New Journal of Chemistry

NJC

Identifying Molecular Fluorophore Impurities in the Synthesis of Low-Oxygen-Content, Carbon Nanodots Derived from Pyrene

Journal:	New Journal of Chemistry
Manuscript ID	NJ-ART-01-2022-000430.R1
Article Type:	Paper
Date Submitted by the Author:	30-Mar-2022
Complete List of Authors:	 Kim, Doo Young; University of Kentucky, Department of Chemistry Kothalawala, Nadeesha Lakmali ; University of Kentucky Kim, Sang Won; Samsung Advanced Institute of Technology, Inorganic Materials Lab Kim, Namhee; Yonsei University College of Science, Chemistry Henderson, Collan; University of Kentucky, Chemistry Seol, Minsu; Samsung Advanced Institute of Technology, Yang, Fuqian; University of Kentucky, Chemical and Materials Engineering Kwak, SeungYoun; Samsung Advanced Institute of Technology SON, WON-JOON; Samsung Advanced Institute of Technology, Shin, Hyeon-Jin; Samsung Advanced Institute of Technology Choi, Hyeonho; Samsung Electronics, Samsung Advanced Institute of Technology Kim, Byeong-Su; Yonsei University, Department of Chemistry

SCHOLARONE[™] Manuscripts

8 9 10

11

12 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 29

30

31

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Identifying Molecular Fluorophore Impurities in the Synthesis of Low-Oxygen-Content, Carbon Nanodots Derived from Pyrene

Nadeesha L. Kothalawala,^{a†} Sang Won Kim,^{b†} Nam Hee Kim,^{c†} Collan J. Henderson,^a Minsu Seol,^b Fuqian Yang,^d Seung-Yeon Kwak,^b Kyu Young Hwang,^b Won-Joon Son,^b Hyeon-Jin Shin,^{*b} Hyeonho Choi,^{*b} Byeong-Su Kim^{*b}, Doo Young Kim^{*a}

Carbon dots (C-dots) are a promising class of carbonaceous nanomaterials for bioimaging, catalysis, and optoelectronics. However, their applications are alarmed by recent reports that bright molecular fluorophores are co-produced in the synthesis of C-dots, in particular ones prepared through bottom-up approach (carbon nanodots (CND)), commonly derived from citric acid precursor. The presence of highly emissive molecular fluorophore species obscures true performance of CND and severely challenges the development of CND. Here we observe that the issue of molecular fluorophore impurity is still problematic for CND which are derived from a different type of precursor, polycylic aromatic hydrocarbons (PAHs). In this study, low-oxygen-content CND and small molecular fluorophores are co-produced through hydrothermal condensation of nitropyrene. Extensive and systematic characterizations following column chromatographic separation and solvent-induced extraction reveal that molecular fluorophores and CND are clearly dissimilar in structure and optical properties. This work highlights that rigorous separation and purification steps need to be taken for not only hydrophilic CND but also low-oxygencontent CND.

Introduction

32 Carbon dots (C-dots) are a promising class of carbonaceous 33 nanomaterials with attractive properties such as tunable 34 photoluminescence, catalytic activity, photostability, and low 35 cytotoxicity.1-3 Low cost of synthesis and abundance of source 36 materials are significant merits of C-dots.⁴ Due to these 37 appealing features, C-dots are considered well-suited to 38 optoelectronics,^{5, 6} energy conversion and storage,⁷⁻⁹ and biomedical applications.^{3, 10-12} C-dots are typically synthesized 39 40 through two methods, top-down synthesis and bottom-up 41 synthesis. In the top-down synthesis, bulk graphitized carbon 42 materials (carbon black, carbon fiber, graphene oxide, or 43 graphene) are cut into nano-sized particles through acidic oxidation, solvothermal methods, microwave, and sonication 44 45 assisted method.13, 14 Bottom-up synthesis involves the 46 assembly of nanoscale carbonaceous particles built from small 47 precursor molecules. Throughout this work, C-dots specifically 48 produced through bottom-up approach will be labeled as carbon nanodots (CND) ¹⁵ to distinguish them from ones 49

^a Department of Chemistry, University of Kentucky, Lexington, Kentucky, 40506, USA.

- University of Kentucky, Lexington, KY 40506, USA.
- †These authors contributed equally to this work.
- 58 Electronic Supplementary Information (ESI) available: [details of any supplementary
 59 information available should be included here]. See DOI: 10.1039/x0xx00000x
- 60

50

51

52

53

54

55

56

57

synthesized by top-down method. A variety of source materials were utilized for the production of CND including citric acid, glucose, and polycyclic aromatic hydrocarbon.¹⁶ Since the initial discoveries of tunable photoluminescence (PL), development of CND for light emitting diodes has been actively pursued, ¹⁷⁻¹⁹with the basic strategy of tuning PL properties by either controlling the size and shape of the particles (diameter of delocalized graphitic core) or creating functional groups on their periphery.²⁰⁻²⁸

In spite of noticeable progress made in the field, the development of C-dots was severely alarmed by recent reports that the synthesis of C-dots, in particular of CND through bottom-up methods, likely involve the co-production of brightly emissive molecular fluorophores.^{29, 30} For example, fluorescent molecular species were formed during hydrothermal synthesis from citric acid.³¹⁻³³ Yang et al. have isolated molecular fluorophores using silica column chromatography and identified them as an incomplete condensation product generated during hydrothermal synthesis with citric acid and diethylamine precursors.³² Shi et al. have reported the formation of small organic molecular fluorophores during bottom-up synthesis using citric acid and L-cysteine.³³ In these reports, co-produced molecular fluorophore species were distinctive from CND in size, structure, morphology, and optical properties.

