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All articles must include a separate ‘Design, System, Application’ statement. This statement should 
not be a summary of the work reported as in the article abstract but should be a paragraph of no 
more than 200 words that:

Explains the molecular design or optimisation strategy and its general utility.
Emphasizes the desired systems functionality and design constraints.
Highlights the immediate or future application potential of the work.

Design statement

We proposed an active learning algorithm to reduce the budget to train an accurate deep learning 
model for molecular property prediction. It identifies a subset of a molecule library to train a model 
that accurately predicts the remaining molecules. The process is performed by iteratively updating 
the training set with a batch of molecules that maximize diversity in the latent space. In general, it 
can be applied to material design or reaction network annotation.

The desired system's functionality and constraints mainly depend on the model representation. In 
our benchmarking case with an atomistic deep learning model. It turns out that our algorithm 
performs well in a library of diverse atom types and sizes but not in a library that constitutes of few 
atoms type while having a wide range of functional groups.

This method is particularly valuable in situations where acquiring labeled data is expensive and 
carefully training dataset can enable building accurate models with a data budget. 
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Journal Name

A diversity maximizing active learning strategy for graph
neural network models of chemical properties†

Bowen Li a and Srinivas Rangarajan∗a

This paper presents a diversity-maximizing strategy for actively constructing a compact molecule set
for training graph neural network molecular property models. In particular, we consider the core-
set selection problem, viz., finding a training set S that is (1) representative and (2) a subset of a
pre-defined space U of interest. The strategy iteratively adds new molecules into S so that the its
diversity is maximized (in a greedy way) with respect to U ; the diversity itself is determined from a
Euclidean distance metric of a feature vector that is extracted from the graph neural network model
at that iteration. We apply this strategy to retrospectively construct compact training sets for a
number of experimental and computed molecular properties and show that it outperforms random
sampling of U in almost all cases. Random sampling and the proposed active learning strategy,
however, perform similarly for the QM7 (computed heat of atomization) dataset; further inspection
using data visualization and analysis indicates that this is attributable to the manner in which the
molecule set was created to maximize functional group diversity. Our method, in general, is property
agnostic and does not require the calculation of prediction uncertainty at each iteration.

1 Introduction
Accurate property estimation is required for the modeling and de-
sign of many molecular systems. Examples include the design of
chemicals,1–5 energy carriers,6,7 and drugs,8–10 and multiscale
modeling of reaction systems such as combustion of hydrocar-
bons11 or catalytic valorization of biomass,12,13 wherein fast and
reliable values of molecular properties (e.g. heats or entropy of
formation, boiling and melting points, etc.) are required to com-
pute the properties of (or screen) a vast number of molecules
and intermediates. While conventional methods such as exper-
iments or quantum chemical calculations allow for calculating
these properties reliably, they are not fast enough for computa-
tional tractability.

Machine learning, and in particular deep learning, has quickly
become the approach of choice to compute properties for a
large space of molecules efficiently, particularly in the context
of molecule design and discovery.14–21 However, the quality of
machine learning models is dependent on the underlying fidelity
and quantity of the training data. Deep learning models, that
offer near chemical accuracy for many properties, rely on a train-
ing dataset of tens (if not hundreds) of thousands of data points.
Acquiring such large datasets, computational or experimental, at
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b Address, Address, Town, Country.
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high fidelity can be prohibitively expensive in many cases; this
consequently limits our ability to apply deep learning strategies
to such problems. Since, arguably, not all data points are equally
informative22,a careful selection of training points can, in princi-
ple, reduce the cost of acquiring training data while still building
reliable models.23–26

