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Design, System, Application
Polymer networks, including elastomers and hydrogels, find applications in a wide array of 
systems ranging from biomimetic materials and drug delivery vehicles to membranes and 
wearable devices. In many applications of crosslinked networks, the network system needs to 
provide seemingly disparate properties. For example, networks used as the electrolyte in 
Lithium-ion batteries must allow for rapid Li ion transport while being mechanically robust to 
suppress dendrite growth. Having co-continuous domains that one facilitates transport and the 
other provides mechanical robustness is essential for this function, and as a result, there is a need 
to widen the range of compositions where one can obtain co-continuous domains. In this work, 
we use molecular simulations to show how creating networks from tapered copolymers 
significantly widens the composition window where one observes co-continuous networks. The 
transport properties of small molecules that only move through one of the domains can be greatly 
improved by engineering the copolymer strands. We believe our work will be useful for future 
experimental studies and for designing network systems requiring percolating co-continuous 
domains.
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Journal Name

Percolation of co-continuous domains in tapered copoly-
mer networks

Han Zhanga and Robert A. Riggleman∗a

Inhomogeneous polymer networks with bicontinuous morphologies have shown the potential to in-
corporate typically incompatible material properties into a single sample, and often the desired prop-
erties depend on co-continuity of the domains. Tapered copolymers have been shown to be useful
for facilitating the formation of bicontinuous morphologies, though most applications are in linear
diblock copolymers. We use coarse-grained molecular dynamics simulations to study inhomogeneous
co-networks formed by tapered copolymers with different strand lengths, fractions of the minority
domain and gradient lengths. Cluster and fractal analyses are performed to quantify the sizes of the
clusters formed by the minority domain and to characterize the threshold for domain percolation.
We find that the gradient length can be tuned to widen the composition window where bicontinuous
percolating structures are found, and we show that the diffusion of tracer molecules selective for one
phase is enhanced as the gradient length increases. Our results show how engineering the chemistry
of the constituent polymers in a crosslinked material can allow tuning the material properties.

1 Introduction
Polymer networks, formed by the crosslinking of polymer strands
and junctions, are an important class of soft matter.1–4 Over
the past few decades, the development of synthetic chemistry
and nanotechnology has led to the emergence of many novel
classes of polymer networks with exceptional properties, such
as covalent adaptable networks (CANs)5 and double networks
(DN).6,7 Among them, inhomogeneous polymer networks com-
posed of two components with bicontinuous morphologies have
shown the potential to incorporate potentially disparate con-
stituent properties. For example, Walker et al. have shown
that co-networks formed by phase-separated poly(ethylene gly-
col) (PEG) and polystyrene (PS) are great candidates for solid-
state electrolytes as the bicontinuous morphology allows the net-
works to achieve high storage modulus inherited from the PS
phase as well as high ion conductivity inherited from the PEG
phase.8

Polymeric materials with bicontinuous morphologies have
drawn particular attention over the past few decades due to their
promising applications in the field of polymer electrolytes and
membranes.8–15 In diblock copolymer systems, the gyroid phase
is thought to be promising for applications, but unfortunately
this phase only forms in a narrow composition range.16,17 Co-
networks, in contrast, can exhibit disordered bicontinuous mor-
phologies over a broader range of volume fractions, as the addi-
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tion of crosslinking junctions restrains the formation of ordered
structures.8,18–22 Besides crosslinking the polymer blends, re-
searchers have also developed other strategies to access bicon-
tinuous morphologies, such as using multiblock copolymers23–26

and interfacially modified block copolymers.27–31 Roy et al. have
shown that the ability of accessing the bicontinuous double gy-
roid phase can be improved by adding a gradient section (taper)
between pure A and B blocks in AB diblock copolymers experi-
mentally.27 Brown et al. and Seo et al. have used self-consistent
field theory and molecular dynamics simulations to prove that
adding tapers will further increase the miscibility between poly-
mer blocks and make it easier to form the bicontinuous morpholo-
gies.29,31 The length of the gradient sections can also be tuned to
control the domain spacing and phase behaviors.29,31 Therefore,
one potential strategy for developing co-networks that are bicon-
tinuous over a wide range of compositions could be to employ
tapered copolymers.