Unfortunately, little attention has been paid to this issue of molecular fluorophore impurity generated in the synthesis of CND until recently, often leading to the misleading interpretation of CND properties. Because of this issue, the origin of bright and tunable PL from CND is still disputable. The presence of molecular emitter impurities hinders the further

 ^b Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co. Ltd., Suwon 16678, Republic of Korea.

^c Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea.

^{d.} Materials Program, Department of Chemical and Materials Engineering,

Journal Name

ARTICLE

1 2

7

18

19

20

21

22

23

24

25

26

27

28

29 30

advance of CND. The separation of molecular fluorophore 3 impurities is of utmost importance to identify the source of PL 4 in CND. It is generally straightforward to separate molecular 5 fluorophores from CND by column chromatography and 6 dialysis,³⁰ but the separation may be complicated when two parts are linked through covalent bond.³⁰ Although several 8 articles reported the formation of molecular fluorophores, 9 investigations were limited to the production of CND with citric 10 acid precursor. This problem was not investigated for other 11 types of precursors, for example, polycyclic aromatic 12 hydrocarbon (PAH) compounds. While CND from citric acid, 13 most common type of precursor molecule, are typically rich of 14 oxygen (30% - 45% oxygen content) and highly disordered in 15 structure,^{34, 35} CND from PAHs are more ordered with less 16 content of oxygen.^{28, 36} 17

Herein we report the synthesis of CND through the condensation of substituted PAH, 1,3,6-trinitropyrene (TNP). Molecular fluorophores were separated from CND by silica column chromatography. The composition and optical properties of each fraction were thoroughly analyzed to identify molecular fluorophore and CND. Molecular fluorophores exhibited much brighter emissions than CND. The separation of molecular fluorophores and CND was also accomplished by solvent washout. Dissimilar physicochemical properties, morphologies, chemical structures, and optical properties of molecular fluorophore and CND were confirmed by dialysis in methanol, PL measurements, thermogravimetric analysis (TGA),

separation of bright emitting molecular fluorophores from low emitting CND through diverse extraction methods.

Experimental

Materials

All chemicals and solvents used for the syntheses were purchased from commercial suppliers and used without further purification. Pyrene (99%), HNO₃ (70%), NaOH (99%), and HCl (35~37%) were purchased from Sigma-Aldrich. PVDF membrane filters were purchased from Merck Millipore.

Synthesis of CND

2 gram of pyrene was nitrated in HNO₃ (70%, 160 mL) at 80 °C for 12 hours to produce 1,3,6-trinitropyrene (TNP).²⁸ After cooling to room temperature, the mixture was filtered and neutralized with NaOH. The resultant powder of TNP (6 gram) was dispersed in NaOH (0.2M, 1L) solution under ultrasonication for 1 hour. The suspension was transferred into an autoclave, then heated at 300 °C for 10 hours. The product was filtered with PVDF membrane filter (pore size 200 nm) to remove insoluble carbon product and HCl (70%) was added to the filtered solution dropwise. When the medium is made acidic the solubility of CND is decreased due to the protonation of acidic functional groups such as carboxylic and phenolic groups. Hence, CND start to aggregate and precipitate in the solution which enable separation of the CND through centrifugation. The

Scheme 1. Procedures to synthesize CNDs and separate fractions through column chromatography. At the bottom, it presents the hypothetic scheme of the synthesis starting from pyrene, to TNP, and to CND.

X-ray photoelectron spectroscopy (XPS), Fourier transform Infra-red spectroscopy (FT-IR), Raman spectroscopy, matrixassisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). We identified the molecular fluorophores as incomplete condensation products of TNP. The results reported in this work manifests the systematic

product was separated from the liquid using a centrifuge at 15000 rpm for 10 minutes. The obtained CND were dried at 75°C under vacuum overnight.

Column chromatography

The as-obtained CND were separated through a Biotage Isolera flash purification system with a column bridge (IntertecTM, size of 60 g). The column cartridge was uniformly packed with silica gel as stationary phase and equilibrated with 2.5 column

3

4

5

6

7

8

9

Journal Name

volumes of solvent with low polarity. Then, the screw-top cap of the column cartridge was detached and the remaining solvent on silica gel was eliminated. Next, 0.10 g of crude CND sample was loaded on silica gel was prudently added on to the frit inside the column cartridge. The screw-top cap was then reattached and eluted with a gradient of solvent mixture using dichloromethane (DCM) and methanol (MeOH) using normal phase column chromatography. The percentage of MeOH in the 10 solvent mixture was changed from 0 % to 10 % (v:v) during the 11 separation. 12

Dialysis of Column Fractions 13

14 Dialysis was carried out for each column fraction in MeOH using 15 a regenerated cellulose dialysis membrane (1kDa MWCO) for 24 16 hours. The dialysate (solution outside a dialysis bag) and the 17 retentate (solution inside a dialysis bag) were separately 18 collected to test the photoluminescence. 19

