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Creating ground truth for nanocrystal morphology: A fully automated pipeline 
for unbiased transmission electron microscopy analysis

Emily M. Williamson,a‡ Aaron M. Ghrist,a‡ Lanja R. Karadaghi,a Sara R. Smock,a Gözde Barim,a 
and Richard L. Brutcheya*

Abstract: Control over colloidal nanocrystal morphology (size, size distribution, and shape) is 
important for tailoring the functionality of individual nanocrystals and their ensemble behavior. 
Despite this, traditional methods to quantify nanocrystal morphology are laborious. New 
developments in automated morphology classification will accelerate these analyses but the 
assessment of machine learning models is limited by human accuracy for ground truth, causing 
even unsupervised machine learning models to have inherent bias. Herein, we introduce synthetic 
image rendering to solve the ground truth problem of nanocrystal morphology classification. By 
simulating 2D images of nanocrystal shapes via a function of high-dimensional parameter space, 
we trained a convolutional neural network to link unique morphologies to their simulated 
parameters, defining nanocrystal morphology quantitatively rather than qualitatively. An 
automated pipeline then processes, quantitatively defines, and classifies nanocrystal morphology 
from experimental transmission electron microscopy (TEM) images. Using improved computer 
vision techniques, 42,650 nanocrystals were identified, assessed, and labeled with quantitative 
parameters, offering a 600-fold improvement in efficiency over best-practice manual 
measurements. A classification algorithm was trained with a prediction accuracy of 99.5%, which 
can successfully analyze a range of concave, convex, and irregular nanocrystal shapes. The 
resulting pipeline was applied to differentiating two syntheses of nominally cuboidal CsPbBr3 
nanocrystals and uniquely classifying binary nickel sulfide nanocrystal phase based on 
morphology. This pipeline provides a simple, efficient, and unbiased method to quantify 
nanocrystal morphology and represents a practical route to construct large datasets with an 
absolute ground truth for training unbiased morphology-based machine learning algorithms.

Introduction

Engineered colloidal nanocrystals are of interest because of their unique size- and shape-dependent 
chemical and physical properties.1,2 Control over nanocrystal morphology (including nanocrystal 
size, size distribution, and shape) is critical to tailor and ultimately maximize the functionality of 
individual nanocrystals and their ensembles.3–6 That is, it is well established that nanocrystal 
morphology has a direct impact on a myriad of functional properties, including catalytic behavior, 
optoelectronic and plasmonic effects, and biological uptake for drug delivery and imaging.7–11 In 
the overwhelming majority of cases, the resulting morphologies of colloidally prepared 
nanocrystals are assessed by transmission electron microscopy (TEM), which produces an image 
with a 2D projection of the 3D nanocrystal. Despite the significance of nanocrystal morphology, 
the published best practice for determining nanocrystal size and size distribution, for example, 
relies on the analysis of very small populations (N  300 nanocrystals).12 This is because despite 
recent advances in analysis methods, image analysis is most frequently done by hand, which 
introduces human bias, is slow and laborious, and necessarily results in small population statistics. 
With advances in instrumentation, it is now possible to acquire increasingly larger volumes of 
TEM images in shorter periods of time, which further exacerbates these analytical challenges and 
bottlenecks.
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Alternatively, image analysis can be done using public domain image processing programs, 
such as ImageJ,13 Ilastik,14 MIPAR,15 ‘binary DoG’ method,16 Py-EM and SerialEM.17 These 
provide some improvements in terms of scaling up data analysis, but nanocrystal detection is only 
conclusive for well-defined and -separated nanocrystals. Advancements to account for noisy 
backgrounds, nanocrystal agglomeration, and lower-quality images have been proposed via 
incorporation of modules from different platforms, as exemplified by groups like Qian et al.,18 
Park et al.,19 and Cervera et al.20 However, outputs are limited to ensemble averages of a few 
geometric descriptors, such as 2D area, and sacrifice irregular and concave morphologies for 
segmentation accuracy.20,21 This often leads to arbitrary, nongeometric shape descriptors being 
reported in the literature, including zoomorphic terms such as “nanourchins” and “nanotadpoles”
,22,23 because of the qualitative nature of parsing shapes. These challenges complicate the 
description and quantification of nanocrystal morphology by TEM analysis.24–27 

The incorporation of image processing platforms with machine learning (ML) algorithms 
presents a solution to these challenges by opening the door for automated nanocrystal morphology 
classification in a statistical manner. Such advancements will enable high-throughput morphology 
assessments and universal reporting to aid the incorporation of literature data into ML datasets.28 
One of the first attempts at automated morphology classification was done by Laramy et al.,29 who 
measured the distance from the center of each nanocrystal to its edge as a function of angle, . 𝑑(𝜃)
Boselli et al.11 and Lee et al.21 expanded on this work by quantitatively classifying morphologies 
into a predetermined number of shape groups via different image processing techniques. Most 
recently, AutoDetect-mNP by Wang et al. offered an unsupervised algorithm for automated 
morphology analysis.30 However, such techniques are still in their infancy.31–34 Generalizability 
limitations and human bias remain problematic, with the solution to one usually coming at the cost 
of the other.11,16,29,30 Generalizability and highly accurate nanocrystal detection can be achieved 
via complex image processing techniques, but such methods are either incapable of differentiating 
between the shapes and shape attributes of individual nanocrystals in the sample ensemble for 
subsequent classification or typically require supervision with human-generated ground truth 
labels to be incorporated into ML platforms30,15,17,18,35–39 Unsupervised cluster algorithms, such as 
AutoDetect-mNP, create shape group classifications based on minimized probability statistics, 
such as Hu moments, that ostensibly removes bias. This is sometimes coined “soft classification” 
instead of the predetermined groups characteristic of classification algorithms, but the 
unsupervised nature of the image processing typically lacks the complexity needed to classify a 
diverse array of morphologies without multiple manual interventions.16,30 Either way, there is 
currently no standardized method of quantitatively analyzing diverse ensembles of nanocrystals to 
uniquely identify shapes and the distribution of shapes.28,40

