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Seeking regularity from irregularity: Unveiling the 
synthesis‒nanomorphology relationships of heterogeneous 
nanomaterials using unsupervised machine learning 
Lehan Yao,a Hyosung An,a,b Shan Zhou,a Ahyoung Kim,a Erik Luijten,c,d,e,f and Qian Chen *a,g,h,i,

Nanoscale morphology of functional materials determines their chemical and physical properties. However, despite 
increasing use of transmission electron microscopy (TEM) to directly image nanomorphology, it remains challenging to 
quantify the information embedded in TEM data sets, and to use nanomorphology to link synthesis and processing 
conditions to properties. We develop an automated, descriptor-free analysis workflow for TEM data that utilizes 
convolutional neural networks and unsupervised learning to quantify and classify nanomorphology, and thereby reveal 
synthesis‒nanomorphology relationships in three different systems. While TEM records nanomorphology readily in two-
dimensional (2D) images or three-dimensional (3D) tomograms, we advance the analysis of these images by identifying and 
applying a universal shape fingerprint function to characterize nanomorphology. After dimensionality reduction through 
principal component analysis, this function then serves as the input for morphology grouping through unsupervised learning. 
We demonstrate the wide applicability of our workflow to both 2D and 3D TEM data sets, and to both inorganic and organic 
nanomaterials, including tetrahedral gold nanoparticles mixed with irregularly shaped impurities, hybrid polymer-patched 
gold nanoprisms, and polyamide membranes with irregular and heterogeneous 3D crumple structures. In each of these 
systems, unsupervised nanomorphology grouping identifies both the diversity and the similarity of the nanomaterial across 
different synthesis conditions, revealing how synthetic parameters guide nanomorphology development. Our work opens 
possibilities for enhancing synthesis of nanomaterials through artificial intelligence and for understanding and controlling 
complex nanomorphology, both for 2D systems and in the far less explored case of 3D structures, such as those with 
embedded voids or hidden interfaces. 

Introduction
The advent of high-resolution direct imaging techniques such as 
transmission electron microscopy (TEM) has revealed the 
ubiquitous presence of complex nanomorphology in systems as 
diverse as proteins,1,2 polymer thin films,3–6 colloidal 

nanoparticles (NPs),7–10 and their assemblies.11–14 This 
morphological complexity can originate from factors like local 
gradients (e.g., concentration, temperature, stress), mass 
fluctuation, shape-templating, self-organization, and liquid–
liquid phase separation.15,5,16–20 The complex morphologies in 
turn can determine the chemical and physical properties of 
materials. For example, morphological details of NPs as fine as 
corner truncation and surface curvature can dictate their local 
chemical environment and their optical, electronic, and 
catalytic properties.21–26 For spatially extended materials, e.g., 
polymeric thin film separation membranes, the inner voids and 
interconnected network topology determine the permeation 
pathways of solvents and separation performance.5,15,16,27–30