Active learning is an iterative strategy of selecting training data
to reduce the cost of gathering data while achieving a good per-
formance with a compact model, especially for the fields where
each data point is resource-consuming to acquire, including in
computer vision27–29, material discovery30–32, molecular simula-
tions33–36, and reaction design37. Bayesian optimization, often
employed in molecular discovery, also requires active learning
of a model while simultaneously maximizing/minimizing a de-
sired property.38,39 These active learning approaches usually rely
on quantifying the uncertainty of the points in the molecular or
material space and are designed to eliminate regions with large
prediction uncertainties. Methods to quantify the uncertainty in-
clude (1) calculating the variance between multiple predictions
obtained by training an ensemble of neural network models40

or many instances from one model wherein at each training step
each neuron weight is randomly set to zero with a probability, (2)
using Bayesian approaches (e.g. Bayesian neural networks),41,42

wherein the parameters are assumed to be Gaussian variables and
the final prediction for each point is represented by a distribu-
tion with a mean and variance (which represents uncertainty of
the model).43 (3) distance-based similarity methods wherein the
distance between known and new molecules captured via latent
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features is related to uncertainty44,45 and (4) pipeline methods
wherein two models are trained subsequently to provide uncer-
tainties;46,47 the first model is typically a supervised neural net-
work model, and the second model (a Gaussian process model)
uses the latent features obtained from the first model to provide
predictions and uncertainties.

We here consider a version of the problem of core set selection
for training graph neural network models of molecular proper-
ties: Given a space of molecules of interest, find the smallest set
of molecules that needs to be labeled (i.e., for which property val-
ues have to be obtained) such that a model trained on this set can
be reliably applied to the rest of the space. Core set selection is
valuable when the set of the molecules (or space of interest) is
known a priori, such as in evaluating the properties of a molecule
library or computing the properties of intermediates in a reaction
network for further analysis. In previous work, we employed a
selection strategy that balanced diversity-maximizing exploration
of the space with the exploitation of the existing model to iden-
tify the cover set to train sparse linear additivity models using an
ε-greedy strategy.48 In this work, we develop an active learning
methodology for the popular graph-based deep neural network
model, SchNet, and apply this method through illustrative exam-
ples to build models for a variety of molecular properties. The
novelty of this work is in employing a diversity-maximizing ap-
proach using machine learned features that tracks both the em-
bedding of the underlying data and information about the prop-
erty of interest. Through the examples, we show that: (1) not all
molecules in a space are equally informative and that often a sub-
set, even if randomly chosen, is sufficient to train reliable models
and (2) our proposed method substantially outperforms random
sampling in most cases. We further identify cases wherein our
method does not outperform random sampling, and thereby iden-
tify the requirements for the distribution of the original molecular
space so that our active learning can be cost-efficient.

2 Methods

2.1 Dataset

We benchmarked the active learning strategies on 4 different
datasets: QM7 dataset (with 7102 molecules included),49,50

PHYSPROP dataset51 containing properties like boiling point
(5434), melting point (8698), and LogP values (13402). QM7
is the subset of the GDB-13 database,49 it contains small or-
ganic molecules which go up to seven (7) non-H atoms, and their
atomization energies are calculated by density function theory.
PHYSPROP dataset is a public dataset that contains over 41000
molecules with their structures, names, and physical properties
designed for QSAR studies. It consists of 13 different physico-
chemical and environmental properties. Mansouri et al52 further
curated the data to remove ∼ 10% of the molecules that had data
mismatches or were duplicates.53. In this work, we perform the
active learning study on this curated PHYSPROP dataset of its
three properties that have the most molecules available; boiling
point, melting point, and LogP values.

2.2 SchNet deep learning model

We begin the discussion with the description of the machine learn-
ing model in this work. We apply SchNet, a graph convolution
neural network (GCNN), to map the molecule structure with its
property. It specifically maps a molecule into a feature repre-
sentation as an array of values with a few convolutional layers,
and further obtains its property values from the representation
with several fully connected layers and nonlinear activation. The
structure of SchNet is shown in Figure 1; the architecture con-
sists of three parts: embedding, interaction, and prediction. A
molecule’s configuration, i.e., its positions (3D coordinates) and
atom charges, is fed as input. For each type of atom in the
molecule, a numerical array is formed randomly to represent
the atom as the starting point and its values are adapted while
training. The matrix consisting of all the arrays is then fed into
the interaction blocks as a cluster of graph convolutional layers.
In these layers, a refined representation of the molecule is ob-
tained by acquiring the interaction of each atom and its neigh-
bors. For the atom in the molecule, the interaction is quanti-
fied with continuous-filter convolutions and radial basis functions
of its distance and neighbor atoms. Further details are given in
Schutt et al.54