With this in mind, a barrier in the progression of automated image analysis and classification 
for colloidal nanocrystals is the absence of an unbiased morphological ground truth when training 
the ML models.36 With the ground truth for training and testing remaining in the hands of human 
experts, even unsupervised models are still inherently limited to human accuracy and rooted in 
human bias since the evaluation is reliant on the comparison to the status quo biased methods. 
Herein, we create a ground truth for nanocrystal morphology classification by exploiting the 
unbiased nature of deep learning in conjunction with the analytical assurance of simulation. The 
general workflow of automated morphology classification has three main components: (1) 
nanocrystal detection (segmentation), (2) feature extraction, and (3) classification. Recent studies 
have utilized synthetic image rendering as a ground truth to solve the annotation problem in 
segmentation of nanocrystal images via deep learning, proving to be an important step in removing 
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the bias in initial nanocrystal detection.37,41,37 We extend this method to feature extraction, thereby 
creating a ground truth for morphology classification. By simulating a theoretically infinite number 
of individual nanocrystal morphologies via a quantifiable, parametrically continuous mathematical 
function, we train a convolutional deep neural network (CNN) to perform the simulation in reverse 
by predicting the point in parameter space that best corresponds to each pixelated, noisy 
nanocrystal image. This links experimental morphologies to a unique combination of parameters 
and thus defines nanocrystal morphology quantitatively rather than qualitatively. We then create 
an unsupervised, automated pipeline that accurately processes, quantitatively defines, and 
classifies the morphologies of nanocrystals from experimental TEM images, utilizing the neural 
network output as ground truth for classification (Scheme 1). The pipeline utilizes computer vision 
techniques to separate and identify ranges of concave, convex, and agglomerated nanocrystals. To 
the best of our knowledge, this is the first example of a non-human ground truth in nanocrystal 
morphology classification, and therefore the first example of a pipeline that is designed to 
eliminate human bias. The pipeline demonstrates accuracy across a wide range of nanocrystal 
morphologies and efficiently creates a viable dataset large enough to train subsequent ML models 
to near perfect accuracy. This pipeline can be easily implemented by any researcher, with a simple 
5-step guide included in the MATLAB code on Github for those with little-to-no coding 
background.

Scheme 1 Visualization of full pipeline for TEM image analysis.

Results and discussion

Machine learning pipeline
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The components for our algorithm include a neural network trained on simulated images of 
individual nanocrystals to create a morphological ground truth, which is used to evaluate the output 
of a parallel image processing algorithm that detects, separates, crops, and extracts the 
morphological features of nanocrystals in experimental TEM images. The trained neural network 
predicts and assigns three shape parameter values for each detected experimental nanocrystal that, 
cohesively, best define the overall morphology in 2D virtual space according to the simulation 
function. These shape parameters are then utilized to cluster the nanocrystals into shape groups in 
an unsupervised manner, and act as ground truth labels to train morphology classification 
algorithms (Scheme 1).

Image processing. The first step in automated morphology classification is image processing. 
Efficient and accurate segmentation of colloidal nanocrystals in the foreground of an experimental 
TEM image is essential for accurate nanocrystal detection, feature extraction, cropping, and 
eventual classification. Furthermore, the quality of the TEM images inputted into a neural network 
directly affects its accuracy and precision. As a result, segmentation is a widely studied area of 
image processing, with techniques ranging from simple thresholding to complex neural networks 
to predict an accurate image segmentation.37,41–44 We opt for a simple but effective approach to 
increase the pipeline generalizability (Fig. 1), described in more detail in the ESI†. Processing 
concave shapes has been an ongoing problem in shape classification as concavity is commonly 
used as a way to filter out overlapping nanocrystals, which inhibits the analysis of naturally 
concave morphologies.19,29,30,35,45 We address this challenge by analyzing the connectivity and 
intensities of each pixel in a segmented image via MATLAB’s watershed function, which 
identifies connected components as “water wells” that fill to a certain level before the pixels begin 
to intersect with neighboring nanocrystals (Fig. 1c). Each “well” therefore indicates an individual 
nanocrystal center, whose edges are uniformly eroded in the segmentation to remove any overlap 
with other nanocrystals while maintaining the integrity of the nanocrystal morphology. The eroded 
nanocrystal mask is subsequently rebuilt in an equal but opposite manner via dilation to obtain the 
correct size and shape before cropping and feature analysis. Once segmentation is complete, 30 
different features are calculated for each nanocrystal, as defined in the ESI†. Extremely 
agglomerated samples where individual nanocrystals cannot be distinguished even qualitatively 
can be filtered out via implementing a threshold for extreme outliers. Although this occasionally 
filters out “accurate” nanocrystals, it removes the inaccurate segmentations without limiting the 
shapes that can be accurately processed, and in our experience the loss of the accurate nanocrystal 
renderings remains insignificant to the overall result. Bounding box and centroid data are then 
used to visualize the accuracy of the segmentation and crop each TEM image into smaller images 
of individual nanocrystals (Fig. 1d). Lastly, the cleaned, cropped images are compressed to 
normalize image size for implementation into the neural network, in accordance with Scheme 1.