Characterizations

20 UV-Vis absorbance measurements of the column fractions in 21 MeOH were carried out using Thermo-Scientific Evolution 201 22 UV-Visible Spectrophotometer. The samples were scanned in 23 the wavelength range 200 nm – 1000 nm with a bandwidth of 1 24 nm and 0.1 s integration time. Steady-state emission spectra of 25 the column fractions were recorded using the Horiba Scientific 26 Fluoromax Plus-C fluorometer. The measurements were 27 performed at a series of excitation wavelengths using 2 nm 28 entrance and exit slits with an integration time of 0.1 s. 29 Fluorescence lifetime measurements were carried out using the 30 time-correlated single-photon counting method. A DeltaHub[™] 31 high throughput time-correlated single-photon-counting 32 (TCSPC) controller connected to the Horiba Scientific Fluoromax 33 Plus-C fluorometer was used with a Nano LED as the pulsed 34 excitation source. (Excitation wavelength 455±10 nm). The 35 lifetimes were recorded at 584 nm, 515 nm, and 532 nm 36 emission wavelengths, 200 ns measurement range, 5 nm 37 bandpass, and a 1 MHz repetition rate. The instrument 38 response factor (IRF) was obtained using Ludox solution. The 39 lifetime decays were fit, and the lifetime calculations were 40 carried out using Decay Analysis (DAS6) software. The decays 41 were fit using single, two and three exponentials to calculate 42 the lifetime. Absolute photoluminescence Quantum Yield 43 (PLQY) measurements were performed using the integrated 44 sphere connected to the Horiba Scientific Fluoromax Plus-C 45 fluorometer. The excitation wavelength 480 nm. 0.5 nm slit 46 width and 0.5 s integration time were the parameters for the 47 PLQY measurements and the calculation of the PLQY was 48 performed using the Horiba Scientific FluorEssence[™] software. 49 The spectral range was set to cover both the Rayleigh scattering 50 peak of the excitation and the emission peak from the sample. 51 Methanol was used as the blank and the measurement of the 52 blank was carried out under the same condition and parameters 53 as the sample. Calculation of PLQY was carried out based on the 54 following equation, PLQY =[$(P_B-P_A)/(L_A-L_B)$] × 100 %. P_A and P_B 55 are the integrated emission intensities of the blank and the 56 sample, respectively. L_A and L_B are the integrated Rayleigh 57 scattering intensities of the blank and the sample, respectively, 58 in the range of excitation. 59

XPS measurements were carried out using a Thermo Scientific K-alpha X-ray photoelectron spectrometer with а monochromatic Al Ka X-ray source. The analyzed spot size was 400 µm in diameter. Measurements were carried out with the flood gun. Sample preparation was carried out by drop-casting the samples on to a thoroughly cleaned Si wafer. All the survey spectra and the high-resolution spectra were collected with 10 scans. The XPS data analysis was done by deconvoluting the spectra using Thermo Avantage software. Fourier-Transform Infrared Spectroscopy (FT-IR) measurements were conducted using a Nicolet IS50 FT-IR spectrometer with a diamond attenuated total reflectance (ATR) plate. FT-IR spectra were recorded with 4 cm⁻¹ resolution and 64 scans. Samples were drop-cast onto the ATR plate and then dried until the solvent evaporates inside a 60°C oven.

MALDI-TOF mass spectra were recorded on a Bruker UltrafleXtreme spectrometer using 7,7,8,8tetracyanoquinodimethane (TCNQ) as the matrix. XRD patterns were obtained with a Bruker D8 Discover system using Cu Ka radiation.

TGA was performed with a Q50 (TA instruments) by ramping up the temperature from 30 °C to 800 °C at the rate of 100C min⁻¹ under the flow of N₂ gas. TEM images in bright-field mode were collected using a JEM-F200 transmission electron microscope (JEOL). Sample preparation for TEM was conducted by drop casting the sample dispersed in dimethylformamide (DMF) on to a carefully cleaned Si wafer.

Raman spectra of column fractions were obtained using Thermo Scientific DXR micro-Raman spectrometer equipped with a diode-pump Nd:YVO₄ laser. Measurements were carried out at 532 nm excitation and 0.8 mW laser power. The concentrated solutions of F_{Y} , F_{G} , and F_{CND} samples were mounted on a thoroughly cleaned Si wafer and dried in an oven (60°C) to completely remove the solvent. Raman measurements of crude sample, pyrene and TNP were also performed for comparison.

Results and discussion

The synthetic procedure of pyrene-derived CND is summarized in Scheme 1. This scheme also depicts a hypothetical process in which pyrene precursor is first nitrated into TNP and then fused into CND through hydrothermal condensation. TNP enhances its reactivity for hydrothermal condensation.^{28, 37, 38} We observed that the fusion of TNP has led to the formation of wellordered CND with a good crystallinity (as revealed in the TEM images in the later section), whereas conventional bottom-up pyrolysis of citric acid typically produced highly disordered CND.^{39, 40} Filtration and centrifugation were performed to separate the crude CND from unreacted species. Then, column chromatography was performed to separate molecular impurities and CND. Several fractions were eluted through a silica column. Among those, three fractions (labeled as F_{Y} , F_{G} , and F_{CND}) showing distinctive PL behaviors were further analyzed (Figure 1).

Fig. 1(a) shows chromatographic separation of the crude sample under the illumination of UV-light (λ = 365 nm). Among F_Y, F_G, and F_{CND} fractions, F_{Y} has the shortest retention time, and it is

PleNew Journal of Chemistry ns

Journal Name

Figure 1. (a) a photograph of a silica column with the elution of three fractions, F_Y , F_G , and F_{CND} . (b) UV-Vis absorbance spectra of F_Y , F_G , and F_{CND} . (c) PL lifetime decay profiles of F_Y ($\lambda_{Ex} = 455 \text{ nm}$, $\lambda_{Em} = 584 \text{ nm}$) F_G ($\lambda_{Ex} = 455 \text{ nm}$, $\lambda_{Em} = 532 \text{ nm}$) from time correlated single photon counting (TCSPC) experiments. 3-D PL mapping spectra of (d) F_Y , (e) F_G , and (f) F_{CND} (colored bars in the insets show the PL counts per second).

followed by F_G and F_{CND} . The short retention time of F_Y is attributable to its less polarizable character. As shown in the XPS data in Figure 2(a-b), F_Y contains less sp²-bonded carbon than F_G . A negatively charged, silica stationary phase of the column can polarize π electrons delocalized in the sp²-bonded carbon structure, inducing molecular interaction with the stationary phase. The molecular interaction of π electrons with the stationary phase is weaker for F_Y than for F_G , leading to the faster elution of F_Y . The longest retention time of F_{CND} among 3 fractions is attributable to the fact that F_{CND} is significantly larger than F_Y and F_G and has the longest π conjugation through its fully graphitized core. F_Y has yellow emission at 365 nm excitation and F_G gives green emission. F_{CND} appears in the form of a black residue with a bluish-green emission.