For these reasons, it is important to synthetically control the 
nanomorphology of materials, and to do so in a predictable 
manner; a goal that has been hindered by challenges in 
characterizing and analyzing them in an automated, 
standardized, and high-throughput manner. Ensemble 
methods, including light/x-ray/neutron scattering, can resolve 
averaged characteristic dimensions of nanomaterials,31–35 but 
not their nanomorphology and heterogeneities. TEM, on the 
other hand, can capture nanomorphology either as projected 
images in two dimensions (2D) or as tilt-series and 
reconstructed three-dimensional (3D) volumes with nanometer 
resolution. Several analysis methods have been developed to 
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extract nanomorphology from TEM data sets, including the 
recent application of machine learning (ML)-based 
convolutional neural networks (CNNs) to identify and segment 
NP features.36,37 Unsupervised ML algorithms, e.g., k-means,38 
the Gaussian mixture model (GMM),39 and density-based 
spatial clustering of applications with noise (DBSCAN),40 have 
also been used to categorize materials according to their 
morphology. However, these efforts concern 2D TEM images of 
simple nanomorphologies, which can be described by a small 
set of shape descriptors chosen by humans (e.g., size and aspect 
ratio), and of simple samples containing one chemical 
component, often only inorganic materials. What remains 
greatly underexplored is the regime of complex 
nanomorphologies of real-world materials. These can be 
heterogeneous, containing multiple types of shapes in one 
sample; they can be irregularly shaped, not sufficiently captured 
by conventional shape descriptors and making it difficult for 
humans to objectively choose the appropriate descriptors; they 
can be hybrid with multiple components, including organic ones 
that have low contrast under TEM; and they can have 3D 
features, with multiple features overlaying or agglomerated in 
2D projections and requiring a larger parameter space to 
describe the shape comprehensively. Here we develop and 
implement a unified ML-based nanomorphology analysis and 
classification workflow that is robustly applicable to three 
systems representing real-world materials containing all the 
above-mentioned complexity aspects. Using this workflow, we 
are able to elucidate the synthesis‒nanomorphology 
relationship in these systems at a highly quantitative level. As 
illustrated in Scheme 1, our workflow starts from the 
segmentation of samples—i.e., recognizing the shape contours 
of the features—from TEM images using CNNs. Recent work by 
us and others has used CNNs with a single output channel to 
recognize NPs in TEM images by solving a pixel-wise binary 
classification problem.36,37 To account for complex materials 
systems, in this work we incorporate multiple channels in the 
output layer of the CNN, with each channel associated with a 
different physical meaning during training. Such a multi-
channeled CNN has been shown to distinguish different atoms 
in scanning transmission electron microscopy images.41 Here 
we demonstrate that it accurately separates overlaying NPs and 
differentiates between inorganic and organic components in a 
single particle. Next, the workflow utilizes a universal 
fingerprint function42 to characterize the nanomaterial 
morphology based on the segmented contours, which applies 
to arbitrary, irregular, and even 3D shapes not studied before. 
This fingerprint function provides a comprehensive description 
of the nanomaterial morphology based on the spatial 
coordinates of the segmented shape contours. No empirical 
decisions are needed on which specific shape descriptor is 
relevant. Lastly, using this fingerprint function as input, 
followed by dimensional reduction via principal component 
analysis (PCA), we perform GMM clustering to classify the 
corresponding nanomorphology instances into groups with 
similar features to quantitatively elucidate the 
synthesis‒nanomorphology relationships. We apply this 
workflow to three complex nanomaterials systems, namely (i) 

gold tetrahedral NPs that are traditionally considered difficult 
to synthesize and that are typically accompanied by irregularly 
shaped impurity NPs; (ii) gold nanoprisms decorated with 
amorphous polymer patches; and (iii) polyamide membranes 
with 3D void structures used for water purification and 
molecular separation. Each system represents a morphological 
complication that previous methods have been unable to solve, 
and collectively the three systems cover a spectrum of sample 
features: high-contrast inorganic and low-contrast organic 
components; 2D and 3D nanomorphologies; separated as well 
as overlaying features. This approach allows us to relate 
nanomorphologies to synthesis conditions in a high-throughput 
and high-fidelity manner. 

Results and discussion
Overview of the nanomorphology 
segmentation‒fingerprinting‒classification workflow. For 
segmentation of the TEM images of the NP systems (i) and (ii), 
we use a U-Net neural network36,37 with symmetric encoder–
decoder architecture (Fig. S1). The output layer is modified to 
have three channels to predict different species and resolve 
overlaying NPs. We use image augmentation of a few manually 
labeled images to readily generate thousands of images that 
serve as the training data set and greatly improve the efficiency 
of the image segmentation process (Fig. S2). Although all the 
training images derive from a small initial set, we find that with 
carefully selecting and labeling representative images the 
trained U-Net delivers consistently good predictions (Figs. S3, 
S4). The trained U-Net is then used to segment experimental 
TEM images, followed by extraction of the feature contours, 
which serve as the input for the fingerprint analysis.