In this work, we study tapered copolymer networks with differ-
ent strand lengths (N), gradient section lengths (G) and fractions
of the minority domain ( fA) using coarse-grained molecular dy-
namics simulations. Cluster and fractal analyses are performed
to quantify the sizes of the clusters formed by the minority do-
main. We verify that the co-continuous domains could be used
for transport of small molecules by analyzing the mean square
displacements calculated for tracer particles placed in the net-
works. Our results show that tapered copolymers are an effective
strategy for widening the composition window where networks
have co-continuous percolating domains.
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2 Simulation methods
We conduct a hybrid of Monte Carlo simulations and coarse-
grained molecular dynamics simulations to generate and equili-
brate end-linked tapered copolymer networks. A reactive Monte
Carlo method is used to construct the initial polymer network
configurations from bifunctional polymer strands and tetrafunc-
tional crosslinking junctions, and molecular dynamics (MD) sim-
ulations are then conducted to equilibrate the network systems.
We describe the details of each step below.

2.1 Initial network generation

A reactive Monte Carlo method with irreversible reactions is
used to generate the polymer network configurations, and our
approach is intended to mimic structures generated when lin-
ear polymers with reactive endgroups react with tetrafunctional
junctions.2,8 We begin with a homogeneous network and subse-
quently induce phase separation, similar to experimental proto-
cols that cocrosslink chemically distinct polymers in a common
solvent and induce phase separation upon drying.8 We first place
n tetrafunctional crosslinking junctions at random locations in a
simulation box. The initial box length is set to be L= (2nN+n)1/3,
where N is the degree of polymerization. To generate the connec-
tivity between the junctions, we assume a Gaussian probability
distribution of the end-to-end distances of the polymer strands.
In spherical coordinates, the probability distribution of the end-
to-end distances of polymer strands R can be written as1

P(N,R)4πR2dR = 4π(
3

2πNb2 )
3
2 exp(− 3R2

2Nb2 )R
2dR. (1)

where b is the Kuhn length. Therefore, the probability of hav-
ing a polymer strand between two certain junctions only depends
on the distance between these two junctions. Periodic boundary
conditions are applied when calculating all distances.

During the network forming process, one of the tetrafunctional
junctions with at least one unoccupied functionality is randomly
selected, followed by searching for all junctions with at least one
unoccupied functionality and within the contour distance of the
polymer strands from the first junction. Suppose i is the junc-
tion selected first, the probability of inserting a polymer strand
between junctions i and j is calculated as

Pi j =
4π( 3

2πNb2 )
3
2 exp(− 3R2

i j

2Nb2 )R2
i j

∑k 4π( 3
2πNb2 )

3
2 exp(− 3R2

ik
2Nb2 )R2

ik

, (2)

The summation in the denominator is taken over all possible
connections between the first selected junction and all junctions
within the contour length. To simulate the real end-linked net-
works, we need to incorporate the possibility of having defects
in the networks such as loops.2,32–34 To allow the formation
of the primary loops, we include the possibility of a ”connec-
tion” being formed between junction i and itself as long as this
will not lead to more than four bonds on the junction. We set
Pi j(R < 1) = Pi j(R = 1), and a prefactor is calculated to ensure
that the summation of the probabilities over all possible choices
of R is equal to 1.