After the convolution process, the molecule is represented by a
refined matrix of fixed dimension (N × p), wherein N is the max-
imum of atom numbers for the molecule in the dataset and p is
the dimension of the convolutional layer’s output. Note that for
a given molecule, this matrix captures its atom types, positions
as well as the interaction between the atoms in a refined manner,
thus we consider it, or its derivative could be used to represent
the molecules numerically. Finally, following a typical deep learn-
ing process, two fully connected layers are applied to convert the
matrix into a property value through linear summation:

y = wx+b (1)

where w is the parameters in the layers and b is the bias in-
troduced. These two fully connected layers have half the number
of neurons of the convolutional layers and one neuron in the last
layer respectively. Shifted softplus activation function is intro-
duced on the first fully connected layer to introduce nonlinearity.
In this work, we use the atom-wise summation of the first fully
connected layer in our active learning strategy. Additionally, due
to the small training set size for the active learning study to be-
gin with, two dropout layers are added; one between the ouput
layer from the interaction layer and another between the fully
connected layer, which can randomly drop weights in the neu-
rons and thereby reduce the chance of overfitting.

2.3 Active learning

Recently, Sener et al,45 proposed a core-set approach to maximize
the diversity of data points in the training set for building a con-
volutional neural network for image classification. The main idea
of the core-set method is to minimize the active learning loss by
reducing a core-set loss, which refers to the difference between
the average loss over the labeled points and the average loss over
the entire dataset. While the loss in the entire dataset is unknown
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Fig. 1 The architecture of SchNet model to predict molecular properties. The configuration as atom charges and positions of the molecules is used
as input, and goes through SchNet model to be converted into different properties. Additionally, one of the fully connected layers (in the brown box)
is used to represent the molecule numerically and further applied for the active learning study. Specifically, ScheNet model consists of three parts; (a)
the atom embedding layer wherein an numerical array initialized randomly for each atom type is assigned as the input for the neural network, (b) the
multiple interaction layers with continuous filters to update information from neighbour atoms to the center atom; (c) two fully connected layers to
map interaction output to property values.

(as not all labels are available), they show that in a classification
problem using convolutional neural network, the loss is bounded
by a value related to the number of classes, layers, and maximum
sum of the weights in the layers; minimizing this upper bound
would minimize active learning loss. Practically, they argue that
active learning essentially reduces to finding the training set S
(within a computation budget, b) to label such that the largest
distance between each point in the unlabeled set (I) and its near-
est point in S is minimized. Mathematically, this is:

Min
S;|S|≤b

Max
i∈I

Min
j∈S

∆i, j (2)

where ∆i, j is a distance measure between two points i, j. This
essentially is the K-center problem or a minimax facility location
problem55.

Such an algorithm has never been applied in the context of
graph convolutional networks, particularly, for molecules. In this
work, therefore, we adapt this algorithm for learning molecu-
lar properties and show its efficacy albeit without formal proof.
The essential idea is to build a diversity-maximizing training set;
this is intuitive because the more representative the subset is of
the parent set, the better is the expected quality of trained mod-
els. Maximizing a diversity metric requires developing a way to
represent the molecule and compute the distance between any
pairs. Previously,48 we used pathway fingerprints, essentially a
set of atom traversal paths of different lengths on the molecular
graphs, and then employed a simple Euclidean norm to compute

the distance between molecules. However, such a fingerprint is
handcrafted and does not keep track of the molecular property
information. We, therefore, followed the approach of Sener et
al.45 and used the atom-wise summation of the first fully con-
nected layer (see Figure 1) to represent the molecule; we argue
that this vector captures the structural connectivity information
of the molecule (thereby the functional group information) and
also contains some information about the molecular property in
question because of the first fully connected layer. This informa-
tion, however, is not known a priori; therefore, the training set
has to be constructed in an iterative manner. The first fully con-
nected layer was identified to be the optimal choice based on an
empirical study where we also considered other layers.