Our choice of the fingerprint function applies to diverse 
nanomorphologies and utilizes all the coordinates of the shape 
contours. Inspired by previous work,42 we describe a shape 
contour by the length d(θ) of the distance vector with 
orientation θ connecting a point along the shape contour and 
the centroid of the contour as a function of θ (Scheme 1). 
Subsequently, the discrete points along the shape contour are 
converted to a continuous one-dimensional function with range 
θ ∈ (‒180°,180°]. This definition applies directly to convex 

Scheme 1 Schematic of our unified ML-based nanomorphology analysis and 
classification workflow. From left to right: TEM imaging (generating 2D gray-scale images 
or 3D tomograms). Image segmentation by CNNs with multiple output channels to 
generate segmented nanomaterial contours. Extraction of shape fingerprints from the 
contours to digitize the nanomorphologies as the inputs for unsupervised clustering 
algorithms. Finally, grouping the shape fingerprints and the corresponding nanomaterial 
instances into different classes, which are then used for further statistical analysis to 
relate morphologies to synthesis conditions.
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shapes but can result in complications for concave shapes (Fig. 
S5). We overcome this by redefining d(θ) as the sum of the 
segment lengths of the distance vector that reside within the 
shape contours, thus extending this concept to arbitrary 2D 
contours, including concave ones (Fig. S5). We show that using 
this definition, the diverse nanomorphologies present in the 
three systems studied here are sufficiently described for 
quantitative comparison and classification. Moreover, we 
extend this fingerprint for the analysis of 3D nanomorphologies 
obtained from TEM tomographs, where a 2D function d(θ,φ) in 
the spherical coordinate system is used to describe a 3D surface 
contour consisting of variable numbers of meshes5 within a 
well-defined domain of θ ∈ (0°,180°] and φ∈ (0°,360°].

Classification, the last step in our workflow, relates 
nanomorphology to synthesis conditions. Previous classification 
methods used specific shape descriptors such as particle area 
and aspect ratio as inputs.38–40 Such descriptors only selectively 
retain partial information embedded in shape contours, and can 
vary across shapes. For example, edge length is typically used to 
describe triangular nanoprisms and nanocubes, whereas the 
major axis length is more suitable for nanorods. In contrast, the 
contour fingerprint function used here captures most of the 
shape information, unselectively, for all shapes. Choosing an 
interval of 1° for θ to achieve sufficiently high spatial resolution, 
we obtain a fingerprint of a 2D shape that is effectively a feature 
vector of 360 elements. To make this vector usable in our 
classification approach, we perform a dimensional reduction 
through PCA, which projects high-dimensional data onto a low-
dimensional space while maximizing their variance, thus 
retaining the most important (combination of) features in an 
unsupervised manner. We find that usually the first few 
principal components (PCs) of the shape fingerprint contain a 
large fraction of the total variance (Figs. S6, S7, and S8), i.e., 
faithfully represent the original data. GMM is then applied to 
the dimension-reduced feature vectors for nanomorphology 
classification. In our systems, the nanomorphologies are 
classified into more than two groups. To determine the optimal 
number of groups, we use the Bayesian information criterion 
(BIC) and the Akaike information criterion (AIC),43 which 
quantitatively evaluate the separation of data points into 
groups while preventing the model from becoming too 
complicated due to the assignment of too many groups 
(Supporting information and Figs. S6, S7, and S8). We now 
discuss the insights obtained from this workflow for three 
representative systems.

System (i): High-throughput individualization and shape 
characterization quantify yield and structural details in gold 
tetrahedra synthesis. Nanoparticles with attractive interactions, 
a frequent occurrence in aggregation and self-assembly studies, 
tend to partially or completely stack on top of each other, 
resulting in overlaying features in 2D projected TEM images, 
which can make automated image segmentation challenging. 
Here, we use the synthesis of gold tetrahedral NPs to 
demonstrate how our workflow addresses this problem. After 
segmentation, the NPs are classified into impurities and 
desirable tetrahedral products of different shapes and sizes, to 
quantify the relationships between yield, nanomorphology, and 

seed concentration in the synthesis. We choose gold 
tetrahedral NPs because their synthesis has been traditionally 
difficult with extensive, irregularly shaped impurities44,45 that 
are hard to quantify using conventional shape descriptors. They 
are also of interest because of their theoretically predicted 
symmetry-breaking optical properties and their unusual self-
assembled structures (e.g., quasi-crystals and Boerdijk–Coxeter 
helices),46–48 which can depend on the control of fine shape 
details such as corner truncation22,49 that we quantify below. 
The facets of these NPs, typically polygonal in shape, favor 
assembly driven by van der Waals attractions even during TEM 
sample preparation, leading to overlapping shape contours 
under TEM imaging. 

