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Abstract
Inertial migration of deformable particles has become appealing in recent years due to its nu-

merous applications in microfluidics and biomedicine. The physics underlying the motion of these

particles is contingent upon the presence of lift forces in microchannels. Therefore, in this work,

we present a lift force analysis for such migration of a deformable droplet in steady and oscillatory

flow regimes and identify the effects of varying Capillary number and oscillation frequency on its

dynamics. We then propose an expression that mimics the lift force behavior in oscillatory flows

accurately. Finally, we introduce a procedure to derive and predict a simple expression for the

steady and averaged oscillatory lift for any given combination of Capillary number and oscillation

frequency within a continuous range.
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I. INTRODUCTION

Inertial migration of particles in microchannels has caught extensive attention in the last

two decades due to its numerous applications in cell sorting, fractionation, filtration, and

separation in many clinical practices [1–4]. The presence of lift forces acting on these particles

is the chief reason for observing the underlying physical phenomena in microfluidic systems

[5–9]. The importance of these forces has motivated many researchers to analyze or measure

them within the microchannel. Di Carlo et al. have derived the inertial lift on particles

and studied the effects of channel Reynolds number and particle size on it; they have shown

that by increasing Reynolds, the magnitude of lift coefficient decreases near the wall and

increases near the channel center [10]. Also, the particle equilibrium positions shift toward

the center as its size increases and its rotational motion is not a key component of the inertial

lift. Using lift force profiles, Prohm and Stark have investigated and categorized the particle

focusing points and demonstrated that the stable fix points lie on either the diagonal or main

axes of the channel cross-section [11]. Su et al. have proposed a fast numerical algorithm

combined with machine learning techniques to predict the inertial lift distribution acting

on solid particles over a wide range of operating parameters in straight microchannels with

three types of geometries by specifying the cross-sectional shape, Reynolds number, and

particle size [12].

Furthermore, there have been attempts to derive analytical relationships for the observed

behaviors. A simple formula using data fitting and least square was obtained to investi-

gate the relationship between the lift and particle size and Reynolds number; according to

the proposed criterion, particle focusing does not occur for too small particles or too low

Reynolds numbers [13]. Asmolov et al. illustrated that the velocity of finite-size particles

near the channel wall is different from that in the undisturbed flow and then reported a

generalized expression for the lift force at Re ≤ 20 [14]. Another study has proposed a gen-

eralized formula for the inertial lift acting on a sphere that consists of 4 terms: wall-induced

lift, shear-gradient-induced lift, slip-shear lift, and correction of the shear-gradient lift; the

authors have further confirmed that wall and shear-gradient are the main features of the lift

[15]. Moreover, there are examples of works concentrating on the effect of particle shape.

For instance, Zastawny et al. presented the great influence of shape both by changing the

experienced values of forces and torques and modifying the Reynolds at which the transition
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to unsteady flow happens [16]. Further extension on previous theories and analytical works

resulted in an analytical expression capturing the weak, inertial lift on an arbitrarily-shaped

particle moving near a wall [17].

Most of the studies on lift forces in the microchannels have focused on solid particles or

non-deformable objects and have analyzed the effect of parameters such as channel Reynolds,

particle size, etc. Therefore, there are very few examples presenting the whole lift force

profiles acting on deformable particles such as droplets and bubbles and studying the effect

of their corresponding parameters like Capillary number on the force values. For example,

Chen et al. have extensively studied the inertial migration of a deformable droplet in a

rectangular microchannel, but their presented lift force profile only considers one value for

particle Weber number (a measure for particle deformability) [18]. Rivero-Rodriguez and

Scheid have divided the underlying physics into different regimes. In the pure inertial regime,

they have plotted the inertial lift on a rigid bubble at different Reynolds numbers, and in

the pure Capillary regime where the inertial effects are absent, a lift profile is presented for

different Capillary numbers [19]. However, their work lacks a similar profile visualizing the

total lift force in the most general nonlinear inertial-capillary regime.

The obtained lift force profiles are mainly the result of either some experimental measure-

ments [10, 20, 21] or applying a feedback control in the numerical code to fix the position of

particle [22], capsule [23], or drop [18]. Nevertheless, in this paper, we present a method for

lift force calculation at different Capillary numbers that solely depends on the trajectory of

the drop. In addition, the importance of exploiting an oscillatory flow in the microchannel

for working with sub-micron particles [24], having direct control over their focal points and

tuning them depending on the flow oscillation frequency [25], and more effective separation

and sorting strategies [26] has already been presented in the literature. Thus, we will expand

our lift force analysis to include both steady and oscillatory regimes at various Capillary

numbers, where the latter is completely missing in the literature. We will then try to fit

analytical expressions to the obtained lift profiles for different cases and present a scheme

to predict this expression over a continuous range of input parameters.

