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Analytic equation for energy dispersion of electronic states in lead chalcogenide nanosheets is derived

within an e�ective mass model. Selection rules for interband optical transitions are analyzed and

expressions for interband optical matrix elements are obtained. It is shown that the main e�ect of

the lateral con�nement in nanoplatelets can be accounted for in terms of the quantized in-plane

wave vector.

1 Introduction

Quasi-2D colloidal semiconductor nanosheets and nanoplatelets
have recently attracted attention due to their promising opto-
electronic properties strongly different from their bulk, quasi-
1D, and quasi-0D counterparts1. Lead chalcogenide nanosheets
and nanoplatelets, along with other lead chalcogenide nanostruc-
tures, are of great interest due to their widely size-tunable band
gap and photoluminescence from the far-infrared to the near-
infrared spectral range. Synthesis and optical spectroscopy of col-
loidal PbS and PbSe nanosheets and nanoplateletes with rock-salt
crystal structure have been reported in a number of studies2–6,
and their potential for optoelectronics7–9 and spintronics10 ap-
plications has been demonstrated.

Theoretical investigation of electronic states in lead-salt
nanosheets within the kkk · ppp approximation was performed by Yang
and Wise11. They started with an isotropic Hamiltonian neglect-
ing band anisotropy and electron-hole Coulomb interaction and
then added them as perturbations. In their study they relied on
numerical calculations, even for the energy spectrum and eigen-
states of the isotropic unperturbed Hamiltonian. However, the
main advantage of the kkk · ppp models is their allowance for fully an-
alytical solutions and possibility to analyze various limiting cases.

In this work we will find the analytical energy dispersion equa-
tions for electron and hole states in a PbX (X=S,Se) nanosheet
or quantum well (QW), the latter term being mainly used for
epitaxially-grown nanostructures. We will consider states in a
single L-valley of a lead chalcogenide semiconductor and use the
isotropic kkk · ppp approximation. This approximation is suitable for
[001]-grown QWs11. We will also discuss interband optical tran-
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sitions in PbX nanosheets and study how lateral confinement af-
fects electron and hole ground states in PbX nanoplatelets. The
electron-hole Coulomb interaction and effect of valley anisotropy
can be accounted for using perturbation theory, as shown in
Ref.11, and will not be considered here.

2 Results and Discussion

2.1 Dispersion equation
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Fig. 1 Scheme of the band energy dispersion in the bulk at zero in-
plane wave vector k = 0 resulting from Eq. (2). To each value of energy
E, satisfying |E| > Eg/2, there correspond two dispersive branches: one
with real kz (red solid line) and the other with imaginary kz = iκz (blue
solid line). Dashed black lines correspond to decoupled conduction and
valence bands (P = 0).
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The conduction and valence band extrema in lead salt semi-
conductors (PbSe, PbS) occur at the L-points of the Brillouin
zone. Electron spectrum near the L-point taking into account only
the two closely lying conduction and valence bands and neglect-
ing band anisotropy can be described by the spherical Dimmock
model11,12. In this model the electron wave function is written
as

Ψ = û |L−
6 ⟩+ v̂ |L+

6 ⟩ , (1)

where |L−
6 ⟩ and |L+

6 ⟩ describe the Bloch functions while û(r) and
v̂(r) are the spinors slowly varying with coordinates and satisfying
the equations

H

[
û
v̂

]
≡

(Eg
2 −αc ∆

)
−iP(σσσ∇∇∇)

−iP(σσσ∇∇∇) −
(

Eg
2 −αv ∆

) [
û
v̂

]
= E

[
û
v̂

]
. (2)

Here σβ (β = x,y,z) are the Pauli matrices, αc, αv, Eg, and P are
parameters of the model and E is the electron energy. We use the
atomic system of units, where the electron charge, the electron
mass, and the Planck constant |e|= m0 = h̄ = 1. The energy band
dispersion in the bulk, resulting from Eq. (2), is shown in Fig. 1
assuming, for simplicity, that the only nonzero component of the
electron quasi-momentum is directed along the z axis.