Indeed, as shown in Fig. 1a, gold tetrahedral NPs that are 
synthesized following a seeded growth method45 pack densely 
on a TEM grid (Fig. 1b). Conventional threshold-based 
segmentation recognizes such overlaying projections as a single 
connected structure. Post-processing algorithms such as 
watershed transformation can further segment them into 
individual NPs by drawing lines to cut through the “neck” region 
between two touching NPs,36,39 but this method is more suitable 

Fig. 1 Identification of overlaying gold tetrahedral NPs and yield analysis. (a) 
Schematic of gold tetrahedral NPs synthesis through the seeded growth method. 
Different reaction conditions give rise to different product shapes, accompanied by 
impurities. (b) TEM image and schematic of as-synthesized tetrahedral NPs 
assembled into overlaying structures after deposition on the TEM grid. (c) TEM image 
containing tetrahedral NPs (shaded in yellow) and impurities (shaded in blue gray). 
(d) Workflow of shape fingerprint extraction from raw TEM images. Two output 
channels from U-Net identify the non-overlaying parts of NPs (gray, Channel 1) and 
the overlaying of NPs (white, Channel 2) from the input TEM images. Combining 
closed regions in each channel yields the reconstructed individual NP contours. The 
shape fingerprints d(θ) of both tetrahedra and impurities are then extracted from the 
reconstructed contours. (e) Full set of shape fingerprints collected, including 
tetrahedral NPs (colored) and impurities (gray). Different colors indicate classes 
identified by the GMM (cf. panel (f)). (f) Full set of shape fingerprints projected onto 
their first two principal components (PCs). Insets show the average NP shape of the 
classes identified by the GMM. (g) Average edge length (triangular symbols) and 
truncation (circular symbols) as a function of seed amount. Circular charts show the 
fraction of each GMM class at the three different seed amounts (24.0 µL, 39.7 µL, 
44.0 µL; see Supporting Information for more details). Percentages indicates the yield 
of non-impurity (colored) classes. Scale bars: 50 nm in panels (b) and (c); 25nm in 
panel (d).
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for rounded shapes than for NPs with polygonal projections (Fig. 
S9). Moreover, the watershed algorithm separates NPs without 
recovering the overlaying parts of the contours, so that for two 
overlaying NPs neither of the segmented contours reflect the 
true particle shape (Fig. S9). For this reason, some recent work 
opted to simply filter out the overlaying contours,38 which can 
potentially lead to a bias in yield analysis. For example (Fig. 1c), 
well-facetted tetrahedral NPs tend to overlay more frequently 
than irregularly shaped impurities, so that discarding overlaying 
features would underestimate the yield.

We address this issue using the trained U-Net with three 
output channels. In this approach, a pixel in the TEM image is 
classified to belong to (i) a non-overlaying part of a NP (Channel 
1); (ii) an overlaying part of NPs (Channel 2); or (iii) the 
background (Channel 3) (Fig. 1d). Combining the segmented 
contour in Channels 1 and 2 makes it then possible to restore 
the full contours of overlaying tetrahedral NPs and impurities 
without bias (Fig. 1d, see Supporting information and Figs. S9, 
S10 for details and evaluations). Shape fingerprint functions 
(Fig. 1e) are calculated from the contours.

Classification of the shape fingerprints from ~2,700 NPs 
synthesized at three different conditions separates impurities 
from tetrahedral NPs and identifies subgroups of tetrahedral 
NPs with distinctive edge lengths and truncations (Figs. S6e,f). 
We use this approach to assess the effect of the amount of 
spherical gold seed NPs in the synthesis. Most shape 
fingerprints exhibit three peaks (Fig. 1e), corresponding to the 
triangular projection of tetrahedral NPs. The remaining 
fingerprints, which exhibit randomly distributed features, are 
classified as impurities. PCA-based dimensionality reduction of 
the shape fingerprints (Fig. 1f) shows that the first two PCs 
recover 85% of the total variance, indicating successful 
dimensionality reduction (Fig. S6a). Lastly, an unsupervised 
GMM with six centers (suggested by BIC, Fig. S6d) is used for 
shape classification. Three major clusters in the PC space are 
identified, corresponding to three different fingerprints (Fig. 1e, 
colored curves). Relating each of the three groups to the 
corresponding averaged NP shape in real space (Fig. 1f inset), 
we find that they correspond to tetrahedral NPs of different 
sizes and extents of truncation. Moreover, we find (Figs. S6e,f) 
that PC 1 correlates with the particle edge length and PC 2 with 
the extent of truncation, suggesting that, without a priori 
judgement or selection, these two shape descriptors identify 
the principal differences between the products across seed 
amounts. These observations are consistent with previous 
studies, where truncation of tetrahedral NPs was shown to be 
synthetically determined by the competition of gold deposition 
and oxidative etching, which can be changed by the 
concentration of added precursor, surfactant, and seed.50,51

