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Abstract

We investigate theoretically the band transport of electrons and holes in a “quantum-dot-in-

perovskite” solid, a periodic array of semiconductor nanocrystal quantum dots embedded in a

matrix of lead halide perovskite. For concreteness we focus on PbS quantum dots passivated by

inorganic halogen ligands and embedded in a matrix of CsPbI3. We find that the halogen ligands

play a decisive role in determining the band offset between the dot and matrix and may therefore

provide a straightforward way to control transport experimentally. The model and analysis devel-

oped here may readily be generalized to analyze band transport in a broader class of dot-in-solid

materials.

The technology for creating nanocrystals by chemical synthesis has improved dramatically

over the last 40 years [1]. One feature has nevertheless remained from the earliest days: most

nanocrystals are still in some sense embedded in another material—glasses [2] or colloidal

solutions [3] or organic ligands [4], for example. The electronic band gap of most matrix

materials is generally large and so the embedding does not affect the optical properties of

the nanocrystals. But for electronic and optoelectronic device applications, the large band

gaps can lead to large band offsets which reduce the tunneling rate and mobility of the

carriers and consequently degrade the performance of the device. Moreover, structural and

chemical disorder in the matrix may increase the scattering of carriers. Some of these issues

have recently been resolved and prototype electronic and optoelectronic devices based on

nanocrystal quantum dots have been created—most notably light-emitting diodes [5] and

electrically pumped displays [6] and lasers [7].

Nothwithstanding these successes, the broader goal of controlling or even eliminating the

deleterious effects of large band offsets and disorder from the matrix remains unrealized.

One promising approach is to embed the quantum dots in a crystalline matrix. This idea

can be traced back to very early work by Itoh on nanocrystals of CuCl grown in a matrix of

NaCl [8]. Of course, this particular matrix, although crystalline, has a very large band gap

and is therefore still unsuitable for optoelectronic applications.

Another class of crystalline materials—the halide perovskites—are much more attractive

as matrix materials for quantum dot electronics because their band gaps are only of order

2–3 eV and can be readily tuned using standard techniques. They also offer the possibility of
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embedding quantum dots such as PbS and PbSe epitaxially due to a close lattice match with

some of the lead halide perovskites. Sargent et al. have demonstrated such a quantum-dot-in-

perovskite heterocrystal by embedding PbS quantum dots in a matrix of methylammonium

lead iodide perovskite, MAPbI3 [9]. They showed that this complex material maintains

nearly crystalline order over many dots and attributed to this atomic-scale coherence the

excellent optoelectronic properties they observed. Subsequent experimental and theoretical

investigation explored how the dot size, surface chemistry, and growth methods affect the

resulting optoelectronic properties of this material [10]. Reference [11] discusses recent

experimental developments and future prospects for dot-in-perovskites.

Here we develop and analyze a theoretical model of electronic transport in epitaxially

coherent quantum-dot-in-perovskite heterocrystals. The model is a periodic generalization

of the finite square well model. We determined the parameters of the model using density-

functional theory, focusing for concreteness on the material pioneered by Sargent et al. of

PbS quantum dots but using the slightly simpler inorganic perovskite cesium lead iodide,

CsPbI3, which is electronically analogous to MAPbI3. There are two major reasons for

choosing this specific pair of materials. First, among the lead halide perovskites the iodide

compound has the smallest band gap and therefore the smallest band offset for both types

of carriers, a clear benefit for transport via both channels. Second, the crystal structures of

MAPbI3 and PbS are closely related and reasonably well lattice-matched, an advantage for

creating epitaxially aligned and crystallographically coherent material. In principle, even

better lattice matching may be obtainable from the mixed-halide perovskite MAPb(I,Br)3,

although a wide miscibility gap may make this goal challenging to reach in practice [12].

We assumed that electron transport is controlled by the overlap of their wavefunctions.

There is abundant evidence for band-like conduction in many nanocrystal solids [13–15] al-

though this mechanism is certainly not universal: data from other nanocrystal solids instead

exhibit hopping transport [16–19]. However, the overlap of quantum-confined wavefunctions

controls transport in both of these limits. We derived an analytic expression for the band

width arising from this overlap. This expression reveals how transport depends on the phys-

ical dimensions and electronic properties of the dot-in-matrix and reveals the decisive role

played by ligands adsorbed on the quantum dots. Our findings should therefore be relevant

to a broad range of dot-in-matrix materials.