We will assume that the QW is grown in the z direction, has the
width Lz, and represents a PbX slab confined between the planes
z =−Lz/2 and z = Lz/2. Similar to Ref.13, we will construct solu-
tions of Eqs. (2) in the form of cylindrical waves with the in-plane
wave number k and projection of the angular momentum M. We
will first consider a solution for which the first component of the
bispinor is symmetric with respect to the change z → −z. This
implies that the last component of the bispinor is also symmetric
while the second and the third components are anti-symmetric13.
One can construct four independent solutions of Eqs. (2) satisfy-
ing these conditions. We choose the first two of them in the form
(cf. Ref.13)

û(1)M,k,kz
(ρ,ϕ,z) = A1 coskzz

[
ei(M−1/2)ϕ JM−1/2(kρ)

0

]
, (3)

v̂(1)M,k,kz
(ρ,ϕ,z) =

iPA1

αv k2 +αv k2
z +E +Eg/2

(4)

×

[
kz sinkzzei(M−1/2)ϕ JM−1/2(kρ)

k coskzzei(M+1/2)ϕ JM+1/2(kρ)

]
,

û(2)M,k,kz
(ρ,ϕ,z) = B1 sinkzz

[
0

ei(M+1/2)ϕ JM+1/2(kρ)

]
, (5)

v̂(2)M,k,kz
(ρ,ϕ,z) =

iPB1

αv k2 +αv k2
z +E +Eg/2

(6)

×

[
−k sinkzzei(M−1/2)ϕ JM−1/2(kρ)

kz coskzzei(M+1/2)ϕ JM+1/2(kρ)

]
,

where Jn(x) is the Bessel function of order n,

k2 + k2
z = Ξ+Λ , (7)

Λ =
E (αv −αc)−P2 −Eg (αv +αc)/2

2αcαv
,

Ξ =

√[
E(αv −αc)−Eg(αv +αc)/2−P2

]2
+αcαv(4E2 −E2

g )

2αcαv
.

Note that, when P = 0, i.e. there is no coupling between the
conduction and the valence bands,

Ξ =±
E (αc +αv)−Eg (αv −αc)/2

2αcαv
. (8)

In this limit we obtain

k2+k2
z =

E −Eg/2
αc

, E =
Eg
2

+αc (k2+k2
z ) , conduction band state

for the upper sign in Eq. (8) and

k2+k2
z =

−E −Eg/2
αv

, E =−Eg
2

−αv (k2+k2
z ) , valence band state

for the lower sign in Eq. (8), cf. dashed lines in Fig. 1.
The remaining two solutions are

û(3)M,k,κz
(ρ,ϕ,z) =C1 coshκzz

[
ei(M−1/2)ϕ JM−1/2(kρ)

0

]
, (9)

v̂(3)M,k,κz
(ρ,ϕ,z) =

iPC1

αv k2 −αv κ2
z +E +Eg/2

(10)

×

[
−κz sinhκzzei(M−1/2)ϕ JM−1/2(kρ)

k coshκzzei(M+1/2)ϕ JM+1/2(kρ)

]
,

û(4)M,k,κz
(ρ,ϕ,z) = D1 sinhκzz

[
0

ei(M+1/2)ϕ JM+1/2(kρ)

]
, (11)

v̂(4)M,k,κz
(ρ,ϕ,z) =

iPD1

αv k2 −αv κ2
z +E +Eg/2

(12)

×

[
−k sinhκzzei(M−1/2)ϕ JM−1/2(kρ)

κz coshκzzei(M+1/2)ϕ JM+1/2(kρ)

]
,

where
k2 −κ

2
z = Λ−Ξ . (13)

When P = 0, we obtain

k2 −κ
2
z =

−E −Eg/2
αv

, E =−Eg
2

−αv (k2 −κ
2
z ) , conduction band

state

for the upper sign in Eq. (8) and

k2 −κ
2
z =

E −Eg/2
αc

, E =
Eg
2

+αc (k2 −κ
2
z ) , valence band state

for the lower sign in Eq. (8), cf. dashed lines in Fig. 1.
Next we impose the boundary condition of the four-component

envelope wave function vanishing at z = Lz/2. The four solutions
we constructed are not mutually orthogonal but they are linearly
independent. If one requires that their linear combination (with
the coefficients A1, B1, C1, and D1) vanishes at z = Lz/2 then one
will obtain a system of four homogeneous algebraic equations on
these coefficients. The condition that this system has a non-trivial
solution will lead to the dispersion equation determining the al-
lowed energy values of electrons confined in a QW. The positive
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(negative) values of energy describe the states in the conduction
(valence) band. The dispersion equation takes the form