In addition to the three major groups of tetrahedral NPs, the 
GMM also recognizes impurities among the products. The yield 
of desired tetrahedral NPs displays a non-monotonic trend with 
the seed amount (Fig. 1g). In addition, the edge length of the 
tetrahedral NPs (with impurities eliminated) decreases from 46 
nm to 38 nm (Fig. 1g) as the seed amount increases given the 
same growth condition, consistent with earlier hypotheses in 
the synthesis literature;45,52,53 in the presence of more seeds, 

the amount of growth species per seed is reduced, resulting in 
smaller NPs. Lastly, the extent of truncation, defined as the 
distance between the corner and triangle vertices extended 
from three edges (cf. Supporting information and Fig. S11), also 
changes with the seed amount (Fig. 1g).

System (ii): Multi-component segmentation and patch 
pattern recognition reveal morphology–formation mechanism 
in patchy nanoprisms. In the second system, we demonstrate 
the ability of our analysis workflow to delineate the shape and 
location of multiple components in a hybrid nanomaterial, 
which is crucial for engineering their applications as 
heterojunction for optoelectronics,54 tandem catalysts,55 
composite membranes,56 and patchy NPs.57 We use a 
representative patchy NP—gold nanoprisms coated with 
polymer patches—as the system of focus. The shape and spatial 
pattern of the patches controls the anisotropic interaction 
potential and can determine symmetry-breaking properties 
important in directed self-assembly, drug delivery, catalysis, 
and photonic crystals,57–60 calling for automated morphology 
analysis workflow. The polymeric patch also poses a general 
analysis challenge due to its low TEM contrast.

Using our trained three-channeled U-Net, we can robustly 
segment the inorganic core and polymer patches without 

Fig. 2 Patch morphology and patterns in hybrid patchy NPs. (a) Schematic of the one-
pot synthesis of patchy triangular nanoprisms with different patch morphologies. (b, 
c) TEM image of tip-coated patchy prisms (c) and the corresponding intensity 
histograms of different components (b). The shaded area indicates the overlapped 
intensity region of the background and patches. (d) Predicted image corresponding 
to panel (c), obtained using a trained U-Net with three output channels: nanoprism 
core (black), polymer patch (white), and background (gray). (e) TEM image overlayed 
with shape contours and the shape fingerprint function describing the patch 
morphology. The d(θ) value corresponds to the length of the red segment. (f) Shape 
fingerprints projected onto the first 3 PCs. Each color denotes a shape group 
predicted by GMM. (g) Averaged shape fingerprint for each group as predicted by 
GMM. Shading indicates the standard deviation. Insets show the average patch shape 
of each group. (h) Fractions of each GMM group (colors correspond to panel (g)) as a 
function of ligand concentration. (i) Occurrence of tip patch combinations within a 
nanoprism at different ligand concentrations. Scale bars: 50 nm.
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having to adjust the intensity threshold. The subsequent 
classification of the segmented contours allows us to discern 
asymmetric versus symmetric polymer patch expansion as a 
function of the ligand concentration used in the synthesis. The 
occurrence of different patches is analyzed both for the global 
ensemble of prisms and in terms of their distribution on the 
prisms. 