The proposed algorithm, to this end, is shown in Scheme 1.
The starting point is the molecule space, U , under consideration;
training budget n is the total number of molecules to add to the
training set (which is often a good stopping criterion as it repre-
sents resource constraints for data acquisition) and batch size nk

is the number of molecules to add in each iteration. We typically
set nk > 1 to minimize the number of times the neural network
has to be retrained. In the first step, n0 molecules are randomly
chosen from U and added to S. A neural network model (using,
for instance, SchNet) is then used to train a model on S. Initially,
the models are overparameterized, hence dropouts are particu-
larly useful. Once the model, M, is trained for that iteration of
the outer while loop, this information (see below) is used to it-
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Algorithm 1 Dissimilarity-based selection

Input: molecule space U , training budget n, batch size nk
Output: Training set S

1. Randomly select n0 molecules from U and add to set S.
while |S| ≤ n do

2. Train neural network model, M, on S.
3. Extract features f from M.
4. Solve Max-min(U,nk,S, f ) to get updated S.

end while
5. Return S.

Max-min(U,nk,S, f ):
l = 0
while l < nk do

d={}
for i ∈U −S,

1. Compute di = min(di j, i ∈U −S, j ∈ S)
2. Add di to d

Pick molecule j = argmax({d}) from U −S and add to S.
l ++

end while

eratively add more molecules from U − S into S in batches of nk

molecules, until the set S reaches the training budget or some
other user-specified criterion is reached. The selection of the
molecules is based on a diversity-maximizing criterion. In par-
ticular, a max-min problem is solved greedily, i.e., the shortest
distance between each molecule in the remaining set (U − S) and
any molecule in the training set is computed and the molecule
with the largest such distance is picked to add to the training set,
the process then is repeated until the number of added molecules
reaches nk. The distance here is just the two-norm of the dif-
ference between the respective feature vectors based on M, i.e.,
di j = | fi− f j|2) where fi, f j in the Max-min function are computed
using the vector containing the atom-wise summation of the fully
connected layer of the trained neural network model M applied
to molecules i and j. The max-min is effectively equal to the
method proposed by Wolf et al.55 in finding the k-centers in U. As
the model evolves, the features f that are employed change too.

We emphasize that our method does not explicitly compute pre-
diction uncertainty to select new training data points, thereby
avoiding the associated overhead computational costs. Never-
theless, since the distance in latent space can be used to com-
pute uncertainties,44, we posit that by sampling based on di, j,
we may be implicitly considering some uncertainty information
in our max-min selection. An appropriate end point for iterations
(which we use here) is determined based on the computational
budget (i.e., the maximum number of training data points ‘n’ to
be used); however, one could also periodically compute uncer-
tainty of the model (e.g. using a method that correlates with the
latent space distances44) to determine the stopping point.

2.4 Implementation details

Three interaction blocks are used to map the interaction between
atoms in the convolutional layers of SchNet models for all the
properties and the number of the output neurons from the con-

volutional layers is set to be 128. The two fully connected sub-
sequent layers have 64 neurons and 1 neuron respectively. Thus,
the feature representation for a molecule is of the dimension of
1× 64. (Note that the dimension of the refined matrix from the
convolution process is N× p, wherein N is the maximum the atom
numbers, here dimension 1 is obtained with element-wise sum-
mation for each atom type in N.) During the training process,
the epochs number for each iteration is set differently for each
dataset. Boiling point and melting point models were trained for
400 epochs, while 250 epochs were sufficient for LogP and QM7.
The number of randomly selected initial training set n0 is set to
be 400 for all the datasets, and the number of added points nk

for the batch are set to 160/320/400/200 for BP/MP/LogP/QM7
datasets respectively. The learning rate is fixed at 10−4. Adam
optimizer is used and mean absolute error (MAE) is set to be the
loss metric.