UV-VIS spectra of 3 fractions (F_Y , F_G , F_{CND}) are shown in Fig. 1(b). The spectrum of F_{CND} is noticeably different from those of F_Y and F_G . F_{CND} exhibits a very broad absorption spectrum in the range from 200 nm to 700 nm with a shoulder at 280 nm due to π - π * transitions from sp²-carbon domain. A broad absorption in 400-700 nm range represents the transition of surface states present in F_{CND} .²⁸ This feature of CND is commonly reported in literature.²² In contrast, F_Y and F_G present relatively sharp bands and vibronic features which are characteristic of molecular fluorophores.³⁰ The absorption band of F_Y is shifted toward

3

4 5

6

7

8

9

10

11 12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

longer wavelength compared to F_G. This red shift may be due to the structural difference of two molecular species.

green emission with a peak maximum at 515 nm and $F_{\rm Y}$ shows yellow emission with a peak maximum at 584 nm. The raw

Figure 2. Deconvoluted high-resolution C1s XPS spectra of fractions (a) F_Y, (b) F_G, and (c) F_{CND}. (d) percentages of chemical states of carbon element in each fraction determined by XPS analysis, TGA curves of the precursors (e) TNP and pyrene, and (f) F_Y, F_G, F_{CND}, and crude retentate and crude dialysate from dialysis of crude sample.

31 Figure 1(c) presents time-resolved PL decays of F_Y, F_G and F_{CND} 32 recorded by TCSPC experiments. TCSPC decay parameters for 33 the three fractions are summarized in Table S1. PL decay of F_y 34 fits well with single exponential decay at 455 nm excitation (τ = 35 8.9 ns). The 8.9 ns decay is much longer than the intrinsic decay 36 component of CND which has been reported in literature, 37 confirming that F_Y emission is from molecular fluorophore.²³ F_G 38 shows bi-exponential decay with a fast decay component τ_1 (3.2 39 ns) and slower decay component τ_2 (5.7 ns). The fast τ_1 40 component may be from an aggregated form of the molecular 41 fluorophore. In contrast to F_{Y} and F_{G} , the decay of F_{CND} fits with 42 three exponentials, representing complex and inhomogeneous 43 nature of $F_{CND}.$ Three decay components include a fast decay, $\tau_1,$ 44 which corresponds to intrinsic emission from sp²-bonded 45 graphitic carbon core of CND and slower decays, τ_2 and τ_3 . τ_2 and 46 τ_3 components are assigned to functional groups on the 47 periphery of CND. $^{\rm 22,\,30}$ Notably, the 3 decay components of $F_{\rm CND}$ 48 are in a good agreement with the PL decay of CND reported in 49 literature which have been synthesized through a top-down 50 method as well as a bottom-up method.^{22, 23} Based on UV-VIS 51 spectroscopy and TCSPC results, F_Y and F_G can be unarguably 52 assigned to molecular fluorophores and F_{CND} primarily contains 53 CND having a larger graphitic core.

Figure 1(d-f) show 3D PL mapping of three fractions. The PL spectra of F_G and F_Y indicate an excitation-independent behavior, indicating the presence of one or only few chromophores in F_G and F_Y . Conversely, the PL mapping of F_{CND} shows an excitation-dependent behavior: the red-shift of emission as the excitation wavelength get longer. F_G displays 60 emission spectra of three fractions are given in Figure S1 (d-f). The excitation-independent PL of F_{y} and F_{G} along with their higher quantum yields (23 % for F_{Y} and 31 % for F_{G}) is another piece of evidence that F_G and F_Y are molecular fluorophores^{30, 34} formed during hydrothermal condensation of nitrated pyrene precursors. It is noteworthy that, however, UV-VIS and PL spectra of F_{γ} and Y_{G} are distinguishable from those of pyrene and TNP shown in Figure S1 (a-c). The excitation-dependent PL of F_{CND} suggests that this fraction contains multi-chromophoric units and has a heterogeneous structure, in a good agreement with the behavior of CND commonly reported in the literature. PL quantum yield of F_{CND} is very low (1%) since the main emitting species in F_{CND} is weakly-emitting CND with large crystalline, graphitic core and low surface oxidation.³⁰ Photoluminescence excitation (PLE) spectra of F_{Y} , F_{G} , and F_{CND} are presented in Figure S2. PLE spectra of F_G recorded at two emissions (537 nm, 584 nm) are nearly overlapped, indicating the two emissions come from the same origin. The PLE spectra of F_{γ} show two bands implying that two emitting species are present. The two emitting species may be ascribed to different types of molecular fluorophores with slight structural and compositional changes. The PLE spectra of F_{CND} recorded at the two main emission wavelengths (455 nm and 540 nm) reveals the possibility of the presence of two emissive species. Based on the TCSPC result of F_{CND} with 3 decay components, F_{CND} may contain molecular fluorophores (or similar structure) covalently bonded to CND in addition to the weakly-emitting graphitic core.³⁰

Figure 2(a-c) present the high resolution XPS C1s spectra of $F_{\gamma},$ F_{G} and $F_{CND}.$ The C1s high-resolution XPS spectra are