For optoelectronic technologies based on transport of electrons and holes, the type of
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alignment formed by the band gaps of the dot and matrix is a critical consideration. For

example, Type I alignment (straddling gaps) would be beneficial for light-emitting diodes,

while Type II alignment (staggered gaps) could be advantageous for photovoltaic applica-

tions because it results in the rapid separation of carriers. For the electrically pumped

devices mentioned earlier—light-emitting diodes [5], displays [6] and lasers [7]—the best

performance was achieved when the mobilities of electrons and holes were comparable. The

reason for this is simple: the average number of electrons and holes in each dot should be

approximately equal. If this neutrality condition is not satisfied, the extra electron or hole

can lead to efficient non-radiative Auger recombination that reduces the emission of pho-

tons [20]. In this work we therefore assume that Type I alignment with equal valence and

conduction band offsets is optimal, but note that this assumption ultimately rests on the

particular application one has in mind.

It is well known that the band alignment of colloidal quantum dots depends sensitively

on their surface chemistry [21, 22]. Organic molecular ligands adsorbed on the surface,

if they have an electric dipole moment, can strongly affect the absolute energy levels of

the dot and thus the band alignment relative to the matrix [23]. Organic ligands are not

generally employed for dot-in-matrix materials but smaller inorganic ligands are [11]. In

particular, halide ions and small halide molecules are frequently used to passivate PbS and

PbSe quantun dots because they improve their optical properties [24–26]. Here we show that

even a fractional layer of simple atomic ligands—that is, individual atoms—adsorbed on the

surface can induce a large dipole moment by transferring charge and thus shift the energy

levels of the dot by 1 eV or more. We investigate here the example of halogen atoms and

demonstrate that by varying their coverage, one can control the band alignment of the dot

and matrix and even switch the band alignment from Type I to II, if desired. The ability to

control band alignment—and thereby the band transport of electrons and holes—of dot-in-

perovskite materials using simple ligand chemistry may help advance these materials further

toward their integration into optoelectronic technologies.

I. TECHNICAL APPROACH

We begin with a brief overview of our technical approach. Electron transport in dot-in-

perovskite solids has not been widely studied and for this reason the dominant mechanism—
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FIG. 1. (a) Three-dimensional cubic lattice of faceted nanocrystal quantum dots embedded in

a crystalline matrix of inorganic perovskite. The solid black circles on the nanocrystal surface

represent a partial monolayer of metal-atom ligands, for example the halogen atoms discussed in

the text. These can be used to tune the band offset between the quantum dots and the perovskite

matrix. (b) One-dimensional Kronig-Penney model representing the periodic potential seen by

quantum-confined electrons and holes of the dots. The band offsets ∆Ev and ∆Ec depend on the

intrinsic offset between the bare dots and the perovskite and are further modified by the electrical

dipole created by the metallic ligand layer, as discussed in the text. (c) Lowest two subbands of the

Kronig-Penney model. The band width W of the first subband is the central focus of this work.
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whether band transport or hopping or something else—is not yet known. Regardless of the

mechanism, one of the most critical properties for good transport is the overlap of the

quantum-confined wavefunctions of the quantum dots. In previous work we studied this

overlap in nanocrystal solids consisting of quantum dots passivated by organic ligands with

no embedding matrix [27].

For the dot-in-perovskite sketched in Fig. 1(a) the organic ligands are absent and there is

instead a heterointerface between two crystalline materials that includes a layer of halogen

ligands (the solid black circles) created intentionally or as part of the quantum dot synthesis

[24–26]. We show in Section II that this layer plays a very important and indeed central

role in the electronic transport properties. For experimentalists, the choice of the specific

ligand and the control of its surface coverage may afford simple yet powerful strategies for

controlling transport in dot-in-perovskite materials. There are currently no experimental

measurements of the halogen coverage in dot-in-perovskite materials, due to the compli-

cations arising from the embedding. However, data for colloidal PbS quantum dots from

energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy show coverages

consistent with a 1:1 ratio of halogen to surface lead atoms, equivalent to 1 ML coverage

[28]. It is therefore plausible that halogen-adsorbed PbS quantum dots could exhibit similar

coverages when embedded in perovskite.