The Monte Carlo algorithm works as follows. A randomly dis-
tributed number is drawn from the interval [0,1]. A junction j
within the contour length of the first selected junction is ran-
domly selected, and Pi j is calculated. If the random number is
smaller than Pi j, the insertion of a polymer strand between these
two junctions or the formation of a primary loop is accepted. If
the random number is larger than the probability, the insertion
is rejected. Another junction k within the contour length of the
first junction i is selected next. We add ∑ j Pi j to Pik when con-
sidering the probability of insertion between i and k where ∑ j Pi j

is the summation of the probabilities of all previous unsuccessful
attempts. The iteration continues until there is a successful inser-
tion of a polymer strand or formation of a primary loop. Another
type of defect, dangling end, may form if one junction with only
one unoccupied functionality is selected and there is no possible
connection between it and other junctions (including itself). One
end of the bifunctional strand will be attached to that junction
and the other remains disconnected to form a dangling end. For
polymer strands inserted between two distinct junctions, beads
are placed evenly on the straight line connecting the two junc-
tions. For primary loops, beads are placed evenly on a ring with
radius rloop = Nb/2π. To avoid the huge forces brought by the
overlap of lines or rings, a small random fluctuation, which is a
uniformly distributed random number drawn from the interval
[−b/10,b/10] is added to each bead’s coordinates.

Once all of the functionalities of one tetrafunctional junction
are occupied, that junction is removed from the selection list. This
process is repeated until 2n bifunctional polymer strands are in-
serted into the simulation box. Additionally, a small number of
tracer particles are randomly placed in the networks to character-
ize the transport of small molecules through the networks. These
tracer particles could represent gases that selectively adsorb into
one domain or potentially ions moving through electrolytes. We
keep the number of those unbonded tracer particles as small as
0.1% of the total number of particles in the systems so that the
existence of those tracer particles will not affect the structure of
network systems.

Unlike the Monte Carlo method adopted by Wang et al.33,
which grows the networks based on the topological distances
between crosslinkers, our Monte Carlo method generates the
networks using real-space distances, similar to the Monte Carlo
method used by Gusev.35 Both the Wang et al. and Gusev’s meth-
ods use parameters from real polymers, while our method is a
more coarse-grained method using LJ units. As our goal for this
work is to study the networks formed by tapered copolymers,
our coarse-grained method aims to be computationally efficient
to capture the morphologies of these networks. In section 3.1,
we also compare the Monte Carlo method developed in this work
with the reactive MD method previously used in our group2 to
further validate this network generation method.

2.2 Tapered copolymer

In this work, tapered copolymer networks composed of monodis-
perse linear bifunctional polymer strands are studied. Strands
with two different lengths N = 30 and N = 60 are used to build the
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systems. Following previous simulation studies,29,31,36,37 each
strand is composed of a pure A block, a pure B block, and a gradi-
ent region between those two blocks. Inside the gradient region,
the composition varies gradually from the pure A block to the
pure B block. In other words, a site closer to the pure A block has
a higher chance of placing an A monomer, and a site closer to the
pure B block has a higher chance of placing a B monomer. The
probability of placing a type A monomer at a certain site (s) along
the gradient region is calculated as

PA =


1 s ≤ NA

1− s−NA
G NA < s ≤ NA +G

0 s > NA +G

(3)

And the volume fraction of the pure A block is defined as

fA =
NA

N −G
(4)

where NA is the length of the pure A block and G is the length of
the gradient section. Fig. 1 shows how the probability of placing
a monomer A changes with the location on the tapered copolymer
strand schematically.

Fig. 1 The probability of placing a monomer A (PA) on a particular
location of the tapered copolymer strand. NA is the length of the pure A
block, G is the length of the gradient section, and N is the total length
of the strand.

In this study, networks with different fA and G are studied. We
treat the type A monomers as the minority domain, and networks
with fA = 0.1,0.15,0.2 and 0.25 are tested; since each block of
the copolymers are identical, we expect our systems to exhibit
symmetric properties across fA = 0.5. Also, the maximum length
of the gradient section of the networks is no longer than half of
the strand length. Therefore, for networks with N = 30, we test
systems with G = 0,5,10 and 15 and for networks with N = 60,
we test systems with G = 0,5,10,15,20 and 30.