α
2
v k2(k2

z +κ
2
z )

2 + k2
z

(
αvk2 −αvκ

2
z +E +Eg/2

)2
(14)

−κ
2
z

(
αvk2 +αvk2

z +E +Eg/2
)2

+kzκz

(
αvk2 −αvκ

2
z +E +Eg/2

)(
αvk2 +αvk2

z +E +Eg/2
)

×

[
tanh κzLz

2

tan kzLz
2

−
tan kzLz

2

tanh κzLz
2

]
= 0 .

We note that Eq. (14) has the same structure as equations de-
scribing the dispersion of elastic Lamb waves in plates14–18 and
of hole states in QWs of III-V or Ge type semiconductors19 or
carrier states in QWs of gapless semiconductors of HgTe type19.
Although we derived them for cylindrical waves, the same disper-
sion equations are valid for plane waves.

If we consider solutions of the opposite symmetry with respect
to the transformation z →−z, we will obtain the same dispersion
equation due to the twofold Kramers degeneracy of the levels19.

Let us introduce

f (kz,κz,k) =
g1(kz,κz,k)
h1(kz,κz,k)

, (15)

g1(kz,κz,k) = α
2
v k2(k2

z +κ
2
z )

2 + k2
z

(
αvk2 −αvκ

2
z +E +Eg/2

)2

−κ
2
z

(
αvk2 +αvk2

z +E +Eg/2
)2

,

h1(kz,κz,k) = 2kzκz

(
αvk2 −αvκ

2
z +E +Eg/2

)
×
(

αvk2 +αvk2
z +E +Eg/2

)
,

x =
tan kzLz

2

tanh κzLz
2

.

Then Eq. (14) takes the form

x2 −2 f x−1 = 0 (16)

or
x = f ±

√
f 2 +1 . (17)

Thus, one can distinguish two different types of solutions.

In the limit k = 0 these solutions become

tan kzLz
2

tanh κzLz
2

=
kz(−αvκ2

z +E +Eg/2)
κz(αvk2

z +E +Eg/2)
(18)

and
tan kzLz

2

tanh κzLz
2

=−
κz(αvk2

z +E +Eg/2)
kz(−αvκ2

z +E +Eg/2)
. (19)

In the limit of P = 0 (and k = 0), for the conduction band states,
the right-hand side of Eq. (18) becomes zero, while the right-
hand side of Eq. (19) becomes infinite. Thus, for the conduction
band states, Eq. (18) yields kz = 2nπ/Lz and Eq. (19) yields kz =

(2n− 1)π/Lz, where n is a natural number. For the valence-band
states, in the same limit the right-hand side of Eq. (18) becomes
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Fig. 2 Energy dispersion curves for �rst few subbands in a PbS nanosheet
of the thickness Lz = 40 Å (solid lines) and their �t with parabolic func-
tions (dashed lines) with the e�ective masses mc1 = 0.163 m0, mc2 =

0.253 m0, mv1 = 0.152 m0, and mv2 = 0.225 m0. For red curves, solid and
dashed lines cannot be resolved at this scale.

infinite, and the right-hand side of Eq. (19) becomes zero. Thus,
for the valence band states, Eq. (18) yields kz = (2n−1)π/Lz and
Eq. (19) yields kz = 2nπ/Lz. Therefore, Eq. (18) gives energies of
the odd (i.e. 1st, 3rd, etc.) levels in the valence band and even
(i.e. 2nd, 4th, etc.) levels in the conduction band while Eq. (19)
gives energies of the odd levels in the conduction band and even
levels in the valence band.

The energy dispersion for the first two subbands in the con-
duction and valence bands following from Eq. (14) are shown in
Fig. 2 and Fig. 3 for 40 Å-thick and 10 Å-thick PbS nanosheets,
respectively. The material parameters are taken from Ref.11.