Our technical approach is general and can be applied to a wide variety of semiconductor

quantum dots embedded in a crystalline matrix. The main idea is illustrated in Fig. 1(b)

which represents the three-dimensional solid using a one-dimensional periodic profile for

the valence and conduction band edges. This profile defines the well-known Kronig-Penney

model [29] for hole and electron states of the dot-in-matrix, respectively.

To apply the Kronig-Penney model to a real material requires accurate values for several

important quantities. Some of these are available from experiment, for example the band

gaps Eg of the dot and perovskite materials in their bulk crystalline form. Other quantities

are not at present available from experiment, for example the valence and conduction band

offset between the dot and perovskite bulk materials. We used density-functional theory

(DFT) to estimate these as described below.

After determining the numerical values defining the potential profile, we solved the

Kronig-Penney model numerically to obtain the energy dispersion E(k) of the electron and

hole subbands of the dot-in-perovsite superlattice. A representative example is shown in
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Fig. 1(c). For the purpose of characterizing transport we are interested in the band width W

of the first, lowest-lying subband, because it quantifies the overlap of the quantum-confined

wavefunctions of the dots as they propagate through the surrounding matrix.

In this work we present two types of results for the band width W . In Section II we show

numerical results for representative examples of dot size and perovksite width and potential

barrier (i.e. the valence or conduction offset). We also derive an analytical expression for

W as a function of all the electronic and geometrical parameters defining the material. Our

analysis of this expression leads in Section III to several general conclusions about carrier

transport in dot-in-matrix materials which may be broadly applied to a wide variety of

different material systems.

A. Kronig-Penney model of a periodic square well

The Kronig-Penney model was introduced in 1930 to study the behavior of electrons in

the periodic potential arising from the atoms comprising a crystal [29]. The crystal potential

was approximated either as a one-dimensional array of square wells representing the atoms

or even more simply as delta functions. For modeling the dot-in-perovskite superlattice the

use of a square-well potential is especially appropriate because the geometrical and electronic

properties of the real material are obviously and directly connected to the shape and height

of the square-well potential profile: the diameter a of the quantum dot is the width of the

square well and the thickness b of the perovskite matrix is the the width of the barrier region.

Likewise the band offsets ∆Ec and ∆Ev are the height of the potential barrier for electrons

and holes, respectively.

We will return below to the question of how to determine the potential barriers in the

model; here we assume they are given and turn now to obtaining the wave functions and

energy band structure of the model. We follow the approach described in Ref. [30] and adopt

the same notation. The full solution is in the ESI† (Section S1) and is briefly summarized

here.

The wavefunctions in the square well are oscillatory with wavenumber K, while in

the barrier they are exponential with wavenumber κ. By applying the usual boundary

conditions—that the wavefunction and its derivative (more generally the probability cur-

rent) are continuous—one obtains an implicit equation for the energy E as a function of the
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crystal momentum k,

cos k(a+ b) = A(E), (1)

where A(E) is a complicated oscillatory function of all the parameters in the model given

by

cos aK cosh bκ− sin aK sinh bκ

(
KmB

2κmW

− κmW

2KmB

)
. (2)

The energy dependence of A(E) arises from the dispersion relations relating K and κ

to the energy E. The simplest choice for these is parabolic dispersion. In Section III and

the ESI† (Section S2) we show that the more accurate dispersion afforded by the two-band

Kane model does not significantly affect the band width W which is our primary quantity

of interest. The effective masses mW and mB in the well and barrier, respectively, are

constants in the case of parabolic dispersion but depend on energy within the Kane model.

In Section S3 of the ESI† we also solve the Kronig-Penney model beyond the effective-mass

approximation using the Kane model and find that Eq. 2 indeed still applies.

In practice the Kronig-Penney band structure E(k) is obtained implicitly by choosing a

value of k and then numerically solving Eq. 1 for E. Multiple solutions exist for each value

of k and correspond to different subbands. The extrema of these subbands occur at k = 0

and k = π/(a + b) and thus the width W of the lowest subband is given by the difference

∆E between the first roots satisfying A(E) = ±1.