2.3 Network equilibration

Due to the random nature of our initial network generation,
particles may overlap in the initial configurations. Therefore,
the soft push-off method is used to remove any particle over-
laps before switching to the Lennard-Jones (LJ) potential.38,39

The isothermal-isobaric (NPT) molecular dynamics simulations

are then used to equilibrate the network systems. All junctions,
monomers (type A and B) and tracer particles (I) are modeled
as LJ beads. Nonbonded interactions are modeled using the cut-
and-shifted LJ potential,

Unb
LJ (r) = 4εi j[(

σ

r
)12 − (

σ

r
)6]−4εi j[(

σ

rcut
)12 − (

σ

rcut
)6], (5)

where the cutoff distance rcut = 2.5σ and σ = 1.0 for all LJ sites.
The LJ interaction parameters between all species are set to be
εi j = 1.0, except that εAB = 0.4 to induce phase separation, and
εBI = 0.1 so that the tracer particles only prefer the minority do-
main of the network (type A monomers). Bonding is maintained
through a harmonic bond potential

Ub
LJ(r) =

K
2
(r−σ)2, (6)

where K = 400(ε/σ2). The system temperature is kept at T =

0.7 and the pressure is maintained at P = 1.0 using the Nose-
Hoover thermostat and barostat. The integration time step for the
velocity-Verlet algorithm is set to be 0.002τ, where τ is the unit LJ
time. For the N = 30 and the N = 60 network systems, the NPT
MD algorithms are run 100000τ and 120000τ steps respectively, to
ensure a full equilibration of the network structures. All molecu-
lar dynamics simulations are performed using the LAMMPS pack-
age,40,41 and the visualizations and cluster analyses were per-
formed using OVITO.42

3 Results

3.1 Validation of the network generation method

We compare the primary loop fractions and the shear moduli of
networks generated by the Monte Carlo (MC) method introduced
in section 2.1 and networks generated by the reactive molecu-
lar dynamics (MD) method2 to validate the network generation
method. The primary loop fraction ( f1) is defined as the ratio of
the number of junctions that contain primary loops relative to the
total number of junctions. Previous work has shown that the pri-
mary loop fraction is an essential indicator of the defect density
in the network.33,34 The primary loop fractions of networks with
three different strand lengths, N = 5,10 and 20 are compared in
Table 1, with the same system size.

Table 1 Primary loop fraction ( f1) and shear moduli (µ) comparison
between networks generated by the Monte Carlo (MC) and the molecular
dynamics (MD) methods

Strand length f1 µ
MC MD MC MD

5 0.15 0.16 0.199 ± 0.0452 0.129 ± 0.0018
10 0.13 0.13 0.049 ± 0.0031 0.055 ± 0.0006
20 0.08 0.09 0.033 ± 0.0014 0.041 ± 0.0006

The primary loop fractions of the polymer networks generated
by these two methods agree well. The shear modulus (µ) of each
network is obtained by performing the uniaxial tension in one
direction of the network at a constant true strain rate ε̇t while
keeping the pressure of the other two directions constant. The
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Fig. 2 Cross-sectional images of clusters formed by the minority domain
(type A monomers) of the networks with the strand length (a) N = 30
and (b) N = 60. Different colors represent different clusters, and the dark
blue cluster is the largest cluster in the box.

strain rate ε̇t is chosen to be 2.5×10−5 as in our group’s previous
work.2 The shear modulus is then achieved by fitting the stress-
strain curve to the Gent model43

σ =
µ(λ −λ−2)

[1− J1
Jm
]

, (7)

where σ is the component of the stress tensor in the deformed
direction, λ stands for the change in length in the deformed di-
rection and is defined as λ = L(t)/L(0), J1 = λ 2 +2λ−1 −3 and Jm