The patchy gold prisms are synthesized following our 
previous method by incubating as-synthesized gold prisms in a 
solution of thiol ligand (2-naphthalenethiol, 2-NAT) and block 
copolymer (polystyrene-b-poly(acrylic acid), PS-b-PAA) (Fig. 
2a).21 The 2-NAT ligands adsorb onto the highly curved prism 
tips via thiol‒gold bonds to render the tip area hydrophobic, 
and PS-b-PAA polymers then adsorb onto ligand-coated area via 
hydrophobic attraction. By controlling the ligand concentration 
(denoted as the ratio of 2-NAT concentration to the optical 
density of the prism suspension at its maximum extinction 
wavelength, α), we control the accessible tip area that polymers 
can adsorb onto, resulting into various patch patterns on the 
prism surface.21 As shown in Figs. 2b,c, whereas the gold cores 
have a distinct contrast against the background, polymer 
patches and background have a large overlapping range of 
intensity. Therefore, simply applying a threshold to single out 
polymer patches results in incorrect segmentation. While 
pretreatments such as Gaussian filtering can improve the 
segmentation, such methods sacrifice image spatial resolution 
and nanoscale morphology details.36 In contrast, our modified 
U-Net with three output channels predicts both the gold core 
and polymer patches in a threshold-free manner at pixel-wise 
accuracy as high as 99. 5% (Fig. 2d and Supporting Information). 
Furthermore, the U-Net is also proven to work with varying 
material contrast (cf. Supporting information and Fig. S12). 
About 1,000 contours of segmented polymer patches (~300 
contours for gold cores) are collected from the TEM images of 
the patchy prisms synthesized at different α conditions.

Choosing the centroid of the gold prisms as the coordinate 
center, we obtain shape fingerprints of both the polymer 
patches and gold cores. Given the threefold symmetry of the 
triangular prism core, we focus on the fingerprints of the 
patches on each tip with θ ∈ (‒60°, 60°]. The position θ=0° in 
the patch fingerprints is found from the local maximum of d(θ) 
in the fingerprints of gold cores, which is the orientation of the 
tip (Fig. 2e). The fingerprints of the cores also serve as reference 
for determining the patch patterns, i.e., the orientation and 
position of the patches relative to the core.

Combined with BIC, GMM classifies the patches into six 
groups based on their shape fingerprints after PCA (Figs. 2f,g 
and Fig. S7). The average patch shapes (Fig. 2g, insets) illustrate 
that important parameters determining the patch shape 
grouping are the patch coverage and the symmetry of individual 
patches relative to the prism tip. The patch coverage is defined 
as the angular range θ of the gold core covered by a polymer 
patch, which determines, for example, the effective valency of 
the patchy NPs during assembly.57,61–66 As shown in Figs. 2g and 
S7g, patch coverage increases from groups 1 to 6. Regarding the 
symmetry of patches, the fingerprints of groups 1, 4, and 6 show 
patch distributions symmetric around θ=0°, whereas the 

fingerprints of groups 2, 3 and 5 suggest asymmetric patch 
growth. This symmetry breaking in patch growth was not 
captured in our earlier work using specific patch shape 
descriptors.21

Ligand concentration alters the fractions of the six patch 
groups. As α increases, the fractions of groups with higher patch 
coverage increase (Fig. 2h), consistent with the ligand island 
expansion mechanism proposed in our earlier work. The 2-NAT 
ligands expand their coverage on the prism tip with increasing 
α due to strong ligand‒ligand attraction, thereby recruiting 
more polymers to the tip.21 Regarding the patch symmetry 
along the tip, the groups representing symmetric (groups 1, 4, 
and 6) and asymmetric (groups 2, 3 and 5) patches dominate 
alternatingly as α increases. At the lowest ligand concentration, 
α = 0.12 mM, the dominant patch shape (group 1) is symmetric. 
As α increases to 0.25 mM and 0.5 mM, the asymmetric groups 
2 and 3 become the dominant patch shapes. Comparison of the 
fingerprints of groups 1, and 2, 3 (Fig. 2g) suggests that the 
ligands tend to extend along one side of the prism at this ligand 
concentration. At even higher α (α = 1.0 and 2.5 mM), the 
symmetric patch shapes (groups 4 and 6) take over. We 
speculate that starting from a small symmetric patch on the tip, 
the initial random polymer chain adsorption on one side of the 
tip promotes more polymer adsorption on the same side to 
maximize polymer‒polymer contacts, which gives rise to 
asymmetric patch growth. On the other hand, asymmetric 
patches have a higher surface area exposed to the solvent than 
the symmetric ones, which yields less favorable 
polymer‒solvent interaction. The two effects compete as α 
increases, leading to a switch between symmetric and 
asymmetric patch coverages before the three patches fully 
merge into a single domain.