B. Dot-in-perovskite structural model

In order to obtain results using the Kronig-Penney model for real materials—here PbS

dots and CsPbI3 perovskite—one must determine the barrier heights ∆Ev and ∆Ec as

accurately as possible. In this work we used DFT to calculate band offsets for PbS/CsPbI3

isolated interfaces because the methodology is very well established and gives accurate results

for many semiconductors including perovskites [31, 32]. In this section we first address an

important preliminary question: whether band offsets really can be used for dot-in-perovskite

materials, whose geometry is considerably more complicated than an isolated interface.

There are two main complications. First, and most obviously, the surfaces of quantum

dots do not in general have a single crystallographic orientation—if they are faceted at all.

Using the band offset of a single interface to represent the entire dot-perovskite interface

might seem unjustified. However, we can exploit the fact that PbS quantum dots can be
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FIG. 2. (a) Fully relaxed dot-in-perovskite consisting of PbS nanocrystal quantum dots embedded

in a matrix of CsPbI3 perovskite. The nanocrystals have diameter a = 2.4 nm and are almost

cubical, with (100) sides and small (110) facets along the edges. The perovskite is assumed to be

quasicubic and the terminating surface at the interface is PbI2. The material is periodic with dot-

to-dot spacing D = 5.1 nm. The equilibrium geometry shown here was determined from full DFT

relaxation. Thin fiducial lines centered on Cs atoms show that the lattice planes in the nanocrystal

are approximately 6% closer than in the perovskite, suggesting that each material maintains its

own lattice constant despite the interface strain this creates. (b) Histogram of atomic spacings

in the nanocrystal (red) and the perovskite (blue). On average, each material maintains its own

bulk lattice constant (dotted lines) and therefore the material is best described as unstrained and

relaxed.
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grown in variety of well-defined shapes, including cubes almost or completely terminated

by (100) facets [33]. The band offset between PbS(100) and CsPbI3(100) is therefore likely

to reflect with reasonable accuracy the barrier height of the dot-in-matrix. Of course, the

true barrier height arises from a finite dot whose edges and corners are not represented by

a calculation for an isolated interface. And so it is important to somehow confirm that the

true barrier height is close to that of the isolated interface.

The second complication is the strain state of the dot and perovskite. The bulk lattice

constants of PbS and CsPbI3 differ by 6%. This difference is small enough to make it likely

that the PbS/CsPbI3 interface is atomically coherent with one-to-one atomic registry. For

an isolated interface between two infinite materials such registry would necessitate that one

or both materials are strained. The exact outcome depends on the elastic constants of the

materials. The resulting strain state of the two materials can in general significantly affect

the band offset between them [34]. For the dot-in-perovskite the situation is somewhat

different: the interface has a finite area and therefore the strain state depends also on

this area, the strength of the bonding across the interface, and the volume of the dot. To

investigate this complicated situation it is important to understand the true strain state of

the dot-in-perovskite material.

We addressed both of these complications by performing a fully relaxed DFT calculation

of a realistic dot-in-perovskite crystal, consisting of nearly cubic PbS dots with diameter

2.4 nm and dot-to-dot spacing 5.1 nm. By relaxing the positions of all atoms we obtained

detailed information about the strain state of the material at equilibrium. And by analyzing

the electrostatic potential V (⃗r) of the material we obtained the true barrier height and can

directly compare it to the band offset of an isolated interfaces. The detailed results are

discussed below in Section II.

C. Density-functional-theory calculations

We used density-functional theory (DFT) with projector-augmented-wave (PAW) po-

tentials, as implemented in VASP [35, 36], to determine the equilibrium structure of the

dot-in-perovskite shown in Fig. 2(a) and to estimate band offsets between PbS(100) and

CsPbI3(100). The structural relaxations and potential lineup calculations were performed

within the generalized-gradient approximation of Perdew, Burke, and Ernzerhof (PBE) [37]
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while the bulk band structure calculations used the more accurate hybrid functional of Heyd,

Scuseria, and Ernzerhof (HSE) [38]. A supercell for the dot-in-perovskite was defined using

the DFT lattice constant for CsPbI3 of 6.38 Å with all atoms initially at ideal lattice sites.

