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Machine learning guided microwave-assisted quantum dot 
synthesis and indication of residual H2O2 in human teeth  

Quan Xua*, Yaoyao Tanga, Peide Zhua, Weiye Zhanga, Yuqi Zhanga, Oliver Sanchez Solisb, Travis 
Shihao Hub, Juncheng Wangc* 

Current preparing methods of carbon quantum dots (CDs) involve many reaction parameters, which leads to many 

possibilities in the synthesis processes and high uncertainty of the resultant production performance. Recently, machine 

learning (ML) methods have shown great potential in correlating the selected features in many applications, which can help 

understand the relevant structure-function relationships for CDs and discover better synthesis recipes as well. In this work, 

we employ the ML approach to guide the blue CD synthesis in microwave systems. After optimizing the synthesis parameters 

and conditions, the quantum yield (QY) increases to about 200% higher than the average value of the prepared samples 

without ML guidance. The obtained CDs are applied as fluorescence probes to monitor hydrogen peroxide (H2O2) in human 

teeth. The CD probe exhibits a linear relationship with the concentration of H2O2 ranging from 0 to 1.1 M with a lower 

detection limit of 0.12 M, which can effectively detect the residual H2O2 after bleaching teeth. This work shows that the 

adopted ML methods have considerable advantages in guiding the synthesis of high-quality CDs, which could accelerate the 

development of other novel functional materials in energy, biomedical, and environmental remediation applications. 

Introduction 

Hydrogen peroxide (H2O2) is an essential oxidizing, bleaching, and 

sterilizing agent in the biochemical and chemical industry 1. A high 

concentration of H2O2 may lead to serious health problems associated 

with asthma, cardiovascular disease, and cancer2. The rapid and 

precise determination of H2O2 is one of the crucial tasks in numerous 

fields. Several methods have been reported3, 4 such as liquid 

chromatography5, electrochemistry6, electrochemiluminescence7, 

colorimetric8, fluorescence methods9, and so on. The fluorescence 

method based on carbon quantum dots (CDs) is popular because of its 

simplicity, high sensitivity, and rapid response10, 11. As a new type of 

fluorescent nanomaterials12, CDs have excellent optical properties12, 

low toxicity13, and environmental friendliness14, which make them 

suitable for various applications in biosensors15, 16, ion probes17-19, and 

cell imaging20-22. Due to its excellent physical and chemical properties 

and widespread application, many synthesis methods have been 

investigated. Compared with other strategies to synthesize high-

quality CDs costly and complicatedly, the microwave-assisted 

method is simple and quick23, where the precursor is heated by the 

dielectric loss of the electromagnetic field24, 25. Microwaves have been 

widely used in many processes of materials preparation26 and 

chemical synthesis27, because of their excellent penetrating 

capabilities28, which allow the heating of samples/components 

quickly and uniformly29. Thus, this method offers a short synthesis 

time leading to an accelerated cycle of new material discovery26. 

However, the optimization of the CDs synthesis conditions needs a 

tedious trial-and-error process, which is unable to keep up with the 

pace of new materials development, calling for more efficient and 

effective strategies.  

In the recent few years, with the rapid increase of computational 

power, and advanced hardware and software platforms, machine 

learning (ML) as the most important branch of artificial intelligence 

has entered the center stage of the scientific community 30, 31. It has 

emerged with big data and high-performance computing to create new 

opportunities for various applications in information science32, 33, 

material synthesis34, 35, material property prediction36, and the 

discovery of new compounds37. ML has exhibited a distinguished 

capability to accelerate the discovery of the new material by learning 

existing data and building data-driven models38-42. For example, Han 

et al.43 used ML to guide the synthesis of CDs in the hydrothermal 

system, improving quantum yield up to 39.9%. Machine learning-

driven synthesis of CDs, which shows resembling morphology and 

display excellent performance, could be ultra-sensitive fluorescence 

probes for monitoring Fe3+ ions. Tang et al.44 applied regression and 

classification algorithms by synthesizing CDs and growing chemical 

vapor deposition (CVD) MoS2, respectively. The yield of CDs and the 

growing condition of MoS2 were highly precisely and accurately 

predicted. Wang et al45 through the XGBoost model achieved CDs-

based white photoluminescence (PL) emission with adjustable 

correlated color temperature (CCT) from 3093 to 11018 K. It is, 

therefore, appealing to introduce ML into CDs synthesis to accelerate 

experimental trials, reduce energy consumption and get a desirable 

result, which is promising and potential. 
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In this study, ML is used to guide CD synthesis with enhanced yield 