In addition to visualizing the bounding boxes for each detected nanocrystal (Fig. 1d), we 
assessed the ability of the pipeline to handle nanocrystal agglomeration and misclassification. 
Nanocrystals from a single batch of product were imaged via TEM with three different degrees of 
agglomeration: non-overlapping, semi-overlapping, and almost entirely overlapping (Fig. S1†). 
Each image was input into the pipeline separately to assess the effects of agglomeration on the 
output. Across the three levels of agglomeration, each image was similarly classified into seven 
shape groups with average sizes within a standard deviation of each other. The non-overlapping 
sample had an average size of 20.0  13.8 nm, the semi-overlapping sample had an average size 
of 18.0  8.3 nm, and the very agglomerated sample had an average size of 16.1  7.4 nm. The 
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decreasing size and polydispersity with increasing agglomeration is concurrent with accurate 
nanocrystal detection, as more agglomeration means a denser population of nanocrystals, so large 
outliers have less of an influence. If agglomeration was causing a significant effect on detection, 
one could assume that the size and polydispersity of the detected nanocrystals would get larger 
due to agglomerated masses being classified as large, singular particles. Tables of the average and 
standard deviation of shape features across each shape group were also consistent and independent 
agglomeration (Tables S1-S6†), further supporting that agglomeration is non-significant in 
detection accuracy for the pipeline. 

 
Fig. 1 General workflow of the TEM image preprocessing method. (a) Original bright field TEM 
image of CsPbBr3 nanocrystals. (b) Binary image segmentation after contrast adjustment, filtering, 
and processing. (c) “Water wells” of pixel intensities in each connected component to identify and 
separate agglomerated nanocrystals. (d) Individual nanocrystal segmentations plotted as colors 
overlaid onto the original TEM image, with their respective bounding boxes used for cropping and 
implementation into the neural network. Nanocrystals connected to the edges and joined with the 
scale bar are removed.

Creating morphological ground truth. Simulated images of individual nanocrystals were used 
as ground truth in the training of a convolutional neural network to directly map a unique 
morphology to a quantitative description. Images were generated from a polar function (and the 
corresponding pre-defined parameter space) that defines a large class of closed curves with 
differing degrees of radial symmetry (Fig. 2a and ESI†). This extension of the class of ‘super-
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ellipses’ provides a natural way of continuously parameterizing the curvature of the closed curves, 
yet is the first time it has been applied to nanocrystal morphologies.46 When simulating ground 
truth to train the neural network, parameter values were randomly drawn from the distributions 
given in Table S7†. These values were used to plot nanocrystal morphologies in polar space (radius 
R as a function of  and physically correspond to curvature (p-norm, or p), the number 𝜃 ∈ [0,2π])
of major axes (d), the ratio between the major and minor axis lengths (Lratio), and a random 
rotational phase shift ( ) (eq 1). The ground truth therefore consists of each simulated image stored 𝜙
in a data matrix and a labels matrix with each image’s corresponding parameter array that was 
used to generate the curve. Random sampling helps avoid training the network to ‘recognize’ 
specific parameter values when the experimental images can have any parameter value. 
Introducing a random distribution of rotational phase shifts, intensity contrasts, pixelation, and 
Poisson background noise account for the non-ideal conditions of experimental TEM images. Fig. 
2b demonstrates the generalizability of this model through the generation of morphologies that are 
common to colloidal nanocrystals (i.e., qualitative morphology labels such as circles, rectangles, 
kites, and urchins), along with abnormal and asymmetric morphologies (Fig. S3†).

(1)                                    𝑅 =  [(𝐿𝑟𝑎𝑡𝑖𝑜|cos (𝑑
2(θ + ϕ))|)𝑝

+ |sin (𝑑
2(θ + ϕ))|𝑝] ―1/𝑝

                       

Fig. 2 Overview of outputs from model to generate simulated nanocrystal morphologies to create 
a ground truth. (a) Demonstration of how varying individual parameters in the model while 
keeping the others constant affects the generated nanocrystal shape: Upper left, p-norm; upper 
right, Lratio; bottom, number of major axes d (size adjusted for clarity). (b) Sampling of simulated 
nanocrystal TEM images. The labels for each image are (p, d, Lratio).

From this model, 65,000 simulated TEM images depicting distinct nanocrystal 
morphologies and their corresponding ground truth parameter values (p, d, and Lratio) were 
generated and used to train a convolutional neural network (CNN) in a 70/10/20 train/validate/test 
split. This network optimally finds the underlying parameters of nanocrystal shape via regression 
from an input TEM image. Choices regarding the model design are detailed in ESI†. To evaluate 
the trained CNN, the validation set was drawn independently from the total set of simulated 
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images, and the validation root mean squared error (RMSE) was calculated to indicate the 
performance of the network over the whole dataset. Regression neural networks minimize the 
distance between the ground truth point and the evaluated point in parameter space, so it is 
impossible to optimize the network on classification accuracy, but they have the advantage of 
outputting quantitative estimates for the parameters, which is requisite for any eventual 
optimization of morphology. Furthermore, we used a learning curve (Fig. 3a) to compare the 
training RMSE to the validation RMSE as a function of training data used. This shows the 
estimation error was optimally minimized without reaching the region of overfitting, as validation 
error nearly identically follows the sample error as it approaches the limit of the approximation 
error. The total decrease in RMSE with iteration indicates that the adjusted network parameters 
are increasing the accuracy of the predicted model parameters. The validation RMSE leveling off 
but not increasing as the training RMSE decreases indicates that a reasonable learning rate was 
chosen, and the network is well-trained.47 Additional standard methods were used to assess the 
quality of the network training. The quantile-quantile (Q-Q) plot shown in Fig. 3b illustrates a 
deviation between ground truth (imposed) number of dimensions and the predicted number of 
dimensions at a high number of primary axes, indicating that the model slightly overpredicts for 

and underpredicts for  (i.e., the network loses its ability to distinguish between 𝑑 =  1 𝑑 =  5, 6
images generated with increasingly large radial symmetry). This is a sensible interpretation, as 
even human visual perception struggles to distinguish between shapes with high degrees of 2D 
symmetry even without considering the additional pixelation and noise. This plot also 
demonstrates that while the ground truth dimension is discrete, the network prediction is 
continuous, as discretization would introduce a potential systematic bias. The RMSE plot against 
the ground truth parameters in Fig. 3c shows the model is extremely good for small p, where the 
morphology changes the most with small changes in p, and large curvature p comprises most of 
the error, indicating that as p increases, there is a small effect on the generated morphologies. 
Detailed analyses of the chosen evaluation tools are discussed in the ESI†.