The dispersion equations (14), (18), and (19) explicitly contain
only parameter αv and not αc. It is not always convenient when
analyzing limiting cases. We will see it when we construct the
corresponding eigenstates. Therefore, let us obtain an equivalent
form of Eq. (14) which would contain the parameter αc. To this
end let us consider the following solutions of Eq. (2) (cf. Ref.13)

û(5)M,k,kz
(ρ,ϕ,z) =

iPA2

αc k2 +αc k2
z −E +Eg/2

(20)

×

[
−kz sinkzzei(M−1/2)ϕ JM−1/2(kρ)

−k coskzzei(M+1/2)ϕ JM+1/2(kρ)

]
,

v̂(5)M,k,kz
(ρ,ϕ,z) = A2 coskzz

[
ei(M−1/2)ϕ JM−1/2(kρ)

0

]
, (21)

û(6)M,k,kz
(ρ,ϕ,z) =

iPB2

αc k2 +αc k2
z −E +Eg/2

(22)

×

[
k sinkzzei(M−1/2)ϕ JM−1/2(kρ)

−kz coskzzei(M+1/2)ϕ JM+1/2(kρ)

]
,

v̂(6)M,k,kz
(ρ,ϕ,z) = B2 sinkzz

[
0

ei(M+1/2)ϕ JM+1/2(kρ)

]
, (23)
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Fig. 3 Same as Fig. 2 but for a PbS nanosheet of the thickness Lz = 10 Å.
The e�ective masses corresponding to the �rst two conduction-band and
valence-band subbands are, respectively, mc1 = 0.301 m0, mc2 = 0.385 m0
and mv1 = 0.264 m0, mv2 = 0.322 m0.

û(7)M,k,κz
(ρ,ϕ,z) =

iPC2

αc k2 −αc κ2
z −E +Eg/2

(24)

×

[
κz sinhκzzei(M−1/2)ϕ JM−1/2(kρ)

−k coshκzzei(M+1/2)ϕ JM+1/2(kρ)

]
,

v̂(7)M,k,κz
(ρ,ϕ,z) =C2 coshκzz

[
ei(M−1/2)ϕ JM−1/2(kρ)

0

]
, (25)

û(8)M,k,κz
(ρ,ϕ,z) =

iPD2

αc k2 −αc κ2
z −E +Eg/2

(26)

×

[
k sinhκzzei(M−1/2)ϕ JM−1/2(kρ)

−κz coshκzzei(M+1/2)ϕ JM+1/2(kρ)

]
,

v̂(8)M,k,κz
(ρ,ϕ,z) = D2 sinhκzz

[
0

ei(M+1/2)ϕ JM+1/2(kρ)

]
. (27)

If one requires that a linear combination of these solutions (with
the coefficients A2, B2, C2, and D2) vanishes at z = Lz/2 then one
will obtain a system of four homogeneous algebraic equations on
these coefficients. The condition that this system has a non-trivial
solution will yield an alternative form of the function (15):

f (kz,κz,k) =
g2(kz,κz,k)
h2(kz,κz,k)

, (15a)

where

g2(kz,κz,k) = α
2
c k2(k2

z +κ
2
z )

2 + k2
z

(
αck2 −αcκ

2
z −E +Eg/2

)2

−κ
2
z

(
αck2 +αck2

z −E +Eg/2
)2

,

h2(kz,κz,k) = 2kzκz

(
αck2 −αcκ

2
z −E +Eg/2

)
×
(

αck2 +αck2
z −E +Eg/2

)
.

In the limit of k = 0 we obtain

tan kzLz
2

tanh κzLz
2

=−
κz(αck2

z −E +Eg/2)
kz(−αcκ2

z −E +Eg/2)
, (18a)

tan kzLz
2

tanh κzLz
2

=
kz(−αcκ2

z −E +Eg/2)
κz(αck2

z −E +Eg/2)
. (19a)

2.2 Interband optical transitions

In order to account for the interband optical transitions we note
that usually, for QWs, one can neglect the dependence of the op-
tical matrix element on the in-plane wave number k 20. Thus, we
will continue to consider the limit of k = 0. We will construct the
bispinor wave function corresponding to Eq. (18) using the so-
lutions (20) – (27). In what follows we will be concerned with
the motion along z and neglect normalization factors related to
the in-plane motion. Taking into account both components of the
Kramers doublet, we obtain

ΨM(z) = A2


ψ(z)δM,1/2

ψ∗(z)δM,−1/2
χ(z)δM,1/2

χ(z)δM,−1/2

 , valence band, odd level (28)

where

χ(z) = coskzz−
cos kzLz

2

cosh κzLz
2

coshκzz , (29)