Journal Name

ARTICLE

1

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

2 deconvoluted with peaks assigned to sp²-C (284.6 eV), sp³-C 3 (285.2 eV), C-N (286.1 eV), hydroxyl C-OH (287.34 eV), and 4 carbonyl C=O (288.5 eV). Bar graphs in Figure 2(d) summarize 5 the percentages of various chemical states of carbon element in 6 $F_{Y},\,F_{G},\,and\,\,F_{CND}.$ Compared to $F_{G},\,F_{Y}$ possesses a lower sp2-C 7 content and a higher sp³-C content, indicating more abundant 8 functional groups. F_{CND} has the highest sp²-C content and the 9 least sp³-C content indicating the predominant graphitic 10 domain. In addition to the size of particles in each fraction, their 11 content of sp²-C may be an important factor to influence the 12 retention behavior as discussed in Figure 1. Unlike CND derived 13 from precursors of citric acid, urea, ethylenediamine, cysteine, 14 and saccharides contain high oxygen contents, we report that 15 PAH-derived CND contain much lower oxygen content (<20 %, 16 Figure S4) and a high C/O ratio. 17

Figure S3 presents FT-IR spectra of F_Y , F_G , F_{CND} , and precursor 18 molecules. FT-IR spectra of $F_{\rm Y}$ and $F_{\rm G}$ display sharp peaks in the 19 700 – 1600 cm⁻¹ range corresponding to C-N stretch, sp³ C-H 20 bending, and aromatic ring stretch. TNP shows overlapping 21 peaks in the 700 - 1600 cm⁻¹ indicating their structural 22 23 similarity. In addition, F_Y and F_G present the peaks for hydroxyl groups (3400 cm $^{-1}\),$ amine groups (3250 - 3300 cm $^{-1}\),$ and 24 carbonyl groups (1745 cm⁻¹). An aromatic ring stretch (1580 cm⁻ 25 1) is intensified more in FY and FG than in TNP (Fig. S3(e)), 26 indicating aromatic ring of the precursor molecule becomes 27 extended during condensation. $F_{\mbox{\tiny CND}}$ also display similar 28 functional groups and the content of sp3-C but presents a 29 marked intensity of aromatic domains (1580 cm⁻¹). Overall, FT-30 IR results are consistent with XPS data, giving a convincing 31 conclusion that F_{CND} is dominated by large sp²-C graphitic 32 domains whereas F_G and F_Y comprise more confined aromatic 33 domains and functional groups. 34

TGA provides useful insights about the chemical structure of materials. In Figure 2(e-f), temperature driven mass loss of materials was recorded for precursor molecules (pyrene and TNP) and three fractions. All TGA experiments were carried out under the N₂ flow.⁴¹ F_Y loses 40 % weight around 300 °C and stays stable until it is decomposed at 700 °C. This stability of F_Y after 300 °C could be due to the rearrangement of this molecule into a stable structure in the solid form. FG has shown an extensive mass loss (90 % loss) at 400 °C. TNP (figure 2(e)) shows 50 % weight loss at 350 °C indicating that F_Y and TNP may contain similar structure. Pyrene resembles F_G although it is

decomposed more rapidly. Unlike other samples, F_{CND} shows negligible mass loss (<10% loss) until 800 °C.42 Presumably, large graphitized sp² carbon core in F_{CND} makes it very stable against thermal decomposition. TGA analysis was also performed for the dialysate and the retentate of the crude sample (crude sample without any chromatographic separation) as shown in Figure 2(f). The dialysis of the crude sample was carried out using a 1000 Da molecular weight cutoff (MWCO) membrane for 48 hours. TGA curve of the dialysate overlaps that of F_{Y} confirming the presence of the same molecular fluorophores in the crude dialysate. TGA curve of the retentate shows a trajectory similar to that of FCND indicating that CND are the predominant species retained during dialysis. Overall, TGA results provide strong evidence that small molecular fluorophores were co-produced in the synthesis of CND.

Raman spectroscopy is a sensitive tool to probe the microstructure of materials. For example, D band (1360 cm⁻¹) and G band (1580 cm⁻¹) in Raman spectrum are the signature of six-membered, graphitic carbon domains present in the sample. Figure 3 shows the Raman spectrum of F_{CND} in comparison with those of F_G , F_Y , crude sample, and the precursor molecules. Some of samples produce noisy spectra due to low laser power used in acquiring the signal. This was done to avoid an adverse effect of Raman excitation laser causing structural damages and pyrolysis through heat accumulation along the surface of less conductive samples. Both D band and G band are clearly found in $F_{CND}.\,F_{G}$ and F_{Y} show distinct Raman peaks different from each other and $F_{\mbox{\tiny CND}}.$ Importantly, D and G bands are absent in $F_{\mbox{\tiny Y}}$ and F_G suggesting their identity as non-graphitic molecular fluorophores. Some peaks in the spectra of F_Y and F_G closely overlap with those in the spectra of pyrene and TNP (Figure 3(ef)), implying that molecular fluorophores and precursors share similar structural units. This interpretation is consistent with outcomes of TGA results. In the crude sample, D and G bands are present suggesting the presence of CND in the non-purified crude product. Figure S5 shows the TEM images of F_{Y} , F_{G} , and F_{CND} , respectively. While TEM images of F_{Y} and F_{G} show the sparse dark spots in the entire region of the sample, TEM image of F_{CND} displays the dense dark dots with lateral size of approximately 3-5 nm. Figure S5(d-e) clearly show graphitic lattice fringes of particles. The spacing of 0.2 nm in the lattice fringes (Figure S5(e)) is assigned to (100) plane of graphite. Taken together, these images provide additional evidence that F_{CND} is primarily composed of graphitic sp²-bonded carbons unlike F_Y and F_G.