Fig. 3 Diagnostic tools for assessing the quality of the neural network training. (a) Learning curve 
plotting the root mean square error (RMSE) for individual nanocrystal images as a function of the 
number of images on which the neural network was trained. (b) Q-Q plot for the number of major 
axes (d). (c) RMSE-parameter plot for the curvature (p).
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After optimizing the network type, number of layers, and network hyper-parameters via 
the evaluation tools, the trained CNN was used to evaluate experimental TEM images pre-
processed as described above. The CNN predicts a point in the parameter space comprised of the 
three ground truth parameters (p, d, Lratio) that best corresponds to the morphology depicted in each 
cropped image. Using these predicted parameters to ‘re-simulate’ the experimental morphologies 
enabled a quantitative comparison to the ground truth via calculating the jaccard similarity 
coefficient, which averaged around 0.8 out of 1.0 (ESI†).41 Re-simulation qualitatively illustrates 
that the predicted parameters are accurate renderings of the experimental nanocrystals (Fig. S33†). 
While individual ground truth simulations may deviate from their experimental counterparts, the 
network still performs well over the distribution of the entire testing set, as the training and 
evaluation of a neural network is a statistical process.

Unsupervised clustering and classification into shape groups. The ground truth predictions for 
each nanocrystal were concatenated to the 30 morphology features that were extracted in the image 
processing. In addition to information about the distribution of the nanocrystal parameters, 
morphology feature data was used to obtain spatial information and pixel scaling data. This aids 
in removing incorrect segmentations (i.e., near the scale bar) and leads to a more accurate statistical 
clustering of the nanocrystals into shape groups based on both size and shape. Some features such 
as FilledImage were used for visualizations of the output. Clustering was unsupervised to further 
remove human input in the pipeline, which was achieved by calculating the silhouette value to 
automatically assess cluster quality of K number of clusters within each cluster algorithm, and the 
cophenet correlation coefficient (ccc) to compare alternative cluster solutions obtained using 
different algorithms. The latter assesses how well the clusterings obtained by each algorithm 
represent the data in a dendogram tree, scoring each between 0 and 1 (where 1 is the highest quality 
solution, see ESI†).48 This approach is simpler than others commonly used in literature but equally 
effective, thus enhancing speed without losing accuracy.30,39

The unsupervised clustering method was optimized by testing three different clustering 
methods (i.e., K-means, Gaussian mixture model (GMM), and hierarchal linkage tree clustering) 
with three versions of the output dataset: (1) solely morphological features (2) solely the three 
shape parameters outputted from the CNN, and (3) both (1) and (2) (ESI†). The results of the 
clustering algorithm optimization are summarized in Tables S8† and S9†. K-means clustering 
outperformed the other two methods with every dataset, and the dataset of combined morphology 
features and CNN output parameters outperformed all other datasets across all clustering methods. 
Additionally, the combination of optimal method (K-means) and optimal dataset (3) resulted in the 
highest overall ccc of 0.9483. Consequently, we used K-means clustering with a dataset consisting 
of both the CNN parameters and common morphology descriptors for the unsupervised clustering 
in the pipeline (all clustering methods took less than a minute, so time was not factored into the 
decision).

In comparison to the optimal dataset, clustering results from the dataset of only the CNN 
parameters consistently ranked a close second, whereas the morphology features dataset (i.e., only 
physical descriptors) consistently performed the worst, by a significant margin (Table S8†). A 
repetition of the optimization with a dataset from lower quality images followed the same patterns 
across all combinations, further corroborating this trend (Table S9†). Adhering to the concept that 
descriptor properties relevant to clustering will improve the predictive power of the model,49 this 
result demonstrates that the CNN parameters are significantly more effective in quantitatively 
defining nanocrystal morphology than common features extracted from image processing. Thus, 
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they offer a low-dimensional (3D parameter space) and more effective continuous option for 
describing morphology in experimental design space mapping, where discrete responses cause 
exponential increases in model complexity. Furthermore, although the addition of the physical 
features is important for drawing conclusions that are chemically meaningful, they only slightly 
increase the ccc value (i.e., the quality of the clustering), suggesting that the CNN parameters are 
essential for results that are acceptable to act as ground truth labels. As a result, the final step of 
the full pipeline was to use this labeled data for automatic training of a classification algorithm, 
creating a built-in practical use of the output data for researchers. We optimized the classification 
model via Bayesian optimization, which indicated the implementation of a multiclass support 
vector machine (SVM) model (ESI†).