ψ(z) =− iPkz

αck2
z −E +Eg/2

ξ (z) , (30)

ξ (z) = sinkzz−
sin kzLz

2

sinh κzLz
2

sinhκzz , (31)

and A2 is the real normalization constant. The bispinor wave
function corresponding to Eq. (19) can be constructed using the
solutions (3) – (6), (9) – (12). It is given by

ΦM(z) = A1


χ(z)δM,1/2

χ(z)δM,−1/2
ϕ(z)δM,1/2

ϕ∗(z)δM,−1/2

 , conduction band, odd level , (32)

where
ϕ(z) =

iPkz

αvk2
z +E +Eg/2

ξ (z) , (33)

and A1 is the real normalization constant. In particular, the
ground state in the valence (conduction) band is described by
the bispinor (28) [(32)]. In the limit P = 0 it corresponds to
kz = π/Lz. Then χ(z) = cosπz/Lz, ψ(z) = 0, ϕ(z) = 0. We empha-
size that, for the ground states, ψ(z) and φ(z) appear as a result of
the band coupling and are linear in P. For even levels (i.e. 2nd,
4th, etc.) in the conduction or valence bands, denominators in
expressions (30), (33) diverge at P = 0 and another form of the
wave functions is more revealing. In particular, we obtain another
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bispinor wave function corresponding to Eq. (18)

Ψ̃M(z) = B1


ξ (z)δM,1/2

ξ (z)δM,−1/2
ψ̃(z)δM,1/2

ψ̃∗(z)δM,−1/2

 , conduction band, even level (34)

where
ψ̃(z) =− iPkz

αvk2
z +E +Eg/2

χ(z) (35)

and B1 is the real normalization constant. For example, in the
limit of P = 0, the first excited state in the conduction band cor-
responds to kz = 2π/Lz. Then ξ (z) = sin2πz/Lz, ψ̃(z) = 0. When
P ̸= 0 then either of the solutions (28), (34) can be used. Finally,
another bispinor wave function corresponding to Eq. (19) is

Φ̃M(z) = B2


ϕ̃(z)δM,1/2

ϕ̃∗(z)δM,−1/2
ξ (z)δM,1/2

ξ (z)δM,−1/2

 , valence band, even level , (36)

where
ϕ̃(z) =

iPkz

αck2
z −E +Eg/2

χ(z) , (37)

and B2 is the real normalization constant. If P → 0 then
A1,B1,A2,B2 →

√
2/Lz.

Due to the parity of the functions χ(z), ξ (z), the optical tran-
sitions occur between odd or between even levels in the valence
and conduction bands (i.e. 1st to 1st, 1st to 3rd, 2nd to 2nd, etc.).

The velocity operator is given by21

v =

[
−2iαc∇∇∇ Pσσσ

Pσσσ 2iαv∇∇∇

]
. (38)

For the matrix element between the bispinor functions (32)
and (28) we obtain

⟨Φ1,M1 |v|Ψ2,M2⟩= A1 A2

Lz/2∫
−Lz/2

dz
[
δM1,M2 (Pχ1χ2 (39)

−2iαcχ1
∂ψ2

∂ z
+2iαvϕ

∗
1

∂ χ2

∂ z
+Pϕ

∗
1 ψ2

)
ez

(
δM1,1/2 −δM1,−1/2

)
+δM1,−M2 P(χ1χ2 +ϕ1ψ2)

(
δM1,1/2(ex − iey)+δM1,−1/2(ex + iey)

)]
,

where eβ is the Cartesian unit vector (β = x,y,z). For the in-plane
light polarization, the main contribution to the optical matrix el-
ement, which is linear in P, stems from the term Pχ1χ2. How-
ever, when light is polarized along the growth direction, there are
two additional terms of the same order in P and proportional to
αc and αv, respectively. Let us analyze the limit of small P and
consider the transition between ground states in the valence and
conduction bands in the lowest order in P. We obtain

⟨Φ1/2|vz|Ψ1/2⟩= P
Eg − (αc +αv)π

2/L2
z

Eg +(αc +αv)π2/L2
z

(40)

while taking into account only the term Pχ1χ2 would yield
⟨Φ1/2|vz|Ψ1/2⟩ = P. For the matrix element of the z-component

of the coordinate operator one has

⟨Φ1,M1 |z|Ψ2,M2⟩= A1 A2 δM1,M2

(
δM1,1/2 −δM1,−1/2

)

×
Lz/2∫

−Lz/2

dz (χ1 zψ2 +ϕ
∗
1 z χ2) .