3 Results and discussion

3.1 Active learning performance

We compare the performance of our active learning method
with a random selection strategy at each iteration for the afore-
described datasets. Since the data points are already labeled in
these datasets, we use these studies purely as illustrative exam-
ples retrospectively to demonstrate and evaluate how our algo-
rithm performs. Therefore, we use the property values of the
molecules for training only when the molecule is moved into the
set S. The error metric used is the mean absolute error (MAE)
calculated on the remaining molecules (i.e. U − S) based on the
version of the model at that iteration. It should be noted that
the MAE can be calculated for these illustrative examples because
the property values are available. Clearly, the two methods – ac-
tive learning and random selection – will not result in the same
training set, and therefore the remaining molecules are different
as well. However, since our goal is to solve the core set problem
(as described in the Introduction), our comparison of the error
on the remaining molecules at a given training set size is appro-
priate. For a neural network, the small training sets often lead to
overfitting, thus two dropout layer with the dropout rate set to be
0.2 is added.

Figure 2 shows this comparison for the four different proper-
ties. We conduct nine (9) different runs for the random method
and three (3) for the active learning method. Then plot the aver-
age; the shaded region encompasses the minimum and maximum
values of MAE at each iteration. We use a five-fold cross valida-
tion (CV) value as a benchmark for each of the plots; this rep-
resents an asymptotic limit of the model performance at nearly
80% of the space used for training. To fully understand the be-
havior of our proposed method, we simulated our active learn-
ing and random selection methods until one of them reaches this
CV limit (as opposed to the maximum set size ‘n’ as described
in the algorithm). We can observe that for most of the datasets,
max-min based active learning significantly outperforms random
sampling. Depending on the data set, the max-min method out-
performs right from the start, or somewhere in the middle.

Two broad observations can be made from Figure 2: (1) in
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Fig. 2 The predicted mean absolute error(MAE) on the remaining set with the training set selected either by max-min method or randomly at each
iteration. 4 different datasets are shown, where (a): Boiling point dataset, (b): Melting point dataset, (c): QM7 heat of atomization dataset, (d)
LogP dataset. All models used two dropout layers, one between the ouput layer from the interaction layer and another between the fully connected
layer. The dropout rate (dr) is set to be 0.2, while the second dashed line in (c) shows another condition where dr is set to 0.

all cases, the random sampling and active learning are both able
to train models near the five-fold limit with a fraction of the
data thereby indicating that not all molecules in the datasets are
equally informative and (2) our proposed method outperforms
random sampling for boiling point, melting point, and LogP while
the performance of both methods was quite similar for the QM7
heat of atomization dataset. For the BP dataset, our method takes
around 30% of the total data to reach the five-fold cross valida-
tion error limit while the MP and logP datasets require 40% and
35% respectively.

For the QM7 dataset, we can note that: (1) the max-min does
not perform any better than the random method, (2) both meth-
ods reach the CV limit (for the model with a dropout rate of 0.2)
at ∼ 30% of the data, and (3) the five-fold CV limit for the model
with no dropouts is significantly better. Since SchNet was initially
optimized for the QM9 dataset,56 it is expected that reducing the
dropouts increases the performance. For the other three cases,
dropouts are valuable to prevent overfitting during early itera-
tions.