Recent studies urged researchers to perform dialysis as a critical step to separate CND from impurities and synthesis residues. The separation of species through dialysis is based on the difference in size and solvation radii.^{28, 33, 43} It was reported that small molecular fluorophores were successfully separated from CND by dialysis, and a retentate (solution inside a dialysis bag) and a dialysate (solution outside a dialysis bag) were identified as CND and molecular fluorophores, respectively.^{29, 30} It is noteworthy that in most CND dialysis, water was employed as solvent because CND and co-products derived from citric acid were hydrophilic. On the contrary, our synthesis using

This journal is © The Royal Society of Chemistry 20xx

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

Journal Name

substituted polyaromatic precursor has produced hydrophobic particles, which are only sparingly soluble in water. The choice of a correct solvent is important to avoid the aggregation of materials which may interrupt size-driven permeation process across dialysis membrane. In the current study, the dialysis was carried out for 24 hours in MeOH as the fractions were dissolved in MeOH reasonably well.

The dialysis was performed with F_{CND} , F_Y and F_G , three fractions which were isolated by column chromatography. Figure 4(a) illustrates the dialysis procedure and Figure 4(b-g) are the PL spectra of each fraction measured for the retentate part in comparison with the dialysate part. Note that instrument conditions for the PL experiments (e.g., slit widths, collection time) were kept same for both retentate and dialysate

Figure 4 A schematic illustration of a dialysis procedure. PL spectra of (b) the retentate and (c) the dialysate of F_{V} . PL spectra of (d) the retentate and (e) the dialysate of F_{G} . PL spectra of (f) the retentate and (g) the dialysate of F_{CND} . Note that the PLs of dialysates and retentates were immediately measured after dialysis without concentrating or diluting, and the volume ratio of the dialysate and the retentate in all the fractions is approximately 70:1.

solutions, and the solution volume of dialysate is 70 times larger than that of retentate. For F_{CND} , only a negligible PL intensity was observed in the dialysate (Figure 4(c)) after 24 hours of dialysis indicating very small fraction of F_{CND} leaked through a dialysis bag. On the contrary, the majority of F_{Y} and F_{G} escaped to the dialysate. Based on the volume difference (70:1, dialysate : retentate) and the calculation of areas under PL spectra, 90 % of F_{G} and 99 % of F_{Y} are estimated to leak into the dialysate. Overall, our dialysis results support that F_{CND} particles are significantly larger than F_{G} and F_{Y} .

Although column chromatography and dialysis successfully separated molecular fluorophores and CND, these methods are not applicable for large-quantity samples. Therefore, a simple solvent-based process was tested as a tool, potentially suited to a large-scale production. Acetone and aqueous ammonia solution were used as solvents to extract molecular fluorophores and CND, respectively. As shown in Figure 5, an organic solvent such as acetone is effective in extracting hydrophobic molecular fluorophores. And aqueous ammonia solution (pH 11.2) promotes the dissolution of CND by deprotonating hydroxylic groups on the periphery of CND. The detailed procedure of the solvent washouts is illustrated in Figure S6(a). After extraction with acetone and aqueous ammonia, each washout has passed through vacuum filtration to remove insoluble large particles. Acetone washout solution is denoted as S_A and base washout with aqueous ammonia (pH 11.2) is denoted as S_N . The photographs of S_A and S_N are shown in Figure S6(b). It was attempted to disperse the crude sample in aqueous solution at various pH, and only pH 10.6 and 11.2 solutions successfully dispersed the crude sample (Figure S6(c)) indicating the effect of hydroxylic groups in the sample.

XRD spectra in Figure 6(a) clearly present the structural difference between S_A and S_N. S_N shows a single, broad peak at 26° which is characteristic of the (002) plane of graphite, implying that graphitic carbon material is the major constituent of this sample. Although the XRD spectrum of S_A also reveals the similar peak around 26°, it presents two additional distinct peaks at 12.1° and 24° that are assigned to the (001) plane and the (002) plane of pyrene derivatives, respectively. These two peaks suggest that S_A contains molecular fluorophores derived from pyrene and TNP. TEM images of S_{A} and S_{N} are shown in Figure 5(b-c). In the case of S_A, we didn't observe any atomic symmetry and lattice structure. Instead, needle-like morphology with the length of 100 nm is observed (Figure 5(b), inset). This needle-like structure was similar to that of pyrenederivatives reported in the previous publication⁴⁴ and may originate from the supramolecular assembly of molecular fluorophores. In contrast, dark circular dots with uniform lateral sizes appear in S_N (Figure 5(c)) and the high-resolution TEM image of S_N (Figure 5(c), inset) shows a crystalline structure with a lattice spacing of 0.21 nm corresponding to graphene (100) planes.

To obtain an insight about chemical structure of S_A and S_N , MALDI-TOF analysis was performed. The resultant mass spectra in Figure 5(d) show very different distributions of mass-over-charge (m/z) for S_A and S_N . While S_N shows a broad m/z distribution in the 1000 – 5000 Da range with the maximal intensity around 1500 Da, S_A exhibits much lower m/z centered around 700 Da. This suggests that particles in S_A are quite smaller than in S_N . The representative MALDI-TOF signals are depicted in the insets. For S_N , a regular fragmentation pattern with the repeated m/z of 24 is found in the mass spectra, which is interpreted as C=C bonds of polycyclic aromatic carbon compounds.^{45, 46} For S_A , there is no apparent fragmentation pattern in the whole m/z range. This probably means that the chemical structure of S_A includes not only aromatic units but also aliphatic chains.