Experimental applications

Training classification algorithms. Classification models can be vital tools for elucidating high-
level connections between experimental parameters and product morphologies and morphology-
dependent properties, but their practicality directly correlates to their accuracy.11,34 To illustrate 
the effectiveness of the concepts used in the pipeline to create a ground truth for nanocrystal 
morphology, we investigated different classification models trained using various labeled datasets. 
The first study utilized large (163 TEM images, N = 42,650 nanocrystals) and small (52 TEM 
images, N = 13,115 nanocrystals) datasets, which include the three CNN parameters, the 
unsupervised clustering results, and 10 of the most common morphology features used in similar 
studies (ESI†). The low-dimensional nature of the morphology feature descriptors and the 
unsupervised clustering results aid in bridging the gap between the complex morphology 
information embodied via the high-dimensional CNN parameters and their real-world implications 
about morphology. While the CNN parameters offer a description of morphology that is highly 
accurate, such a bridge is essential to connect the relationship between that accurate description 
and the experimental parameters that produced it for further applications. Both datasets consisted 
of several binary and ternary nanocrystal phases spanning a wide range of morphologies to ensure 
representation of complex populations notably absent in the literature.11,21,29,30,41 The performances 
of the trained models were evaluated by computing the prediction accuracy of the test datasets, or 
the percentage of correctly classified nanocrystals into shape groups (based on a 2D rendering), 
from an 80/20 train/test split with 10-fold cross validation. The accuracy of the model trained using 
the large dataset was 99.5%, misclassifying only 42 out of 8,530 nanocrystals from the test dataset 
(Fig. S14a†). Training a similar model on the smaller dataset (~30% of the large dataset) did not 
significantly affect the model accuracy (99.1%), with only 25 out of the 2,623 nanocrystals in the 
testing set being misclassified (Fig. S14b†). This emphasizes that the pipeline is robust for studies 
where the number of TEM images is more limited.

When the three CNN parameters were removed and the models were trained using only 
clustering results predicted from the 10 morphology features as labels, model accuracy of the large 
dataset was significantly lower at 74.7%, misclassifying 2,155 of the 8,530 nanocrystals in the 
testing set (Fig. S15a†). Model accuracy of the smaller dataset was even worse, with a test accuracy 
of 55.7%, misclassifying 1,162 of the 2,623 nanocrystals in the testing set (Fig. S15c†). This 
demonstrates that the addition of the CNN parameters drastically increases both model training 
efficiency and accuracy, further supporting their importance in accurate morphology classification. 
To ensure that the superiority of the models trained using the CNN parameters was not solely due 
to the addition of three additional variables, three of the 10 morphology features were randomly 
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removed from the large and small datasets, and the classification algorithm was re-trained with 10 
variables: seven morphology features and the three CNN parameters. Model accuracy remained 
significantly higher than without the inclusion of the CNN parameters, with a test accuracy of 
99.2% for the larger dataset and 99.0% for the smaller dataset (Fig. S16†). To further corroborate 
this result, the classification algorithm was retrained using the large dataset, but this time only 
including the CNN parameters and four morphology-feature predictors (Fig. S16b†). The test 
accuracy remained exceptionally high at 98.5%, which was within a standard deviation of the 
others. This illustrates that implementation of a simulated ground truth via deep learning results in 
nearly perfect classification models for classifying nanocrystal morphology, while simultaneously 
highlighting the ineffectiveness of a features-only approach.

Morphological differentiation of CsPbBr3 nanocrystals from different syntheses. With the 
optimal route for morphology classification determined, the full pipeline was implemented to 
compare two different synthetic methods for the preparation of colloidal CsPbBr3 nanocrystals that 
are nominally reported to give cuboidal morphologies; that is, the hot-injection and ligand assisted 
reprecipitation (LARP) methods.50,51 While 0-D CsPbBr3 nanocrystals are commonly described as 
cuboids (and 2D projections of the cuboids in TEM images appear as squircles, quantitatively 
super-ellipses with p-norms roughly between 5 and 20), recent studies on the superball form factor 
of cuboidal edge roundness suggest that a more precise quantification is necessary for accurate 
differentiation between nanocrystal shape, as such differences may have consequences in terms of 
nanocrystal optoelectronic properties and/or reactivity (e.g., ion exchange).52 Here, 7,082 distinct 
nanocrystals synthesized via the hot-injection method (without experimental size selection) were 
detected from 20 inputted TEM micrographs and analyzed. As determined by the unsupervised 
cluster evaluation algorithm, the nanocrystals were subsequently classified into four shape groups: 
small cuboids (group 1), large irregular nanocrystals (group 2), larger cuboids (group 3), and small 
platelets (group 4) (Fig. 4). The general trends in feature values for each group and their location 
within the 3D parameter space are illustrated in Fig. S17†. The average and standard deviation of 
the characteristics of each group were calculated (Tables S10† and S11†) and visualized via 
histograms of the observations for each predictor variable (Fig. 4c-d and Fig. S19†). Each shape 
group in the histograms are plotted in a different color, enabling the calculation of the normal 
distribution that corresponds to each group. Analysis of these output results along with the 
population sizes of each group (Fig. S18†) indicated that ~70% of the ensemble consisted of small 
cuboids (group 1) with an average 2D area of 62 nm2 and a high circularity of 0.92 (i.e., more 
rounded edges), and larger cuboids (group 3) with an average 2D area of 125 nm2 and sharper 
corners (circularity = 0.87). About 20% of the ensemble consisted of the more plate-like 
nanocrystals (group 4) with a significantly higher aspect ratio of 1.8 (as compared to the average 
aspect ratio of the cuboids falling around 1.2). The remaining 10% of the ensemble was comprised 
of much larger nanocrystals with irregular morphologies (group 2). This suggests a relatively 
monodisperse population, which is further supported by the fact that the two cuboidal groups (1 
and 3) that describe most of the population are rather monodisperse themselves. Calculation of the 
size distributions yielded  = 20% and 14% for groups 1 and 3, respectively, compared to  𝜎/𝑑 𝜎/𝑑
= 33% for the entire population (Table 1). Furthermore, using these data to train a classification 
model resulted in an accuracy of 99.6%, only misclassifying six nanocrystals (Fig. S20†), 
suggesting acceptable ground truth simulations (validated in Fig. S33†).
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Fig. 4 (a) Classification of the CsPbBr3 nanocrystals resulting from the hot-injection synthesis 
differentiated by color and overlaid onto original TEM images. Nanocrystals connected to edges 
are removed. (b) Overlaid shape groupings (left) compared to the original bright field TEM image 
(right). (c) A subset of 210 nanocrystals from each of the four shape groups. (d) Three exemplary 
histograms and corresponding normal distributions of feature descriptors (clusters are color 
coded).