3.2 Design application: identify top performing molecules

To illustrate the potential in molecule design, we applied our max-
min strategy to the following problem: Given the space (library)
of molecules, identify the top K highest performing molecules. In
particular, we consider the BP, MP, QM7 heat of atomization, and
LogP datasets where we compare the max-min and random sam-
pling strategies to iteratively build neural network models and
evaluate what fraction of predicted top 20 candidates (i.e. the

top 20 highest BP, MP, heat of atomization, or LogP values) are in
the true top 20 list. Figure 3 shows this match rate (in fraction)
as a function of training set size for the two methods for all four
datasets. We can observe that in the case of BP, MP, and LogP
datasets, the match rate with active learning increases faster than
with random sampling. For instance, even with one iteration, the
match rate was 0.8 for the top 20 molecules of the BP dataset. In
other words, the surrogate model trained on only 560 molecules
is able to correctly identify 80% of the “top" molecules. Similarly,
active learning correctly identifies 80% of the top 20 molecules
in 9 and 6 iterations respectively for the MP and LogP datasets.
Random sampling would have resulted in correctly identifying
only about 35− 70% of the top molecules at the corresponding
training set size.

In Figure 4, we compare the MAE of the predicted property of
the true top 20 molecule for each of the four datasets at each iter-
ation. Our method continues to outperform the random sampling
for three datasets; BP, MP, and LogP. The MAE values for the top
20 molecules are significantly lower than for the random selec-
tion and the associated variance is smaller as well. The lower
MAEs clearly explains the higher match rates; therefore, the re-
sults show the ability of the max-min strategy to identify top can-
didates under low computational budget. Finally, we note that
the max-min strategy and random sampling have similar design
performance (and MAE) for the QM7 dataset, consistent with the
results shown in Figure 2.
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Fig. 3 An illustrative design problem to identify the top 20 molecules highest property values: Shown are the match rates at each iteration for the
two sampling strategies for the four different datasets (a): Boiling point dataset, (b): Melting point dataset, (c): QM7 heat of atomization dataset,
(d) LogP dataset. The match rate is the fraction of predicted top 20 molecules that are in the true top 20. The shaded regions capture the variance
arising from the random initial set.

3.3 Analysis of the QM7 data vis-à-vis the boiling point

To understand why our algorithm did not offer any particular
advantage over random sampling for QM7, we further investi-
gated the two methods on QM7 and boiling point examples using
data visualization and the distance metric. Figure 5 shows t-SNE
plots to visualize the high-dimensional data distribution of the
training set selected with the max-min and the random method
for QM7; we also include the corresponding plots for training the
boiling point model for comparison. The t-SNE method maps the
high dimension features into a low dimension space such that
the relative distance of the data points remains unchanged. For
the sake of consistency, we use the feature function, f , generated
from one of the CV models (trained on 80% of the data). We
specifically visualize the training set after four iterations when
the difference in MAE between the random and max-min meth-
ods for the boiling point model becomes noticeable in Figure 2. As
we see in figures 5 (a,b), for the BP dataset, the distribution of the
data for random sampling is different from that for the max-min
method. In particular, active learning tends to sample the upper
region of the plot (corresponding to higher values of the y-axis)
more densely and the bottom region relatively sparsely. (Exam-
ples showing the molecules on different regions of the plot are
included in Supporting information S1.) Additionally, we track
the order of the batches of the added points, and color code them
accordingly. Those plots and histograms showing all the iterations
are included in Supporting information S2 & S3.

Figure 6 shows a comparison of the two methods based on the
distance of each newly added point to the points already present

in the training set for QM7 and the boiling point examples. This
plot should indicate how dissimilar the added points are to those
that are already in the training set as the active learning process
proceeds. For the sake of consistency, we use the same distance
metric as in the max-min algorithm but compute the feature vec-
tor using one of the five models developed for the five-fold cross
validation. To reduce noise, we plot the average distance of every
ten molecules added into the training set. For reference, we also
included the mean pairwise distance between any two molecules
in the complete set U for each case.