is a fitting parameter. From Table 1, only the N = 5 systems ex-
hibit a statistically-significant difference in the measured moduli
from the two network generation methods. We hypothesize this
discrepancy is due to the assumption of Gaussian chain statistics
when we form the network, as the N = 5 chains are too short
to exhibit Gaussian statistics. With relatively long strand lengths
(the N = 10 and N = 20 systems) we see a good agreement in
the shear moduli. As the Monte Carlo method is more efficient
at constructing the initial configurations and the networks stud-
ied in this work have relatively long strand lengths (N = 30 and
N = 60), we proceed to use the MC method to build the initial
configurations in this study.
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Fig. 3 Domain spacing curves for the (a) N = 30 and (b) N = 60 network
systems. Inset of the panel (a) shows sample structure factor curves for
network systems with N = 30 and fA = 0.2.
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3.2 Network microstructure
We first characterize how the gradient in the block copolymer af-
fects the percolation of the minority domain at different overall
compositions fA. Cross-sectional images of the minority domain
in equilibrated networks at each fraction of the minor domain
( fA) and gradient section length (G) are obtained via OVITO42

and presented in Fig. 2. The cluster sizes and their ability to form
percolating domains depends on both fA and G. For systems with
both low fractions of the minority domain and short gradient sec-
tions (e.g., fA = 0.1 and G = 0), disconnected, small clusters are
spread within the network. In contrast, system-spanning clusters
are formed throughout the network for systems with high frac-
tions of the minority domain or long gradient sections.

Structure factors are computed on the minority domain to char-
acterize the long-range order of the structures (inset of of Fig.
3(a)). Lorentzian functions are then used to fit the low-q peak of
the structure factor curves,

L(q) =
1
π

0.5Γ

(q−q∗)2 +(0.5Γ)2 , (8)

where q∗ is the location of the peak and Γ is a fitting parameter.
The domain spacing d = 2π/q∗ can be therefore determined from
the fitting. Fig. 3 shows how domain spacing changes as a func-
tion of the gradient length for each strand length and fraction of
the minority domain. Nearly all curves show a non-monotonic
trend that the domain spacing increases with G at low G. How-
ever, once G exceeds a critical value, the domain spacing drops
with increasing G. We will attempt to explain this non-monotonic
trend using the cluster analyses. At fixed gradient length G, the
domain spacing generally increases with fA. In the limit of large
G, the domain spacing becomes less sensitive to the value of fA.
Moreover, to examine the influence of the initial configuration
on the results, we chose N = 60, fA = 0.1 systems with different
G, generated three configurations for each system and calculated
the structure factors. We verified that the domain spacing cal-
culated is consistent for each system, with a maximum deviation
less than 1σ .

To further quantify the percolation phenomena, cluster anal-
yses of the minority domain (type A monomers) are performed
using tools in OVITO.42 Two particles are considered connected
if their distance is within the cutoff distance chosen to be 1.1σ in
this analysis. If one continuous path connecting the two particles
exists, the two particles belong to the same cluster. We count the
sizes as the number of monomers comprising the largest cluster
and the second-largest cluster within each network as shown in
Fig. 4, and the sizes of the clusters are normalized by the total
number of type A monomers in each system. Generally, the di-
mensions of the largest clusters grow with G, and the size of the
second-largest clusters decreases once the largest cluster spans
the system. Comparing Fig. 3 and Fig. 4, the critical G of the do-
main spacing curves almost occurs at the same location as for the
percolation transition. Before a continuous giant cluster forms,
increasing the gradient length grows the domain spacing but af-
ter a continuous cluster occupies the network, the domain spacing
decreases with the increasing G. For all values of fA considered
here, we are able to observe an apparent percolation of the largest
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Fig. 4 Cluster analysis performed on the minority domain of the equili-
brated networks to count the sizes of largest and second largest clusters.
Networks with the strand length (a) N = 30 and (b) N = 60. The sizes of
the clusters are normalized by the total number of type A monomers in
each system.

cluster. For larger values of fA, only a small gradient is required
to observe percolation, while larger gradient regions are required
for fA = 0.1 and 0.15. This result shows that engineering the poly-
mer strands that form the network allows the system to reach
percolation at small values of fA.