by using the microwave method. The ML model is built on data 

obtained from experiment records and trained iteratively. Then, the 

model gives the best synthesis parameters and the QY is up to 15.7% 

through experimental verification. Besides, the correlation of the 

preparation parameters is analyzed by Pearson’s correlation 

coefficient and grey relational analysis to obtain the inherent laws of 

these data. Furthermore, the photoluminescence of ML-guided CDs 

could be quenched by H2O2, so they can be used as fluorescence 

probes for monitoring H2O2 in the concentration range of 0-1.1 M and 

with a 0.12 M detection limitation. Then it can effectively test the 

trace of H2O2 after bleaching teeth. Overall, the strategy of using ML 

to guide the microwave-assisted synthesis of CDs is of practical 

importance and helps to break new ground in synthesizing other 

advanced functional micro-/nanomaterials in the future. 

 

Experimental method 

Source of data and data processing 

The ML guided microwave-assisted CDs schematic diagram is shown 

in Fig. 1 and the detailed synthesis of CDs is provided in the 

experimental section. The experimental records include the mass of 

precursor (MP), the volume of EDA (VEDA), the volume of deionized 

water (VW), microwave intensity (IM), microwave time (TM), and the 

quantum yield (QY). QY is the output feature and others are 

considered input features. The internal data association between input 

features and output features aims to improve the QY properties 

through machine learning algorithms. 190 experimental records are 

retrieved from our sets of data obtained from experimental preparation 

records and QY (%) ranging from 0 to 100, respectively. The 

distribution histogram of microwave-assisted synthesis of CDs data 

for each of the parameters is shown in Fig. S1. More details about 

these data are summarized in the supporting information Table S1. 

The data set is enough to construct models as shown in Fig. S2. 

 

Fig. 1. Framework for the guided synthesis of CDs by microwave method based on ML 

The Pearson’s correlation coefficient (PCC) among the 5 parameters 

are calculated and the corresponding heat map is presented in Fig. 2(a), 

which indicates that there is no strong correlation among these 

parameters and is satisfied with the independence requirement. 

Therefore, these 5 parameters could be used as the input features of 

the ML models. Moreover, the grey correlation analysis is performed 

to analyze the importance of these five features on QY as shown in 

Fig. 2(b). It indicates that the mass of the precursor and the microwave 

intensity affect the QY the most. 

According to the law of mass action, the mass of the precursor 

determines its concentration in the solution and the term controls the 

nucleation rate of CDs, which affects the kinetics of the crystal 

growth. Besides, microwave intensity affects the heating rate and the 

temperature of the system. This parameter also affects the kinetics of 

CD growth as described by the Arrhenius equation. Therefore, these 

two features are expected to influence the synthesis of CDs 

synergistically in terms of the QY. 

Model selection and optimization 

The data set before the training model is normalized by the maximum 

and minimum values to eliminate the multiscale nature, which is all 

converted to a range between 0 and 1. To find the appropriate model 

for this problem, we test the performance of the decision tree (DT), 

multilayer perceptron (MLP), random forest (RF), and XGBoost 

(XGB) simultaneously under the same train data. These models are 

optimized by five-fold cross-validation and evaluated through 

performance metrics including mean squared error (MSE), mean 

absolute error (MAE), coefficient of determination (R2), and PCC. 

The performance metrics of the four models are shown in box plots in 
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Fig. S3. Considering the generalization ability and fitting outcome, 

XGBoost is selected as the best ML model. Fig. 2(c) shows that the 

predicted value and experimental value have a linear relationship on 

all data, which demonstrates the excellent performance of XGB. 