The supercell contained a total of 2768 atoms. The positions of all atoms were relaxed until

the largest force on any atom was less than 0.07 eV/Å. The relaxed structure is shown in

Fig. 2(a). The stress tensor of the supercell was then evaluated using a much larger energy

cutoff. The resulting residual pressure was allowed us to estimate the true lattice constant

of the relaxed supercell to be only 0.03 Å smaller. This change is negligible compared to

the results reported below for the strain state of the dot-in-perovskite and thus the relaxed

material may be considered as very close to equilibrium.

The electrostatic potential V (⃗r) of the relaxed dot-in-perovskite can be used to obtain

the barrier heights for the Kronig-Penney model using the same approach as standard cal-

culations of band offsets (for which a brief summary follows below). The only significant

difference is the calculation of the potential alignment between the two materials. For pla-

nar interfaces one averages out the atomic-scale variations in V (⃗r) by performing a sliding-

window average along the direction normal to the interface. For the dot-in-perovskite we

instead averaged V (⃗r) over individual unit cells containing one formula unit of PbS or CsPbI3

and then performed the potential alignment using the difference of the averaged values near

the center of the dot and in the most bulklike part of the perovskite matrix.

We calculated a series of band offsets to investigate how the PbS/CsPbI3 band offset

varies when the dot is partially covered by metallic ligand atoms M as shown in Fig. 1(a).

We treated this band offset as having two components: 1) the potential alignment between

the bare PbS dot in Fig. 2(a) and the CsPbI3 matrix, and 2) the electrostatic shift of

PbS(100)-M relative to the bare surface. This approach is in the spirit of “natural” band

offsets which have been described in detail elsewhere [31, 39]. We used the PbS(100) surface

because that is the dominant facet in our dot-in-perovskite supercell. Four halogen species

(F, Cl, Br, I) at varying coverages x in the range 1/8 monolayer (ML) to 1 ML were initially

placed atop surface Pb atoms and then relaxed along with the outermost two atomic layers

of PbS. An important check of the accuracy of this methodology is to compare the exact

offset obtained from the dot-in-perovskite supercell to the natural offset obtained in the case

x = 0. The agreement is very good as shown in Fig. 3(a) and discussed below.
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II. RESULTS

A. Strain state of dot-in-perovskite

For a periodic interface between two nearly lattice-matched materials, the strain state of

each material is given by its strain tensor. For the dot-in-perovskite this compact description

is not possible and so we turn instead to a statistical description of the strain.

We focus on the nearest-neighbor interatomic distances in the relaxed supercell of

Fig. 2(a). Inside the dot these distances correspond to Pb-S atomic spacings whereas

inside the perovksite matrix they correspond to Pb-I spacings. A histogram of all the

relaxed equilibrium spacings reveals two distinct distributions, both with approximately

gaussian form as shown in Fig. 2(b). The Pb-S atomic spacings are centered around a

value very close to the theoretical DFT value for bulk PbS (dotted line). Likewise, the

Pb-I spacings are sharply peaked around a value very close to the theoretical value for bulk

CsPbI3 in its cubic phase.

These distributions establish the important result that the PbS dot and CsPbI3 matrix

each maintains, on the average, its own bulk lattice constant. Of course, this situation

can only arise if the material creates a varying localized strain field at the dot-perovskite

interface. This strain field is indeed evident in the perovskite octahedra at the interfaces in

Fig. 2(a) which become increasingly distorted away from the center of the facet. The strain

field is also visible from the thin fiducial lines marking the positions of the most bulk-like

Cs atoms and revealing a strain field within the Pb-I interfacial bonds at each facet that

increases toward the edges of the facet.

In summary, both constituents of the dot-in-perovskite investigated here can be described

to a reasonable first approximation as unstrained—with each material at its bulk lattice

constant on the average. In light of this we used the DFT bulk lattice constants of PbS and

CsPbI3 for the natural band offset calculations described next.