Moreover, fractal analyses are performed to investigate how
the minority domain fills the simulation boxes. We estimate the
fractal dimension of the minority domain (type A monomers) us-
ing the correlation dimension.44 The correlation integral C(∆r) is
calculated by44

C(∆r) = lim
nA→∞

npair

n2
A

(9)

where npair is the number of pairs of type A monomers whose dis-
tances are less than ∆r and nA is the number of type A monomers
in the system. The scaling of the log-log plot of C(∆r) vs. ∆r
reports an estimation of the fractal dimension. Fractal analyses
are performed on N = 60 networks with two different fractions
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Fig. 5 Fractal analyses performed on the minority domain in the N = 60,
(a) fA = 0.1 and (b) fA = 0.25 network systems with various gradient
section lengths (G). The scaling of the log-log plots reports an estimation
of the fractal dimension. Black dashed lines are eye-guides with different
scaling.

of the minority domain and various gradient section lengths as
shown in Fig. 5. For systems with small values of fA and G, the
curves cannot be fit with a single fractal dimension and therefore
suggest a multifractal behavior. At a small length scale, the frac-
tal dimensions of these systems are less than 2.5, which is the
critical fractal dimension for three-dimensional percolation.1,45

Therefore, the minority domain does not percolate in three di-
mensions, which agrees with the results from the visualization
and the cluster analyses. While for network systems with larger
values of fA and G, an approximately uniform fractal dimension
larger than 2.5 is observed across different length scales, suggest-
ing a self-similar and three-dimensional percolating behavior for
these systems.

We also calculate the correlation length of clusters formed by
the minority domain using

ξ
2 = 2∑

i
R2

giS
2
i /∑

i
S2

i (10)
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Fig. 6 The correlation length calculated for the N = 60 systems with
various minority domain fractions fA and gradient section lengths G.
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Fig. 7 Mean square displacement curves of tracers selective for the minor
phase in the (a) N = 30 and (b) N = 60 network systems.

where Rgi is the radius of gyration and Si is the size of each clus-
ter i.46,47 As shown in Fig. 6, for each fA, there is a gradient
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length G where the correlation length ξ approaches the size of
the simulation box (∼ 40σ), which is a feature of the percolation
transition. The fractal analyses and the calculation of the corre-
lation length further support that by tuning the gradient section
lengths (G), tapered copolymer network systems are able to reach
three-dimensional percolation at small values of fA.

3.3 Transport dynamics of the networks
To explore the transport dynamics within the networks, the mean
square displacement (MSD) of the tracer particles placed in the
networks with different strand lengths (N), fractions of the mi-
nor domain ( fA) and gradient section lengths (G) is shown in
Fig. 7. The MSD curves exhibit qualitatively similar behaviors
at both strand lengths. For networks with high fractions of the
minor domain ( fA = 0.2 or fA = 0.25), the mean square displace-
ment is linearly proportional to time on the log-log plots and is
almost independent of the length of the gradient section. While
for networks with low fractions of the minor domain ( fA = 0.1 or
fA = 0.15), MSD increases as a function of G gradually. In par-
ticular, for systems with low fractions of the minor domain and
short gradient section lengths (e.g., fA = 0.1 and G = 0), the MSD
on the time scales sampled remains subdiffusive as the tracers
are trapped in isolated domains. The diffusion behavior of these
tracer particles corresponds well to the structures of the minor-
ity domain in each network and appears to be highly mobile in
samples with percolating structures. It is interesting to note that
the mobility is only weakly dependent on either fA for large G,
as percolation appears to be the most important aspect for main-
taining highly mobile penetrants and not the size or tortuosity of
the domains.

4 Conclusions
We show that tapered copolymer networks with different strand
lengths, fractions of the minority domain and gradient region
lengths have different equilibrium structures. Gradient section
lengths can be tuned to control the domain spacing and perco-
lation transitions of the clusters formed by the minority domain.
Based on the equilibrium structures, the diffusion of non-charged
tracer particles will have two modes. For networks with low fA
and G, tracer particles are trapped in isolated domains so they
undergo subdiffusion. For networks with high fA or G, the mi-
nority domain forms continuous structures. As a result, the tracer
particles can diffuse freely within the networks. Future work will
consider how the bond rigidity affects the percolation phenom-
ena.
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