 
Fig. 2. (a) The heat map of Pearson’s correlation coefficient among 

the selected features of the microwave. (b) The histogram of grey 

relational coefficient about the selected feature to QY relations.  (c) 

Comparison between experimental and predicted values for train 

data set (blue dot) and test data set (red dot). (d) The histogram of 

predicted QY distribution.  

 

Prediction 

The constructed XGB model is trained with 190 experimental records, 

and it is employed to predict the QY. Through input ranges of each 

feature generating 3300 synthesis combinations, all these data are 

predicted QY by the XGB model. Fig. 2(d) is the distribution 

histogram of all the predicted data, and it can be seen that the overall 

predicted yield is normally distributed, which indicates the selection 

of data points is reasonable. Among these predicted QY results, five 

synthesis combinations with the highest predicted QY were chosen 

and experiments are performed to verify the yield. A high QY of 

15.7% was achieved shown in Table 1, which is about 200% higher 

than the average value of the overall historical QY, indicating the 

feasibility and effectiveness of ML-guided microwave-assisted CDs 

synthesis. To better understand the internal raw, the predicted result 

is shown by a matrix map by the most important feature (Fig. S4). The 

redder the area, the QY higher with the combination of corresponding 

conditions. With the increase of mass of the precursor and microwave 

intensity, the QY improves obviously, which is consistent with the 

previous grey correlation analysis. 

Results and discussion 

Characterization of CDs 

Based on the strategy of ML, the experimental synthesis has the 

highest QY of CDs. The transmission electron microscope (TEM) was 

used to investigate the diameter of the optimized CDs. As shown in 

Fig. 3(a), the CDs are well-dispersed in water solution and the 

distribution diagram (Fig. 3(b)) implies the particle size ranges from 

3.25 to 6.25 nm, with an average diameter of 4.8 nm. The high-

resolution TEM (HRTEM) image(the insert of Fig. 3(a)) shows a clear 

crystal lattice with a lattice fringe distance of 0.21 nm, which 

corresponds to the (100) lattice plane of graphite carbon46. The X-ray 

diffractometer (XRD) pattern of the CDs (Fig. 3(c)) displays a broad 

peak centered at ∼18°, which may be related to the small size of the 

CDs47, 48. The topographic morphology of CDs was further measured 

by atomic force microscopy (AFM). In Fig. 3(d) and Fig. 3(e), the 

image of CDs provides an average thickness of 4.25 nm. These graphs 

show that the CDs produced by ML-assisted have uniform size and 

also have an elliptical structure, well agrees with the definition of CDs. 

We also studied the chemical structure of the CDs. As shown in Fig. 

3(f), there are six obvious FTIR peaks at 3445, 1725, 1650, 1642, 

1524, and 2239 cm-1. The peak at 3445 cm-1 is attributed to the -OH/-

NH group, which gives them high solubility in water46. The -NH and 

C=N stretching (about 3445 and 1642 cm-1), indicate there are a huge 

number of -NH groups on the surface of CDs49, 50. The peak at 1725 

cm-1 is attributed to C=O stretching vibration due to abundant 

hydroxyl groups in the precursor43, and the peak at 1650 cm-1 is a 

direct result of N-H and -COO stretching vibrations17..

 

Table 1 Combinations with the highest probability. 

M V2 V1TMI

(a) (b)
TM

MP

VW

VEDA

IM

MP VWVEDA TMIM

0.0

-0.5

-1.0

0.5

1.0

MP IM VW TM VEDA

(d)(c)

No 

Mass of 

precursor A（g

） 

EDA 

volume（

ml） 

Water 

volume（

ml） 

Microwave 

intensity (%) 

Microwave 

time（min） 

QY 

(%) 
Experimental QY (%) 

1 1.5 0.55 10 100 3 14.23 13.4 

2 1.5 0.55 10 58 3 14.14 13.9 

3 1.5 0.55 20 100 3 14.13 12.5 

4 1.5 0.55 15 100 3 13.94 13.6 

5 1.5 0.60 10 100 3 13.92 15.7 
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Fig. 3. Characterizations of the ML-assisted synthesis of CDs. (a) TEM image of CDs (insert: HRTEM image). (b) The diameter distribution of 

CDs. (c) The XRD pattern of CDs. (d) AFM image of CDs (inset: height profile of the corresponding line in the AFM image). (e) The thickness 

distribution of CDs. (f) FT-IR spectrum of CDs. 