FT-IR analysis was performed for S_A and S_N to track their functional groups. In FT-IR spectra (Figure 5(e)), both samples show overlapping characteristic peaks related to the -OH

Journal Name

stretching vibration at 3000-3500 cm⁻¹, C=O stretching at 1690 cm⁻¹, aromatic C=C stretching at 1620 and 1570 cm⁻¹, C-O stretching at 1270 and 1180 cm⁻¹, aromatic C=C bending at 840 cm⁻¹, and C-H bending at 770 cm⁻¹. Although two samples show the similar types of functional groups, the relative intensities of peaks are somewhat different. The aromatic C=C stretching and bending peaks are stronger in S_N than S_A, while the peaks of oxygen-containing groups are more intensified in S_A. These results demonstrate that S_N has the chemical structure of graphitic CND, while the main component of S_A is not the same as S_N.

Conclusions

This work demonstrates that highly emissive molecular fluorophores are simultaneously produced in the synthesis of CND through hydrothermal condensation of substituted PAHs. By employing both column chromatography and a simple solvent-driven extraction, molecular fluorophores were successfully separated from CND. Through extensive characterizations, molecular fluorophores were identified as small hydrophobic derivatives of pyrene and nitropyrene, showing significantly brighter emission than CND. We conclude

Figure 5. (a) XRD spectra of S_A and S_N. TEM images of (b) S_A and (c) S_N. Insets in the figures show the high-resolution TEM images of S_A and S_N. (d) MALDI-TOF mass spectra of S_A and S_N. (e) FT-IR spectra of S_A and S_N.

The PLs of $S_{A_{i}}S_{N_{i}}$ and the remaining residue after the washouts were collected to confirm emissive species present in each washout, as shown in Figure S7 (a-c). PL spectrum of S_A (Fig. S7(a)) resembles those of F_{γ} and F_{G} . The sharp emission in the blue region corresponds to pyrene monomer emission. Clearly the majority of molecular fluorophores are partitioned to S_A. This is in a good agreement with the results of MALDI-TOF, TEM and XRD analyses. PL spectrum of the S_N (Fig. S7(b)) appears as the combination of molecular fluorophore and the real CND. Possibly some molecular fluorophore molecules can be partitioned into $S_{\ensuremath{\text{N}}}$ together with CND into since molecular fluorophores also contains hydroxyl groups. PL spectrum of the washout residue (Fig. S7(c)) is very similar to that of $F_{\mbox{\tiny CND}}$ which mainly contains the CND. This suggests that CND with very little or no hydroxyl groups remain in the residue without being extracted into the base solution.

that molecular fluorophores and CND are clearly dissimilar in chemical structure and optical properties. This work sheds a light on the formation of hydrophobic molecular fluorophores in the synthesis of PAH-derived CND, which was rarely reported in the community. It also highlights the need of rigorous separation and purification steps in the synthesis of not only hydrophilic CND but also low-oxygen-content CND.

Author Contributions

S.W.K., H.-J.S., H.C., B.-S.K., and D.Y.K. participated in conceiving and designing the project. S.W.K., M.S., and H.-J.S. contributed to synthesis and characterization of carbon dots. N.L.K., N.H.K., C.J.H., and B.-S.K. and D.Y.K. contributed to the separation of carbon dots and molecular fluorophores, and their characterizations. F.Y., S.-Y.K., K.Y.H., W.-J.S., and H.C. assisted idea development and data interpretation. All authors have given approval to the final version of

ARTICLE

Journal Name

the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by Samsung GRO award. NHK and BSK appreciate the support from the National Research Foundation of Korea (NRF-2017M3A7B4052802). NK, FY, and DYK are grateful for the support by the NSF through the grant CMMI-1854554.

34.

45.

Journal Name

ARTICLE

1 2

3

4

5

6

7

8

9

Notes and references

- Z. Zhang, J. Zhang, N. Chen and L. Qu, Energy & Environmental Science, 2012, 5.
- 2. X. Du, I. Skachko, A. Barker and E. Y. Andrei, *Nat* 28. *Nanotechnol*, 2008, **3**, 491-495.
- 9
 3.
 Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu and

 10
 P. Chen, Adv Mater, 2019, **31**, e1808283.
- 114.T. Wang, A. Wang, R. Wang, Z. Liu, Y. Sun, G. Shan, Y. Chen12and Y. Liu, Scientific Reports, 2019, 9.
- 13
 5.
 V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R.

 14
 Bhardwaj and S. Chand, J Am Chem Soc, 2011, 133, 9960

 15
 9963.
- 16
 6.
 W. Kwon, Y. H. Kim, C. L. Lee, M. Lee, H. C. Choi, T. W. Lee

 17
 and S. W. Rhee, *Nano Lett*, 2014, 14, 1306-1311.
- 18
 7.
 H. B. Yang, Y. Q. Dong, X. Wang, S. Y. Khoo and B. Liu, ACS

 19
 Appl Mater Interfaces, 2014, 6, 1092-1099.
- 8. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou and L. Qu, *Adv Mater*, 2011, **23**, 776-780.
- 21
 9.
 Z. Zhu, J. Ma, Z. Wang, C. Mu, Z. Fan, L. Du, Y. Bai, L. Fan, H.

 22
 Yan, D. L. Phillips and S. Yang, J Am Chem Soc, 2014, 136,

 23
 3760-3763.
- 24
 10.
 X. T. Zheng, A. Than, A. Ananthanaraya, D. H. Kim and P.