Lastly, we examine the occurrence of different patch 
combinations on prisms. Figure 2i shows the ten most 
frequently observed combinations, illustrating a tendency 
toward higher patch coverage with increasing α. Thus, utilizing 
our ML-assisted TEM image segmentation and analysis 
workflow allows us to uncover and quantify the complexity in 
the morphology of hybrid NPs. These insights into the synthesis 
mechanism of the hybrid NPs can guide the design of other 
hybrid nanomaterials, such as core–shell NPs, Janus particles, 
and heterostructures in optoelectronic devices.67,68,54

System (iii): 3D tomograph quantification and classification 
guide synthetic control of irregular crumple structures on 
polyamide membranes. In the third system, we extend the use 
of our workflow to characterize and understand 3D 
nanomorphology. While 3D structures of proteins and crystals 
are well studied by imaging techniques such as cryo-electron 
microscopy69,70 and synchrotron x-ray tomography,71 
characterization of synthetic nanomaterials of irregular 3D 
shapes remains limited. We focus on polyamide membranes 
exhibiting heterogeneously distributed crumples, involving 
inner voids and concave surfaces (Fig. 3a). The crumples can be 
seen as individual and non-interconnecting folds of membranes 
of 10‒20 nm thickness.5 Polyamide membranes are the active 
layer of thin-film composites for water purification and 
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molecular separation, whose morphologies closely relate to 
membrane separation metrics.5

TEM-based electron tomography is used to image 
polyamide membranes in 3D at sub-nm voxel resolution. 
Experimentally, tilt series of 2D projections of the membranes 
are collected under TEM and reconstructed into 3D volumes 
(Fig. 3b). We isolate the crumples in each membrane to serve as 
input of our analysis and classification workflow. For the 
fingerprint function, we consider the polar angle θ and 
azimuthal angle φ in the spherical coordinate system to 
determine a distance vector in 3D (Fig. 3b). To capture the 
structural features of the membrane, we measure the distance 
d(θ, φ) as the segment length of the distance vector of 
orientation (θ, φ) that resides within the membrane volume, 
excluding void spaces (Fig. 3b, red line). Higher values of d(θ, φ) 
suggest that more membrane mass is distributed along the 
vector direction. This conversion “collapses” the 3D crumples 
into 2D shape fingerprints maps. For example, the shape 
fingerprint (Fig. 3c) of the crumpled membrane in Fig. 3b 
describes a morphology with most of its mass distributed below 
its centroid, suggesting a bowl-like crumple with concavity 
facing upwards. 

Using PCA of the fingerprints, we choose the first three PCs 
with a cumulative variance of 73% (Fig. S8) and utilize GMM to 
classify the crumples into four groups: “dome,” “dimple,” “lay,” 

and “pancake,” each named after their apparent shapes (Figs. 
3d,e). Previous studies have shown that the crumples exhibit 
different effective moduli depending on the morphology groups 
they belong to.72 Despite the variety of crumples observed in 
the membrane (Fig. 3a), they consistently fall into these four 
groups; crumples within each group show high quantitative 
similarity in their fingerprints (Figs. 3f,g; Fig. S13) and 3D 
tomographs (Fig. 3g), confirming the robustness of this 
classification for recognizing similar shapes in a diverse 
collection of nanomorphologies. Specifically, group 1 has high 
d(θ, φ) regions spanning the top part of the fingerprint maps 
and vanishing d(θ, φ) regions at the bottom, which corresponds 
to dome-shaped crumples with an opening at the bottom. 
Group 2 has low d(θ, φ) regions as a basin in the center of the 
map (θ ≈ 90° and φ ≈ 180°), indicating the existence of a concave 
surface on the vertical side of the crumples, which we refer to 
as standing dimples. Group 3 shows a similarly concave surface 
as well. But unlike group 2, the center position of the concave 
region in group 3 is off the horizontal center of the crumple, 
resulting in a V-shaped region of vanishing d(θ, φ) values in the 
map. The corresponding 3D crumple shape resembles a sofa, 
which we denote as “lay.” Group 4 shows high d(θ, φ) regions 
clustered in a belt at θ = 90°, while the d(θ, φ) values near the 
vertical poles (θ = 0°, 180°) are low. This type of fingerprint 
corresponds to a “pancake” with most of its mass positioned at 
the middle plane, θ = 90°.