 

 

The C=C and C=N stretching are discovered at 1524 cm-1 and 1642 

cm-1, respectively. The peak at 1139 cm-1 is assigned to C-N and C-O 

bending vibrations51. The UV-Vis absorption spectra, Fourier 

transform infrared spectroscopy (FT-IR) and X-ray photoelectron 

spectroscopy (XPS) were used to verify the structure and chemical 

bonds of the CDs. The UV-Vis absorption spectrum of CDs (Fig. 4(a)) 

shows a typical absorption peak at 237 nm corresponding to the π-π* 

transition52. We also studied the optical properties of the CDs. Fig. 

4(b) shows the illumination characteristics with excitation 

wavelengths from 290 nm to 400 nm. The peak positions of varied 

excitation wavelengths are almost identical and peak intensity 

decreases, which indicates the inexistence of excitation wavelength-

dependent emission properties of the CDs53. The optimal emission 

happens at the 480 nm wavelength when excited by a 320 nm light 

source. To investigate the CD solution stability, the fluorescence 

intensity was measured every ten minutes as shown in Fig. S5(a). The 

PL intensity of CDs remained unchanged within 60 min, and above 

99% in the stability test.  

Besides, we perform XPS analysis. The full spectrum of XPS (Fig. 

4(c)) shows three typical peaks at 285, 400, and 531 eV, 

corresponding to C 1s, N 1s, and O 1s, respectively51, 54. In Table S3, 

the proportions of the three elements including C, N, and O are 

66.27%, 23.32%, and 10.41%, respectively. As shown in Fig. 4(d), 

the high-resolution C 1s spectra of CDs can be deconvoluted into three 

peaks at 284.6 eV, 286.1 eV, and 288.2 eV, corresponding to sp2 

carbon C=C, -COOH, and C-N/C=N51, 55, 56. The nitrogen atoms were 

identified in high-resolution N1s spectra in Fig. 4(e). Three peaks at 

398.4 eV, 399.6 eV, and 400.8 eV correspond to pyridine N, pyrrole 

N, and graphite N, respectively51. Nitrogen exists in various forms and 

forms a π bond conjugated O with C, suggesting that the nitrogen is 

successfully doped into the CD structure 51. The O 1s XPS spectra in 

Fig. 4(f) are fitted by four peaks, including carboxyl group (-COOH) 

and C=O, confirmed by C1s. Besides, the high-resolution O 1s peaks 

at 533 eV and 530.6 eV correspond to C-O and O-H, indicating the 

CDs could easily dissolve in water55. The above FT-IR and XPS 

analyses show that the abundant hydrophilic functional groups on the 

surface of CDs not only provide interaction sites for specific ions or 

compounds but also improve the dispersion of CDs. 

Detection of H2O2 

H2O2 acts as a strong oxidant by consuming antioxidant substances in 

the body, causing low antioxidant capacity and reducing resistance, 

which further causes various diseases. Besides, H2O2 has certain 

harmful effects on human body, which causes DNA damage and 

mutation of human genetic material. Therefore, the determination of 

H2O2 has an important role in the biological healthy field57. The 

prepared CDs as fluorescence probes are used to detect the 

concentration of H2O2 due to the rapid and sensitive response to H2O2. 