In the same limit of small P and transition between the ground
states one has

⟨Φ1/2|z|Ψ1/2⟩=−iP
Eg − (αc +αv)π

2/L2
z

(Eg +(αc +αv)π2/L2
z )

2 (41)

in agreement with the general quantum-mechanical relation

vz = i(Hz− zH) .

When P → 0, the conduction and valence bands are decoupled.
For small P, the interband dipole matrix element is proportional
to P, but band coupling is also proportional to P. As a result, the
matrix element (40) is different from P. The terms proportional
to αc and αv also appear in the expression for the interband ve-
locity matrix element for PbX quantum dots21. Similar to the
present case, they reduce the interband velocity matrix element
and decrease by absolute value with increase of the quantum dot
size (cf. Fig. 1 in Ref.21).

The matrix element between the bispinor functions (34)
and (36), ⟨Ψ̃1,M1 |v|Φ̃2,M2⟩ can be obtained from Eq. (39) by
changing χ(z) → ξ (z), φ(z) → ψ̃(z), ψ(z) → φ̃(z), A1 → B1, A2 →
B2.

2.3 Lateral confinement

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

E 
(e

V)

k Lz, 
1/2 Lz/R

PbS
Lz=40 Å

R

Lz

Fig. 4 Electron and hole ground state energies in a PbS disc of changing
radius R (from R=200 Lz down to R = Lz) and �xed thickness Lz = 40 Å
(symbols) as functions of the parameter

√
π/R ·Lz along with energy dis-

persion curves (lines) for the lowest conduction-band and the uppermost
valence-band subbands of a PbS nanosheet of the same thickness as
functions of kLz.

Finally, let us analyze the effect of the lateral confinement on
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the energies of the electron and hole ground states. To this end,
instead of a quasi-2D nanosheet, we will consider a nanoplatelet
in a form of a disc with the radius R and thickness Lz and use the
numerical procedure described in details in Ref.22. In case of a
quantum box of the size L with the confinement in one spacial di-
mension, one gets quantization of the wave vector with the quan-
tum of π/L. In case of a disc, such characteristic length can be
estimated from the condition L2 = πR2 which yields the quantum
of the wave number of

√
π/R. In Fig. 4 we change the disc radius

from R = 200Lz down to R = Lz and plot the electron and hole
ground state energies in a PbS disc of the thickness Lz = 40 Å as
functions of the parameter

√
π/R ·Lz. This allows us to compare

these energies with the energy dispersion of the lowest conduc-
tion and uppermost valence subbands in a quasi-2D nanosheet of
the same thickness plotted in Fig. 4 as functions of the dimen-
sionless wave number kLz. One can see that the effect of lateral
confinement beyond quantization of the in-plane wave number
is only important when the lateral size becomes comparable with
the disc thickness. Then the electron ground state energy in a disc
is higher than the energy dispersion curve of the electron subband
due to the momentum uncertainty introduced by the lateral con-
finement. Meanwhile, this comparison provides an independent
verification of our analytical results.

3 Conclusions

To conclude, we have considered the kkk · ppp model describing band
structure of lead chalcogenide semiconductors and accounting for
the coupling between the conduction and valence bands. Within
this model, we have found analytic equations for the electron and
hole energy dispersion in subbands resulting from the carrier con-
finement in a PbX nanosheet or QW. Our treatment yields analyt-
ical expressions for the bispinor envelope wave functions describ-
ing quantum confinement along the quantization direction and
provides in-plane effective masses for the electrons and holes in
the subbands. These are key ingredients for constructing a ro-
bust analytical theory of excitons in these materials11,20 which
would enable fully analytical solutions of many problems rele-
vant to optical spectroscopy, e.g. resonant light reflection and
transmission20,23. We obtained selection rules for interband op-
tical transitions and showed that the main effect of the lateral
confinement in nanoplatelets can be accounted for in terms of
the quantized in-plane wave vector.
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