The 20 TEM images were comprised of two different synthetic batches of CsPbBr3 
nanocrystals, identically prepared, and thus were analyzed separately to gain insight on synthetic 
reproducibility of the hot-injection method. Both nanocrystal populations (N = 4,064 and 3,018) 
were equally clustered into four shape groups with morphologies qualitatively like those described 
above (Fig. S21-S23† and Fig. S25-S27†, respectively). Statistical analysis of each shape group 
indicated comparable morphology statistics to each other and to the total product (Table 1 and 
Tables S10-S15†). Furthermore, the average sizes (defined as the average major axis length) of 
the total populations were also nearly equivalent (batch 1 = 12.5 nm, batch 2 = 12.1 nm, and total 
= 12.4 nm). Both batches also followed the same trends in terms of the relative population fractions 
of nanocrystals belonging to each group. Most nanocrystals belonged to the monodisperse cuboids 
of groups 1 and 3 (although batch 2 had slightly more of the sharper cornered cuboids), followed 
by the more oblong platelets of group 4. Each batch had a relatively small population of the larger 
irregular shapes of group 2 (Fig. S22† and S26†). These data indicate good morphological 
reproducibility for the hot-injection synthesis of CsPbBr3 nanocrystals and provide a proof of 
concept for the pipeline to quantify synthetic reproducibility in general. 
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Table 1 Batch-to-batch morphological comparison of CsPbBr3 nanocrystals synthesized by the 
hot-injection method.

Batch 1 Batch 2 Total
Shape group 1 2 3 4 1 2 3 4 1 2 3 4

Average sizea (nm) 10.7 26.1 15.6 12.1 8.7 23.8 12.7 12.6 9.7 24.2 13.9 12.8
Size distribution ( )𝜎/𝑑 0.17 0.18 0.14 0.27 0.21 0.18 0.14 0.25 0.20 0.19 0.14 0.27

Total average size (nm) 12.5 3.7 ± 12.1 4.6± 12.4 ±  4.1
Total size distribution ( )𝜎/𝑑 0.30 0.38 0.33
a Average major axis length across all shape groups.

Similarly, 6,427 distinct nanocrystals were detected from 31 TEM micrographs depicting 
populations that were synthesized by the LARP method, to compare the products to those produced 
via hot injection. This dataset was clustered into six shape groups, whose general shapes are 
illustrated in Fig. 5c, although relative sizes between the groups (defined in Table 1) are not to 
scale. Shape groups 1-6 had average sizes of 8.9, 32.2, 15.4, 6.7, 13.1, and 21.9 nm, respectively. 
Similarly, each had varied size distributions ( ), or polydispersities, of 24%, 15%, 15%, 25%, 𝜎/𝑑
28% and 30%, respectively. More detailed characteristics of each group were calculated, 
visualized, and analyzed in an identical manner to that of the hot-injection synthesis (Fig. S29-
S31† and Tables S16† and S17†). Analysis of the results indicated that each group had 
approximately equal representation in the ensemble (~20%), apart from the very large irregular 
quasi-cuboids of group 2 that made up < 5% of the ensemble (Fig. S30†). This, along with the 
wide range of average sizes across the groups, suggests a more polydisperse product, which aligns 
with the polydispersity calculated for the total dataset of 50% (Table 2). The LARP dataset was 
used to train a classification algorithm, resulting in a test accuracy of 99.3% (Fig. S32†), which 
corroborated the simulated ground truth for further applications (Fig. S33†).
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Fig. 5 (a) Classification of the CsPbBr3 nanocrystals resulting from the LARP synthesis 
differentiated by color and overlaid onto original bright field TEM images. Nanocrystals connected 
to edges have been removed. (b) Overlaid shape groupings (left) compared to the original TEM 
image (right). (c) A subset of 210 nanocrystals from each of the six shape groups (d) Three ≤  
exemplary histograms and corresponding normal distributions of feature descriptors (clusters are 
color coded).

Comparing the two synthetic methods, LARP yielded significant CsPbBr3 morphological 
differences from hot injection. The nanocrystals produced via hot injection were more well-
defined, exemplified both quantitatively by a higher classification accuracy and qualitatively by 
the nanocrystal segmentations in Fig. 4c and 5c. The average morphologies of each group within 
the parameter space defined by the CNN parameters in Fig. S33† show that the hot-injection 
synthesis generally produced more uniform cube-like nanocrystals across the ensemble, whereas 
the nanocrystal morphologies resulting from the LARP synthesis are more irregular and varied. 
Additionally, the hot-injection synthesis gave averages sizes ranging from 9.7-24.2 nm across the 
groups (Fig. S33a†), nearly half of the 6.7-32.2 nm size range seen for the LARP synthesis (Fig. 
S33b†), suggesting greater monodispersity. This is affirmed by the nanocrystals resulting from the 
hot-injection synthesis being classified into fewer shape groups (4 vs. 6), as fewer well-defined 
normal distributions in the predictor variable histograms indicate more morphologically similar 
populations (i.e., fewer statistically different morphologies) (Fig. S19† and S31† and Tables S10†, 
S11†, S16†, and S17†). The previously mentioned polydispersities calculated for the entire 
ensembles only strengthen this claim (33% for hot injection vs. 50% for LARP). Qualitatively this 
makes sense, as the CsPbBr3 nanocrystals resulting from the hot-injection syntheses generally self-
assemble upon drop casting onto the TEM grid.53 Furthermore, a deeper analysis of the groups that 
characterize the upper bounds of the resultant morphologies ( i.e., the outlier groups – group 2 for 
both syntheses) revealed that group 2 from the LARP synthesis had an average 2D area that was 
well over two standard deviations greater than that of the hot-injection synthesis (573.7 nm2 vs. 
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276.4 nm2, respectively), indicating a drastic difference between the morphological parameter 
spaces of the two products (Table S10†, S11†, S16†, and S17†). Although it is generally accepted 
in the literature that the hot-injection method offers a superior morphological product due to more 
controlled instantaneous nucleation,53 the pipeline output provides the statistically significant data 
to support that assertion, and quantifies the morphological differences. Using the CNN to define 
shape across an entire nanocrystal population therefore helps establish more accurate quantifiable 
metrics for typically qualitative conclusions about the general trends in nanocrystal syntheses.