B. Band offset of bare dot-in-perovskite

As discussed above, we used the band offset between PbS(100)-M and CsPbI3(100) to

define the barrier heights ∆Ev and ∆Ec of the Kronig-Penney model and we treated the

band offset as having two components. In this section we evaluate the accuracy of the first

12

Page 12 of 24Nanoscale



FIG. 3. Theoretical DFT band offsets for the PbS/CsPbI3 dot-in-perovskite. (a) The “exact

offset” was determined directly from the calculated alignment of the DFT electrostatic potential

for the dot-in-perovskite material shown in Fig. 2(a). The “natural offset” was determined by

separately aligning the average electrostatic potentials in thick slabs of PbS(100) and CsPbI3(100)

with respect to a common vacuum energy. (b) Theoretical DFT electrostatic shift ∆V of the PbS

band edges caused by adsorption of various halogen atom ligands on the PbS(100) surface. At low

coverages x all four halogens lead to similar downward shifts. The curves are a two-parameter fit to

the DFT values (solid symbols) of the simple electrostatic model proposed in the ESI† (Section S5).

The band diagram to the right illustrates the fact that 0.2 ML shifts the bands down by about 1

eV, changing the staggered Type II alignment in panel (a) to Type I alignment with approximately

equal valence and conduction band offsets.
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component by comparing the band offset obtained from the exact dot-in-perovskite potential

to the natural band offset of bare PbS(100) and CsPbI3(100).

There are many reasons why natural band offsets might not accurately represent the

exact band offset of the dot-in-perovskite. The former relies on two separate calculations

for the free (100) surfaces, while the latter includes a complicated interface with locally

strained bonds as well as edges and corners—all of which are neglected in the natural offset

approach. To investigate the accuracy of this approach we compare in Fig. 3(a) the exact

and natural band offsets in the absence of ligands. The agreement is remarkably good—the

exact and natural valence offsets are 1.7 and 1.4 eV, respectively. (For these results and all

others reported below, we used DFT to calculate ∆Ev and then added the bulk band gap

to obtain ∆Ec.)

This small difference between the exact and natural result arises because the latter omits

a subtle effect that occurs at the interface. Consider the layer of Pb and S atoms at the

interface with CsPbI3. The Pb atoms are directly across from I atoms and are attracted to

them electrostatically and therefore shift toward them (by 0.26 Å). The S atoms are of two

types: 3/4 of them are directly across from Pb atoms and similarly shift toward them (by

0.21 Å). But 1/4 of the S atoms are across from Cs atoms that are one lattice plane more

distant. These S atoms experience very little attraction and so do not shift. In summary,

all of the Pb atoms shift but only 3/4 of S atoms shift and so the surface develops a small

dipole moment. The potential discontinuity from this dipole is about 0.4 eV. This subtle

effect is included in the exact offset but not in the natural offset.

C. Shift of the band offset by halogen ligands

Armed with the knowledge that natural band offsets accurately reproduce the exact

offsets, we now turn to the dramatic effects of the halogen ligands on the band offset of

PbS/CsPbI3. We restricted our investigation to partial monolayers of the halogens F, Cl,

Br, and I with coverage x between 0 and 1. Halogen atoms are highly electronegative and

when adsorbed as ligands they shift electron charge from the PbS surface region toward the

halogen layer, creating a dipole layer that pulls down the energies of PbS states. At low

halogen coverages x this electrostatic shift ∆V is proportional to x with a similar magnitude

for all four halogen species, as shown in Fig. 3(b). For example, a partial halogen layer with
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very modest coverage x = 0.2 ML shifts the PbS band edges strongly downward by about

1 eV. We apply this shift to the exact offset of the bare dot-in-perovskite and see that it is

sufficiently large to change the staggered Type II alignment in Fig. 3(a) to Type I alignment

with roughly equal values of ∆Ev and ∆Ec as shown in Fig. 3(b).

At higher halogen coverages the electric field of the dipole layer begins polarize the halogen

atoms, which creates an opposing dipole moment [40]. For this reason the electrostatic shift

eventually saturates, as shown in Fig. 3(b). The saturated value scales inversely with the

atomic polarizability of the halogen atom, as demonstrated in the ESI† (Section S5) using

a simple model of the shift. When the monolayer is fully complete, fluorine atoms create a

shift about twice as large as iodine atoms whereas chlorine and bromine create intermediate

shifts.