Fig. 5(a) shows that the fluorescence intensity decreases with the 

gradual increase of the concentration of H2O2. The fluorescence 

intensity gets linear relation with the concentration of H2O2 ranging 

from 0 to 1.1 M, with a correlation coefficient of 0.983 (Fig. 5(b)). 
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Fig. 4. (a) The UV-Vis absorption wavelength of the CDs. (b) Fluorescence emission spectra of the prepared CDs at different excitation 

wavelengths. (c) XPS survey spectrum of CDs. XPS (d) C1s, (e) N1s, and (f) O1s spectra of CDs, respectively. 

The detection limit is 0.12 mM according to 3 σ/s (where σ is the 

standard deviation of the blank measurement and s is the slope of the 

calibration graph). To understand the fluorescence quenching process 

of the CDs, the lifetime and absorption are studied. As shown in Fig. 

5(c)）, the time-dependent single-photon counting spectra of the CDs 

are reduced from 8.24 ns to 7.99 ns due to the quenched CDs solution. 

Besides, The UV-Vis absorption spectrum is measured before and 

after quenching by adding H2O2 to the aqueous solution of CDs. The 

change in the absorption spectrum can be observed in Fig. S5(b). Both 

of the above phenomena indicate a dynamic quenching mechanism58. 

Thus, it is reasonable to speculate charge transfer between H2O2 and 

CDs leading to fluorescence quenching. To further verify the 

selectivity probe to H2O2, we tested the CDs in various ion solutions 

with a concentration of 200 μM, including Li+, Mg2+, Zn2+, Mn2+, Na+, 

Cd2+, K+, and Ca2+ as shown in Fig. 5(d). We use ∆F = 𝐹0 − 𝐹1as an 

indicator, where F0 is the fluorescence intensity at an excitation 

wavelength of 320 nm before the ions were introduced into the CDs, 

and F1 is that after ions were added into the mixture. It is 

demonstrated that the CDs are most sensitive toward H2O2 above all 

the ions.  

The indication of H2O2 residue on teeth after bleaching 

H2O2 is recognized as the primary potent bleaching agent by oxidizing 

organic colorants in dentin59-61, which would remain on the surface of 

teeth and erode the hard and soft tissue in the oral62. In addition, H2O2 

can easily enter tissues and cells in the body after oral intake, which 

can enter the free radical reaction chain, causing apoptosis and cancer,  

accelerating human aging and even inducing cardiovascular disease. 

So, we should indicate the residual on the surface of teeth and the 

method is shown in Fig. 6(a). CDs were added to the surface of 

bleached teeth, and H2O2 residue was observed by fluorescence 

intensity. Therefore, we collect the four teeth and polished one side of 

the dentin flatly, and the surface of the tooth has yellow pigment 

deposition. Two of the teeth are put into deionized water and one of 

them is the control group, others are soaked in hydrogen peroxide 

solutions with a volume fraction of 5% and 10%, respectively. After 

placing for 24 h in a dark and light-protected environment, the surface 

of the teeth is shown in Figs. S6 and S7. The tooth put into deionized 

water has no obvious change and others put into H2O2 lighten and 

change clearly. Moreover, the higher concentration of H2O2, the more 

obvious the surface of teeth color change.  

(a) (b) (c)

(d) (e) (f)
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 Fig. 5. (a) The effect of H2O2 quenching on CDs PL intensity, and (b) 

the change of ΔF/F0 intensity of CDs solution versus the 

concentration of H2O2 at 480 nm under the excitation wavelength 

320 nm. (c) The comparison of the illumination lifetime before and 

after H2O2 quenching. (d) The selective sensitivity of CDs.  

To indicate H2O2 residue on teeth, we add 10 μL CDs solution to the 

polished surface and the control group added the same amount of 

deionized water (Fig. S8). As shown in Fig. 6(c-e), the fluorescence 

of the experimental group is decreased with the increase in H2O2. It 

demonstrates that the CDs can effectively indicate H2O2 residue on 

teeth after bleaching, and fluorescence relative to the concentration of 

H2O2 before soaking. Furthermore, the CDs are tested under different 

concentration ionic and wide pH solutions. 