Notably, the histograms of all three CNN predictor variables for nanocrystals from both 
synthetic methods consist of nearly perfectly overlapping normal distributions for each group, 
whereas the feature descriptors show histograms with much more statistically different 
distributions for each cluster (Fig. S19† and S31†). This is counterintuitive for clustering data, as 
separated normal distributions for a specific feature generally indicate a unique cluster, but the 
data from a single feature is just one dimension of a complex, high-dimensional definition of 
morphology. If one were to combine the data from several feature histograms into a single 
histogram, the separated distributions will start to fade if you consider, for example, that a 
morphology cluster with a high value of circularity would have a low value of a feature like 
eccentricity. After enough features are combined, the separation between clusters would not exist 
at all on such a histogram plot. Such is the nature of the CNN parameters. The overlapping 
distributions on a histogram support the concept of the CNN parameter combination as a high-
dimensional quantitative definition of shape for each nanocrystal, which encompasses morphology 
information equivalent to an entire array of morphology features. While they are poor tools for 
extracting specific characteristics, they hold a complete picture of high-dimensional data in a low-
dimensional form (much like what multidimensional scaling or principal component analysis do 
for high-dimensional data visualization). This reaffirms their ability to be used as ground truth 
labels in subsequent training. 

The average nanocrystal sizes for both syntheses were also measured by hand by two 
experienced researchers for comparison. Due to the average size and size distributions of each 
nanocrystal ensemble being automatically output by the pipeline, thousands of nanocrystals are 
accurately measured in just minutes. In contrast, the common practice of manually measuring the 
major axis of N  300 nanocrystals per sample not only takes considerably longer but is subject to 
inaccurate population sampling due to human bias and error.12,13 For the hot-injection method, the 
average nanocrystal size measurements from the researchers were 9.7  2.1 nm with a size ±
distribution of 22% (N = 311) and 12.6  4.4 nm with a size distribution of 35% (N = 310), ±
respectively. For the LARP method, the average size measurements were 10.6  2.2 nm with a ±
size distribution of 21% (N = 300) and 11.9  4.4 nm with a size distribution of 37% (N = 310). ±
The manually measured average sizes were comparable to those outputted by the pipeline, as all 
were within a single standard deviation of each other (Table 2). However, the manual 
measurements varied significantly when it came to the size distributions. This is due in part to the 
inconsistency of manual measuring, which is exacerbated by the small population statistics (~300 
each). This problem is eliminated when using the pipeline. Our pipeline completed both analyses 
within 10 min, with analysis of the nanocrystals from the LARP method (N = 6,427 nanocrystals) 
only taking about 3 min. The manual measurements took an average of 29 min to analyze the 
images of the hot-injection products and 33 min to analyze the images of the LARP products. The 
manual analyses yielded an average analysis throughput of ca. 10 nanocrystals/min, compared to 
the pipeline throughput of 6,270 nanocrystals/min. This signifies over a 600-fold increase in 
measurement efficiency using the pipeline.
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The two datasets were then inputted into the previously published Autodetect-mNP 
pipeline to directly compare the accuracy and sensitivity of the two pipelines.30 In comparison to 
the thousands of nanocrystals and several shape groups detected in our pipeline, only a few 
hundred nanocrystals from each dataset made it through the selection process in the Autodetect-
mNP pipeline for analysis. The nanocrystals from both synthesis methods were also only grouped 
into two shape groups: one group that resembled cuboids and one group that resembled platelets, 
with nanocrystal edges that were rather jagged (Table 2 and Fig. S34† and S35†). In addition to 
losing analytical details through an oversimplification of morphology, quantitative information 
about each shape group was not accessible, nor realizable in 3D space. This demonstrates that not 
only is our pipeline capable of morphological differentiation of the same CsPbBr3 nanocrystals 
prepared using two different synthesis methods, but it is also more accurate, precise, and efficient 
than current shape classification algorithms in the literature. While training a neural network is 
computationally-taxing, the evaluation of a trained neural network is efficient, so we expect this 
pipeline to be faster than other methods.

Table 2 Efficiency comparison of analysis methods.
Automated Pipelines By-Hand

Ref.28 This Work Researcher 1 Researcher 2

Synthesis method
Hot 

injection LARP
Hot 

injection LARP
Hot 

injection LARP
Hot 

injection LARP
Shape groups 2 2 4 6 — — — —

Average sizea (nm) — — 12.4 12.5 12.6 11.9 9.7 10.6 
Size distribution ( )𝜎/𝑑 — — 0.33 0.50 0.35 0.37 0.22 0.21
Nanocrystal count (N) 331 489 7,082 6,427 310 310 311 300

Run timeb (min:sec) 16:38 7:37 8:39 5:05 35:14 42:18 23:15 24:39
a Average major axis length across all shape groups.
b All code is run on a 32 GB 6-core Intel® i7 @ 2.6 GHz. All code (including ref.28) was run in 
its native OS environment.