 25
 Chen, ACS Nano, 2013, 7, 6278-6286.
- S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian,
 F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun and B. Yang,
 Chem Commun (Camb), 2011, 47, 6858-6860.
- 29
 12.
 Q. Liu, B. Guo, Z. Rao, B. Zhang and J. R. Gong, Nano Lett,

 30
 2013, 13, 2436-2441.
- 3013.Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo,31Y. Chi and C. M. Li, Journal of Materials Chemistry, 2012,3222.
- 33
 14.
 L. Li, G. Wu, G. Yang, J. Peng, J. Zhao and J. J. Zhu,

 34
 Nanoscale, 2013, 5, 4015-4039.
- 35
 15.
 J. Liu, R. Li and B. Yang, ACS Central Science, 2020, 6, 2179

 36
 2195.
- 37 16. D. Qu and Z. Sun, *Materials Chemistry Frontiers*, 2020, 4,
 38 400-420.
- 39
 17.
 F. Yuan, T. Yuan, L. Sui, Z. Wang, Z. Xi, Y. Li, X. Li, L. Fan, Z.
 40
 A. Tan, A. Chen, M. Jin and S. Yang, Nature
 41
 Communications, 2018, 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
 9.
- 18.W. Kwon, S. Do, J.-H. Kim, M. Seok Jeong and S.-W. Rhee,
Scientific Reports, 2015, 5, 12604.
- 43 19.
 44 19.
 44 Johnston, G. Bappi, J. Z. Fan, H. Kung, B. Chen, M. I.
 45 Saidaminov, K. Singh, O. Voznyy, O. M. Bakr, Z.-H. Lu and E.
 46 H. Sargent, *Nature Photonics*, 2019, 14, 171-176.
- 47 20. N. Fuyuno, D. Kozawa, Y. Miyauchi, S. Mouri, R. Kitaura, H.
 48 Shinohara, T. Yasuda, N. Komatsu and K. Matsuda,
 49 Advanced Optical Materials, 2014, 2, 983-989.
- 50
 21.
 M. Zhao, F. Yang, Y. Xue, D. Xiao and Y. Guo,

 51
 Chemphyschem, 2014, **15**, 950-957.
- 22.
 R. L. Calabro, D.-S. Yang and D. Y. Kim, ACS Applied Nano

 52
 Materials, 2019, **2**, 6948-6959.
- 53
 23.
 L. Bao, Z. L. Zhang, Z. Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi

 54
 and D. W. Pang, Adv Mater, 2011, 23, 5801-5806.
- 55 24. L. Wang, S.-J. Zhu, H.-Y. Wang, Y.-F. Wang, Y.-W. Hao, J.-H.
 56 Zhang, Q.-D. Chen, Y.-L. Zhang, W. Han, B. Yang and H.-B.
 57 Sun, Advanced Optical Materials, 2013, 1, 264-271.
- 58
 25.
 H. Zheng, Q. Wang, Y. Long, H. Zhang, X. Huang and R. Zhu,

 59
 Chem Commun (Camb), 2011, **47**, 10650-10652.

- 26. S. Wang, I. S. Cole, D. Zhao and Q. Li, *Nanoscale*, 2016, **8**, 7449-7458.
- S. Zhu, J. Shao, Y. Song, X. Zhao, J. Du, L. Wang, H. Wang, K. Zhang, J. Zhang and B. Yang, *Nanoscale*, 2015, 7, 7927-7933.
 - L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun and M. Wu, *Nat Commun*, 2014, **5**, 5357.
- 29. J. B. Essner, J. A. Kist, L. Polo-Parada and G. A. Baker, Chemistry of Materials, 2018, **30**, 1878-1887.
- 30. V. Hinterberger, C. Damm, P. Haines, D. M. Guldi and W. Peukert, *Nanoscale*, 2019, **11**, 8464-8474.
- R. Liu, D. Wu, X. Feng and K. Mullen, J Am Chem Soc, 2011, 133, 15221-15223.
- 32. Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang, X. Zhao and B. Yang, *Journal of Materials Chemistry C*, 2015, **3**, 5976-5984.
- L. Shi, J. H. Yang, H. B. Zeng, Y. M. Chen, S. C. Yang, C. Wu, H. Zeng, O. Yoshihito and Q. Zhang, *Nanoscale*, 2016, 8, 14374-14378.
 - V. Strauss, H. Wang, S. Delacroix, M. Ledendecker and P. Wessig, *Chemical Science*, 2020, **11**, 8256-8266.
- 35. N. Dhenadhayalan, K.-C. Lin, R. Suresh and P. Ramamurthy, *The Journal of Physical Chemistry C*, 2016, **120**, 1252-1261.
- 36. T. Lee, S. Won, Y. Park and W. Kwon, *ACS Applied Nano Materials*, 2021, **4**, 2462-2469.
- 37. S. Kaplan, Organic Magnetic Resonance, 1981, **15**, 197-199.
- H. S. Rosenkranz, E. C. McCoy, D. R. Sanders, M. Butler, D. K. Kiriazides and R. Mermelstein, *Science*, 1980, 209, 1039-1043.
- 39. J. Wu, W. Pisula and K. Mullen, *Chem Rev*, 2007, **107**, 718-747.
- 40. X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Rader and K. Mullen, *J Am Chem Soc*, 2008, **130**, 4216-4217.
- 41. P. G. Ren, D. X. Yan, X. Ji, T. Chen and Z. M. Li, *Nanotechnology*, 2011, **22**, 055705.
- 42. N. C. Verma, A. Yadav and C. K. Nandi, *Nat Commun*, 2019, **10**, 2391.
- R. Rajendran, S. Sohila, R. Muralidharan, C. Muthamizhchelvan and S. Ponnusamy, *European Journal of Inorganic Chemistry*, 2014, **2014**, 392-396.
- M. El Idrissi, S. J. Teat, P. F. Corvini, M. J. Paterson, S. J. Dalgarno and P. Shahgaldian, *Chem Commun (Camb)*, 2017, 53, 1973-1976.
 - A. Rizzi, P. Cosmina, C. Flego, L. Montanari, R. Seraglia and P. Traldi, *J Mass Spectrom*, 2006, **41**, 1232-1241.
- 46. L. Becker, T. E. Bunch and L. J. Allamandola, *Nature*, 1999, **400**, 227-228.