In summary, even relatively modest amounts of halogen ligands adsorbed on the PbS

quantum dot lead to large changes in the band offset of the dot-in-perovskite: a rough rule

of thumb is that every 0.01 ML of halogen atoms shifts the band offset by approximately 70

meV until saturation begins to set in.

D. Band width of dot-in-perovskite

We turn now to our central focus—the band width of the lowest electron and hole sub-

bands for dot-in-perovskite materials. Our goal is two-fold. First, we seek a broad un-

derstanding of how the band width changes as a function of the various parameters in the

Kronig-Penney model. Second, we will show in Section III how our results can be used to cre-

ate an experimental strategy for optimizing carrier transport in the specific PbS-M/CsPbI3

dot-in-perovskite material.

The Kronig-Penney model is a periodic array of finite quantum wells. Therefore the

overlap of the tails of bound-state wavefunctions should decay approximately exponentially

with the square root of the potential barrier height U (which represents ∆Ec in the case

of electron states and ∆Ev in the case of hole states). This expectation is confirmed by

numerically calculating the Kronig-Penney band width W as a function of U for three

typical values of the dot diameter a and a fixed value of the perovskite thickness b = 4

nm; see the symbols and thick solid curves in Fig. 4(a). Dispersion relations for the Kane

model were used along with experimental values for the material parameters. The calculated
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FIG. 4. Theoretical band width W of the first electron and hole subbands of the dot-in-perovskite.

(a) Variation of W with the potential barrier U , for the case of constant perovskite thickess b = 4

nm separating PbS quantum dots of different diameters. The barrier U corresponds to the band

offset ∆Ec or ∆Ev shown in Fig. 3(b). Red, green, and blue curves are for dot diameters a = 2, 4,

and 8 nm, respectively. (b) Variation of W with the quantum dot diameter a, for a fixed potential

barrier U = 1 eV. Red, green, and blue curves are for perovskite thicknesses b = 2, 3, and 4 nm,

respectively. Symbols and thick solid curves are the exact Kronig-Penney band width. Thin solid

curves were obtained using parabolic dispersion for comparison. Dotted curves are the approximate

analytical expression W̃ discussed in the text.
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results show that the band width for very small barrier heights (i.e. for nearly free electron

or hole states) is of order 10 meV and falls by roughly four orders of magnitude for barriers

around 1 eV.

To understand these numerical results more broadly we have derived an analytical ap-

proximation for W valid when the barrier height is sufficiently large. The full derivation is

in the ESI† (Section S3) and the result is

W̃ = e−(U/U0)1/2W0. (3)

Here we have defined a characteristic energy associated with the barrier, U0 = h̄2/2mBb
2.

This expression is valid when U is large compared to U0. The prefactor W0 has the general

form

W0 = 4
√
2

(
mB

mW

)(
K

K ′

)(
h̄2/mBa

2

U

)1/2

(4)

where the prime denotes the derivative with respect to energy and therefore K/K ′ has units

of energy. If specific dispersion relations are assumed then a more explicit expression can

be obtained; see the ESI† (Section S2) for the explicit forms for parabolic dispersion and

Kane-model dispersion. In our case U0 is of order 10 meV and therefore W̃ should be a

good approximation to the exact W for most of the range of U shown in Fig. 4(a). This

expectation is confirmed by the thin dotted curves, which closely track the exact results

except at very small values of U .

We also investigated the sensitivity of the band width to the accuracy of the expressions

used to describe the dispersion relations of the materials. For example, the thin solid curves

show the exact W obtained using standard parabolic dispersion—which is less accurate but

more familiar than the Kane model—for both regions. Their very close similarity to the

thick curves establishes that very accurate reproduction of the dispersion is probably not

necessary for calculating the band width.