The four groups of crumples identified by the GMM show 
distinct curvature-related features. Considering different 
combinations of local Gaussian curvature G and mean curvature 
H, we can distinguish the mesh vertices on the crumple surface 
as four surface curvature structures: tip (G>0,H>0), tube 
(G≈0,H>0), saddle (G<0,H≈0), and valley (G>0,H<0) (cf. 
Supporting information and Fig. S8a).5,73 As illustrated in Fig. 4a, 
for group 4 (“pancake”), the long perimeter results in the 
highest fraction belonging to “tube,” unlike for other groups. 
Due to the mostly convex shape of domes, the tip dominates in 
this group while dimple and lay have more balanced fractions 
between tip and tube. Dimples and lays are very similar in terms 
of all G and H curvatures, and as a result we regarded them as 
the same group in our previous report.5 Nevertheless, our 3D 
shape fingerprint method successfully differentiates dimples 
and lays in terms of the orientation of the concavity of their 
surface relative to the substrate, an aspect not recognized by 
the conventional average curvature descriptors.

Finally, we examine the fractions of crumple groups under 
synthesis at different concentrations of two monomers, m-
phenylenediamine (MPD) and trimesoyl chloride (TMC). Figure 
4b illustrates that the four crumple groups are observed under 
all five reaction conditions, suggesting that the morphologies 
identified by GMM are common across synthesis conditions. 
However, the fractions of each crumple group vary for different 
reaction conditions. At a fixed MPD concentration of 1 w/v%, 
increasing the TMC concentration yields more domes and fewer 
pancakes. Given that the average size of dome crumples is 
smaller than that of pancakes, we infer that a high TMC 
concentration generally leads to smaller crumples. This 
classification of the crumples of a polyamide membrane 

Fig. 3 Fingerprint and classification of 3D nanomorphology in crumpled polyamide 
membranes. (a, b) 2D TEM image (a) and 3D reconstructed electron tomograph of a 
polyamide membrane synthesized at cMPD = 2 w/v% and cTMC = 0.05 w/v%. (b)  Shape 
fingerprint extracted in the spherical coordinate system. The distance traveled within 
the crumple volume by the vector with polar angle θ and azimuthal angle φ starting 
from the centroid of the crumple is measured as d(θ, φ). (c)  Shape fingerprint 
function extracted from the boxed and magnified crumple in panel (b). (d, e) Shape 
fingerprint maps projected onto their first 3 PCs. Data points are colored according 
to the groups predicted by GMM plotted in the PC 1–PC 2 space (d) and in the PC 2–
PC 3 space (e). (f) 3D surface plots showing the shape fingerprint maps averaged 
within each group predicted by GMM. (g) Examples of the 3D crumple shape and their 
fingerprints for each shape group. Scale bar: 500 nm.
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demonstrates the applicability of our workflow to the 
characterization of 3D, irregular, and heterogeneous 
nanomaterials.

Conclusions
We have developed a high-throughput analysis workflow to 
connect synthesis conditions and nanomorphologies by 
integrating automated TEM image segmentation enabled by 
CNN and a descriptor-free, quantitative morphological 
fingerprint-based unsupervised classification. This 
characterization method applies to a variety of materials, 
including metal NPs, soft nanomaterials with irregular shapes 
and heterogeneity in 3D, and hybrid nanomaterials. Other than 
NP shape characterization, the ability to separate overlaying 
NPs also has potential applications in analyzing complicated 
self-assembled NP structures from single TEM projections, for 
example double layered Moiré patterns with overlaying 
projections, and even 3D self-assemblies containing multiple 
layers.74,75 Our approach can potentially guide the synthesis of 
nanomaterials with targeted morphology and also the 
processing and understanding of naturally occurring materials 
with unknown and heterogeneous nanomorphologies, such as 
geocolloids76 and nanoplastics.77–79 Going beyond TEM data, we 
anticipate that our image-based analysis workflow can also be 
applicable to other real-space morphology characterization 
techniques such as scanning electron microscopy, atomic force 
microscopy, and synchrotron x-ray tomography describing 2D 
or 3D morphologies.
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