As shown in Fig. 6(b), it can be seen that the NaCl solution does not 

interfere with the fluorescence of the CDs, indicating the stability of 

CDs in the high concentration ionic solution. Fig. S9 shows the 

photoluminescence of the CDs approximately unchanged in different 

pH solutions ranging from 1 to 12. So the wide range and stability of 

strong fluorescence make it versatile and applicable in more extreme 

tooth conditions. 

 

 

 

 

 
Fig. 6. (a) The schematic illustration for indicating H2O2 residue by CDs on teeth after bleaching. (b) The stability of CDs vs NaCl solution. The 

fluorescence of CDs on the teeth surface after adding CDs solution under UV light. The teeth were soaked in deionized water (c), a volume 

fraction of 5% (d), and 10% (e), respectively. 

(c)

(a) (b)

(d)

(b)

(e)(c) (d)

After soaking in H2O2

CDs solution

(a)

UV light UV light
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Conclusion 
In summary, the present work demonstrates the application of ML in 

the synthesis of inorganic functional nanomaterials through data 

processing, model selection, and model prediction. ML predicts the 

properties of CDs in the microwave-assisted method, which 

effectively improves the QY up to 15.7%. It demonstrates that the ML 

can reveal some underlying relationships between data, helping to 

‘mine’ the connection between features and results, and discover 

optimized synthesis conditions. The optimal CDs can be employed as 

sensing probes of high sensitivity and selectivity to detect H2O2. The 

probe has a wide detection range from 0 to 1.1 M, with a sensitivity 

limit of 0.12 M. then the optimized CDs are applied to the teeth to 

indicate the residuals effectively. More importantly, our work 

demonstrates the potential introduced ML into synthesizing materials 

is great and the data-driven model is effective in future development. 

we believe that this data-driven model can serve as an available way 

to reduce experimental costs and accelerate material synthesis. 

Conflicts of interest 

There are no conflicts to declare. 

Acknowledgements 

Quan Xu acknowledges the support of the National Nature Science 

Foundation of China (No. 52211530034, 51875577), Beijing National 

Science Foundation (No. 3222018), J. C. Wang acknowledges the 

support by Military health care project (22BJZ22), T.S.H. 

acknowledges the support from the U.S. National Science Foundation 

(Award Nos. 2004251 and 1523588).  

Notes and references 

1. S. K. Bhunia, S. Dolai, H. Sun and R. Jelinek, Sensors 
and Actuators B: Chemical, 2018, 270, 223-230. 

2. S. Parthasarathy, V. Nandhini and B. Jeyaprakash, 
Journal of colloid and interface science, 2016, 482, 
81-88. 

3. M. R. Rojas, C. Leung, D. Whitley, Y. Zhu, R. G. Arnold 
and A. E. Sáez, Industrial & engineering chemistry 
research, 2011, 50, 12479-12487. 

4. Y. Wang, Z. Chen, Y. Liu and J. Li, Nanoscale, 2013, 5, 
7349-7355. 

5. S. M. Steinberg, Environmental monitoring and 
assessment, 2013, 185, 3749-3757. 

6. W. H. Antink, Y. Choi, K.-d. Seong and Y. Piao, Sensors 
and Actuators B: Chemical, 2018, 255, 1995-2001. 

7. S. Ge, J. Zhao, S. Wang, F. Lan, M. Yan and J. Yu, 

Biosensors and Bioelectronics, 2018, 102, 411-417. 
8. H. Liu, Y. Ding, B. Yang, Z. Liu, Q. Liu and X. Zhang, 

Sensors and Actuators B: Chemical, 2018, 271, 336-
345. 

9. T. Lin, Y. Qin, Y. Huang, R. Yang, L. Hou, F. Ye and S. 
Zhao, Chemical Communications, 2018, 54, 1762-
1765. 

10. W. Teo, A. V. Caprariello, M. L. Morgan, A. Luchicchi, 
G. J. Schenk, J. T. Joseph, J. J. Geurts and P. K. Stys, 
Proceedings of the National Academy of Sciences, 
2021, 118. 
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