Finally, we turn to the dependence of the band width on the diameter a of the PbS

quantum dots. It is a general feature of quantum wells with finite barriers that smaller

wells lead to more wavefunction “leakage” into the barrier. One therefore expects that the

Kronig-Penney band width should decrease as the size of the quantum dot increases. Indeed

by analyzing the behavior of W0 it is easy to show that for physically relevant sizes the

band width scales as 1/a3 regardless of the nature of the dispersion. This expectation is

confirmed in Fig. 4(b) which shows results for three values of the perovskite thickness and
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FIG. 5. Theoretical band width of the electron and hole subbands of the dot-in-perovskite as a

function of the coverage of halogen atoms adsorbed on the quantum dots. The dashed black lines

show the minimum and maximum coverage values that lead to quantum confinement within the

dot for both electron and hole states. The band widths shown are for chlorine halogens, with PbS

dot diameter a = 4 nm and CsPbI3 perovskite thickness b = 2 nm, but other halogens and physical

sizes lead to qualitatively similar results.

a fixed value of the potential barrier U = 1 eV. The calculated results show that in this

size range, changing the dot size by a factor two changes the band width by roughly one

order of magnitude. This effect may therefore be an important consideration in the design

of transport experiments.

III. DISCUSSION

We now bring together the results of the previous section—for the strain state, the band

offsets, the halogen ligands, and the band width—to answer the question, how can one

experimentally optimize carrier transport in dot-in-perovskite materials? As discussed in
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the introduction, we use the term “optimize” here in the sense of balancing the transport

in the electron and hole channels to make them comparable.

The idea is very simple and is illustrated in Fig. 5. We use the example of chlorine

ligands but the result for other halogens is very similar. Recall that without any ligands,

the dot-in-perovskite band offset has staggered Type II alignment as shown in Fig. 3(a). A

very small chlorine coverage of 0.04 ML is sufficient to change this alignment to Type I. This

borderline situation leads to nearly free electron states but maximally confined holes states.

At higher coverages around 0.35 ML the situation is the opposite: nearly free hole states

and maximally confined electron states. Figure 5 shows that an intermediate coverage of

0.17 ML is optimal in the sense that the band widths for electron and holes states are then

equal.

At such low values of the ligand coverage all four halogens lead to very similar electrostatic

shifts, because the electric field is relatively small and therefore saturation has not yet set

in. The optimal coverage for fluorine, bromine, and iodine should therefore be nearly the

same as for chlorine.

We close by briefly discussing several issues that may warrant revisiting in future work.

For simplicity we have used here the cubic phase of CsPbI3 but in reality this phase is stable

only at high temperature [41]. The stable phase at room temperature is distorted and

possibly has a polymorphous crystal structure [42]. Including such effects in our modeling

would not be difficult but we believe the results would not be very much affected. Likewise

we have kept our model simple by considering PbS dots having a shape close to cubes.

More complicated shapes with several different crystallographic facets would complicate the

model but would not change the basic approach. Another interesting issue concerns the

interface between PbS and CsPbI3, which we assumed to be at the PbI2-terminated (100)

plane of the perovskite because this makes sense chemically and electrostatically. However,

this assumption may not survive in the presence of the ligands or, more obviously, for

other crystallographic facets. Due to the ionic nature of perovskites, differently terminated

interfaces can in principle lead to very large changes in the band offset (of order 1 to 2 eV)

with profound consequences for transport properties. This issue is difficult to investigate

both theoretically and experimentally but it may be important.
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IV. CONCLUSIONS

We developed a theoretical Kronig-Penney model for the band transport of electrons

and holes in a quantum-dot-in-perovskite solid, focusing for concreteness on PbS quantum

dots passivated by inorganic halogen ligands and embedded in a matrix of CsPbI3. This

model yields materials-specific results for the band width of the lowest-lying electron and

hole subbands. The results reveal the central role played by the ligands, which create an

electrostatic shift of the band edges that can easily exceed 1 eV and thereby switch the

band offset from its native Type II alignment to Type I alignment, which is required for

optoelectronic applications.

Although we focused on PbS quantum dots in CsPbI3, our model and analysis may

be easily generalized to analyze band transport in a broader class of dot-in-solid materials.

Toward this goal, we also derived an analytical expression for the Kronig-Penney band width

that reveals its detailed dependence on the physical geometry of the dot-in-matrix as well

as the electronic characteristics of the materials. We anticipate that this expression will aid

the development and refinement of new dot-in-matrix materials with improved transport

properties.
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