Since the max-min method tries to increase the diversity of the
training set, we would naturally expect the distance of the newly
added molecule in the max-min method to be generally larger
than that for the random sampling (for the same training set
size). Indeed, Figure 6(a) shows this trend for the boiling point
example. The distances of molecules added in the initial stages
of active learning are even larger than the mean distance of the
complete space (and the difference in the distance of the added
points between max-min and random sampling is comparable to
this mean). This implies that the initial set (created via uniform
sampling) did not adequately capture the complete space and the
active learning algorithm tended to select dissimilar points (in a
sense outlier points) from U − S into the training set; with in-
creasing training set size, the distance of the added points keeps
decreasing, thereby pointing to the progressively greater diversity
of the training set. For random sampling in the boiling point ex-
ample, we can see that the distance of the added points is largely
uniform regardless of the training set size indicating that the new
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Fig. 4 The predicted mean absolute error(MAE) for the top 20 molecules with the largest property values in the dataset with the training set selected
either by max-min method or randomly at each iteration. 4 different datasets are shown, where (a): Boiling point dataset, (b): Melting point dataset,
(c): QM7 heat of atomization dataset, (d) LogP dataset. The shaded regions capture the variance arising from the random initial set.

points added are similar to the initial set (which was uniformly
sampled). The two plots (orange and blue in Figure 6(a)) even-
tually overlap after more than 1000 points have been added.

For the QM7 example, the distances of the molecules added are
much smaller than the mean pairwise distance of the complete set
and the difference in the distance values between the two meth-
ods is relatively small compared to this mean. Since we start
both methods with an initial uniformly sampled set of molecules,
we can argue that the new points added are similar to the initial
set. It should be noted here that QM7 is derived from the GDB
dataset which in itself was curated through stochastic sampling
techniques that maximized functional group diversity.57 There-
fore, that the random sampling behaved no differently from the
max-min method indicates that the latent features learned by the
neural network model for the heat of atomization are largely re-
lated to the functional group and structural features of the QM7
molecule space.

The boiling point data set is collated from experiments (com-
ing from various sources) in contrast to how QM7 dataset was
created; the differences in the behavior of the max-min strategy
vis-à-vis random sampling for the two examples could arise due
to the underlying functional group distribution of the two sets
as well as the relative importance of capturing the outliers in
the training set for the specific property. Nevertheless, the pro-
posed max-min strategy reliably identifies smaller training sets
with which reliable models can be developed.

4 Conclusion

Reducing the cost of training an accurate graph neural network
model remains a challenge in computational chemistry. Here, we
propose an algorithm based on the max-min method to cut down
the budget for training an accurate deep learning model by ac-
tively constructing its training set. The algorithm aims to max-
imize the diversity in the training set represented by the latent
features learned during the training process, which resembles a
core-set approach problem. We demonstrate the effectiveness of
the algorithm on the PHYSPORP dataset and QM7 dataset and
show that it outperforms the uniform sampling in most cases; the
algorithm succeeded in bringing down the budget of achieving a
model of the same accuracy as using around 80% of the molecules
selected uniformly in the space, while only use 30% ∼ 40% of the
total data instead. For the QM7 dataset case wherein our algo-
rithm does not outperform random sampling, we further visual-
ize the dataset with the t-SNE method and compare that with the
other case. We find out that in the visualization of the QM7 case
the distribution of the points selected by our algorithm appears to
be near-identical with the random sampling, while in the BP case
our algorithm focuses on the edge of the dataset, and the clus-
tered areas are better captured by the model. Also, the analysis
based on the max-min metric shows that our algorithm brings in
much more information in the BP case while failing in the QM7
case. Based on the findings, we conclude that our algorithm is
suitable for the dataset which has a moderate functional group
diversity, while could vary in size and structure.
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Fig. 5 The t-SNE visualization plot of the training set for the BP and QM7 examples using the max-min and random sampling after four iterations.
(a) BP max-min, (b) BP random, (c) QM7 max-min, and (d) QM7 random. The distribution of the points selected by max-min or random sampling
is also plotted as a histogram on the x and y axis.
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