Applicability to morphologically diverse ensembles. Fifty-two TEM images of colloidal nickel 
sulfide nanocrystals encompassing the complex phase space of that binary system (e.g., Ni3S4, 
NiS, Ni9S8, and Ni3S2) were simultaneously inputted into the pipeline because of the 
morphological diversity amongst the various products (N = 13,132 nanocrystals). This allowed the 
pipeline to be tested across both phase and morphology for a large number of nanocrystals. The 
output yielded 10 statistically significant shape groups with ccc = 0.9369 (Fig. 6 and Fig. S36-
S38†). Notably, each distinct phase of nickel sulfide, as assessed by powder X-ray diffraction, 
consisted of a unique combination of shape groups, illustrating the ability of the pipeline to 
differentiate between crystal phases with distinct nanocrystal morphologies. Phase-pure Ni3S2 
nanocrystals were assigned to shape groups 7-10 with a primary contribution from groups 9 and 
10 (Fig. 6a), demonstrating accurate identification of irregular, concave shapes, which as 
previously mentioned, has been an ongoing problem in shape classification in pipelines that can 
handle nanocrystal overlap.19,29,30,35,45 Ni3S4 nanocrystals were assigned to shape groups 3-8 (Fig. 
6b) and nicely display the classification of several shape groups in a single phase-pure sample. 
Ensembles of colloidal Ni9S8 nanocrystals were assigned to shape groups 1-8 (Fig. 6c), 
demonstrating an assessment of temporal reaction trajectories from quasi-spherical nanocrystals 
at early reaction times, to elongated rod-like structures at longer reaction times. NiS nanocrystals 
were assigned to shape groups 1-7 (Fig. 6d), showing successful classification of nanocrystals 
imaged at different magnifications. A classification algorithm trained with the data had an 
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accuracy of 99.5% (Fig. S14†). Additionally, the simultaneous classification of a large number of 
shape groups has not yet been demonstrated in the literature, and is particularly more difficult 
when done in an unsupervised nature due to the high level of precision in nanocrystal detection 
and analysis that is necessary for unassisted classification.11,16,30

Fig. 6 Classification of a variety of nickel sulfide nanocrystals, illustrating the pipeline’s ability to 
detect and quantify more morphologically diverse samples. Nanocrystals connected to edges have 
been removed. (a) Irregular, concave morphologies of Ni3S2. (b) Morphological diversity observed 
in phase pure Ni3S4. (c) Temporal reaction trajectory of morphology changes in Ni9S8. (d) 
Magnification differences in TEM images of NiS. (1-10) Colored segregation of 210 ≤  
representative nickel sulfide nanocrystals into the 10 distinct shape groups.

Conclusions

We successfully created an unbiased ground truth for nanocrystal morphology analysis by 
stochastically simulating individual 2D nanocrystal TEM images from a 3D parameter space to 
train a convolutional neural network. We then used improved computer vision techniques and the 
trained network to predict the morphological parameters for each experimental image. This labeled 
data offers a significant improvement in accuracy for both unsupervised clustering and the training 
of a morphology classification algorithm. We demonstrated this by coding a fully automated 
pipeline to identify, label, and classify nanocrystals from experimental TEM images. The neural 
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network portion of the pipeline outputs each nanocrystal image labeled with a quantitative 
morphology definition comprised of three parameters from the CNN and the values of 30 
morphology features. Once shape groups have been assigned via unsupervised clustering and 
appended to the dataset, the pipeline outputs the average value and standard deviation of all 30 
features for each distinct group, histograms and their corresponding normal distributions for each 
predictor variable across each group, a linkage tree dendrogram of the population, a parallel 
coordinate plot, a Pareto chart of the principal components, a 3D scatter plot of the parameter space 
with groups indicated by color, visualizations of the groupings overlaid onto the original TEM 
images, exemplary nanocrystal morphologies of each group in a montage, a montage of the total 
classified nanocrystals to show relative population sizes of each group, the average size and 
standard deviation of the input nanocrystal ensemble as a whole, and the confusion matrix and 
classification accuracy from the classification algorithm training.

This simple, time-efficient pipeline will facilitate more accurate mapping between 
nanocrystal morphology and applications in synthetic optimizations, mechanistic studies involving 
size and shape, and morphology-function relationships. We demonstrate this by successfully 
quantifying morphological reproducibility, differentiating morphological characteristics between 
CsPbBr3 nanocrystals prepared using two different synthetic methods, and quantifying several 
different morphologically diverse crystal phases of binary nickel sulfide nanocrystals. Not only is 
the pipeline sensitive enough to identify nuances in nanocrystal populations that are limited when 
using manual assessments, but these studies explicitly demonstrate improved generalizability over 
current morphology classification algorithms found in the literature. This offers a route to 
accurately automate and normalize TEM analysis for a wide range of nanocrystal sizes and shapes 
across images of differing quality, contrast, magnification, and resolution, while concurrently 
demonstrating more than a 600-fold improvement in efficiency over the currently accepted by-
hand measurement. 

Looking forward, there is room for improvement via 3D reconstruction using tilt-series of 
TEM images to validate the method. However, the generalizability and high-throughput nature of 
the pipeline could enable widespread implementation of the output shape parameters as 
quantitative definitions of individual 2D morphologies, affording standardization of nanocrystal 
morphology reporting across the literature. This would facilitate cohesion of experimental findings 
and consequentially aid in the implementation of data-driven learning (via the compilation of large 
datasets). Additionally, the continuous, yet low dimensional nature of nanocrystal morphologies 
described as CNN triplets creates a theoretically infinite, yet mappable morphological parameter 
space in 3D (i.e., visualizable), as compared to the high dimensionality needed to utilize 
continuous physical features. Targeted points can therefore be readily determined and utilized for 
optimizing syntheses based on morphology using simple tools like regression, which is something 
that the discrete nature of qualitative labels make extremely complex and impractical. Such 
applications pave a pathway towards further investigations of morphology-dependent process-
structure-property relationships using this pipeline, which we are currently working on with 
different materials.
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