(2) …, etc.  The first integer number corresponds to a nondescript 

identifier that was used to provide a unique x-(y) pair for every substituted parent structure (y = 1, 

2, …, 50).
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Figure 10: An example of modifications applied for structure generation (parent structure 32). 

Unmodified parent structure (left), singly substituted structure (center) and doubly substituted 

(right). Text in blue highlights the hydrogen that is replaced with one of the 5 atoms/groups used 

(-CH3, -F, -Cl, -Br and/or -NH2)

4.3 Computational Details

All density functional theory calculations were performed with ORCA 4.2.160, 61 using the 

OPBE functional,62, 63 the def2-SVP basis set,64, 65 and the Grimme’s D3 dispersion correction66 

with the Becke-Johnson damping function.67 Due to the large number of computations required 

for the generation of the database, we have selected a relatively small basis set, similarly to 

previous high-throughput computational screening studies of transition metal complexes for 

catalytic applications.68 The resolution of identity chain-of-spheres approximation was used in the 

two-electron integral evaluation with Lebedev’s 590-point integration grid.69, 70 For each structure 

included in the training set, a minimum of three calculations were performed: (1) transition state 

optimization, (2) optimization of the high-spin (S = 2) Fe(IV)-oxo intermediate and (3) 

optimization of the low/intermediate spin (S = 1) Fe(IV)-oxo intermediate. The hydrogen atom 

abstraction transition state optimization began with an initial transition state scan along the O-H 

internal coordinate, from 1.5 to 1.1 Å in increments of 0.02 Å. In a few cases, the preliminary 
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internal coordinate scan led to an unsuccessful transition state optimization. In these cases, the 

scanned geometries were manually inspected for potential saddle points and the Cartesian 

coordinates were generated from one of the intermediate scan structures. Full transition state 

optimizations were then performed without a constraining the O-H coordinate. The OPBE 

functional was selected since previous benchmark studies have shown that it has excellent 

agreement with unrestricted coupled-cluster singles, doubles and perturbative triples 

(UCCSD(T)).71, 72 In addition, it has been extensively used in previous computational studies of 

Fe(IV)-oxo complexes.38, 73, 74

4.4 Machine Learning Model Development

The PIs55 of each Fe(IV)-oxo species were generated using a pixelation of 20 by 20, a 

minBD of -0.1 Å (lower boundary of the PI), a maxBD of 2.5 Å (upper boundary of the PI),  and 

a spread of 0.06 (standard deviation of the gaussian kernel). The classification and regression 

models are performed using Python 3.6 with the Sci-kit Learn package.75 For both models, 70% 

(340 structures) of the DFT data is used for training and 30% (146 structures) of the data is used 

for testing.

The classification model is performed using linear ridge classification, with an alpha 

regularization parameter of 1e-2.  We evaluate the effectiveness of our model using the accuracy 

score, classification report, and confusion matrices as they are implemented in Sci-kit Learn. The 

training set has an accuracy of 0.96 and the test set has an accuracy of 0.91. Figure 6 shows a 

confusion matrix represented as a pie chart where negative values, or 0, denote quintet structures 

and positive values, or 1, denote triplet structures. A true negative (TN) indicates a negative value, 
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or quintet, is predicted correctly and a false negative (FN) indicates that a positive value is 

predicted incorrectly to be a negative value. For the triplets, a true positive (TP) designates triplets 

being classified correctly and a false positive (FP) designates a negative value being classified 

incorrectly as a positive value. The training set has a TN of 67.06%, FN of 1.47%, TP of 29.41%, 

and FP of 2.06% and the test set has a TN of 71.92%, FN of 5.48%, TP of 19.18%, and FP of 

3.42%. Further evaluation of the model includes metrics such as the precision, recall, and F1-score 

(see ESI, Section S3).

After the calibration of the classification model, we performed an extensive search of the 

kernel ridge regression parameters with three-fold cross-validation using GridSearchCV in Sci-kit 

Learn (the parameters can be found in ESI, Section S4). The optimal parameters were a Laplacian 

kernel with an alpha regularization parameter of 1e-2 and a gamma kernel parameter of 1e-2. 

Electronic supplementary information (ESI) available: Examples of Persistent Images, 

structural and database distribution, classification, and regression model metrics, DFT energies, 

validation energies. Cartesian coordinates of the full 181,436 database and DFT optimized 

geometries will be provided on our GitHub: XXX.
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