3

Page 3 of 26 Lab on a Chip



II. METHODOLOGY

A single droplet with density and viscosity ratios of one is placed in a laminar flow

of an incompressible Newtonian fluid in a microchannel as illustrated in Fig. 1. The drop

dynamics is simulated using the Front-tracking method [27]. In this approach, the governing

equations are solved in the fixed Eulerian grid, and the obtained flow field information is

used to update the properties across the droplet surface, which is tracked in a Lagrangian

manner. The governing equations to be solved in the entire computational domain are the

continuity and momentum equations:

∂ρ

∂t
+∇ · (ρu) = 0, (1)

∂(ρu)
∂t

+∇ · (ρuu) = −∇P +∇ ·
[
µ(∇u +∇uT )

]
+

∫∫
γκδ(x− xi)ndA, (2)

where ρ is the density of the fluid, P represents the pressure, u is the flow velocity vector,

t is the time, µ is the fluid dynamic viscosity, κ is the curvature at the interface, γ is the

surface tension, δ is the Dirac delta function, x is an arbitrary location in the computational

domain, xi is such position on the drop interface, and n is the unit normal vector to a point

on the drop interface. The aforementioned delta function is defined as:

δ(x) = D̃(x)D̃(y)D̃(z), (3)

D̃(x) =
1

4∆
(1 + cos(

π

2∆
(x))), |x| ≤ 2∆, (4)

where ∆ is the Eulerian grid length.

The pressure gradient in the x direction has a constant magnitude of P0 for the steady

flow and a varying strength of P0cos(ωt) for the oscillatory flow. The periodic boundary

condition is applied in the x direction, and the no-slip condition is applied on the walls in

the y and z directions. Parameters W and Uc (maximum velocity of the steady case) are

used as the characteristic length and velocity, respectively. In other words, x∗ = x
W

, u∗ = u
Uc

,

t∗ = t
W
Uc

, P ∗ = P

µUc
W

, T ∗ = T
W
Uc

(where T is the period), and ω∗ = 2π
T ∗ . Three dimensionless

parameters describe the dynamics of the drop: (i) Reynolds number, Re = ρUc2W
µ

, (ii)
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Capillary number, Ca = µUc

γ
, and (iii) the dimensionless oscillation frequency (ω∗). The

drop has a constant size of a
W

= 0.3 with a spherical initial shape, and Re = 10 in our

entire study. The numerical grid is generated using 196 × 114 × 114 cells in the x, y, and

z directions, respectively, and with 29578 triangular elements for the discretization of the

drop interface.

FIG. 1: Schematic of the problem setup

The droplet Lagrangian equation of motion has the following form [15, 28]:

md
dUd

dt
=

∑
F+ CamρVd(

Du

Dt
− dUd

dt
), (5)

Where md is the mass of the drop, Ud is its velocity,
∑

F is the sum of all other force

terms acting on the droplet, including gravity, pressure gradient, drag, lift, Basset, etc. The

second term on the right-hand side is the added mass effect in which, Cam is the coefficient

of added mass, and Vd is the volume of the droplet (or the displaced volume of the fluid).

The coefficient Cam can be calculated using the following formula [29, 30]:

Cam =

√
χ2 − 1− cos−1( 1

χ
)

cos−1( 1
χ
)−

√
χ2−1

χ2

, (6)

In which, χ is the aspect ratio of the drop.

The main focus of this work is on the cross-stream migration of the droplet. As we know,

5
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the pressure gradient in the wall-normal direction is zero. Furthermore, in this direction, the

fluid velocity (u) is negligible compared to that of the droplet (Ud), and the droplet velocity

is its migration velocity. Also, because the density ratio is one, the droplet is neutrally-

buoyant. In other words, the effective gravitational force can be neglected in this case

[15, 28]. Moreover, since the droplet acceleration rate is not high, the Basset history force is

much smaller than the drag force and can be neglected. Consequently, for the wall-normal

direction, equation 5 can be re-written as:

md(1 + Cam)
dvr
dt

= Flift + Fdrag, (7)

Where vr is the droplet migration velocity.

There are certain types of drag and lift forces that act on the drop as it travels its lateral

trajectory in the wall-normal direction across the channel. Accounting for the fact that

Magnus and Saffman lift forces are often the negligible components, the active dominant

forces on the migrating drop in the wall-normal direction are the lateral drag and inertial and

deformation-induced lift forces [6, 9, 31, 32]. The inertial lift consists of two components:

1. The wall effect: The channel wall retards the particle motion by creating transla-

tional and rotational differences between its velocity and that of the surrounding fluid.

This occurs due to the uneven formation of vortices around the particle that pushes

it toward the channel center [31, 33, 34].

2. The shear gradient lift: The curvature in the shape of the fluid velocity profile

makes the magnitude of the relative velocity of the fluid with respect to the particle to

be higher on the wall side compared to that of the channel center side. This magnitude

difference induces a low pressure on the wall side leading to the formation of a shear

gradient lift that repels the particle toward the wall [31].

The deformation lift pushes the deformable droplet towards the channel center to minimize

its surface energy [19, 31, 32, 35]. The direction of the lateral drag is the opposite of the drop

migration velocity, assuming that the carrier fluid is stationary in the wall-normal direction.

Therefore, if we assume the positive direction to be from the channel center to the wall, the

force balance on the drop (eq. 7) in the wall-normal direction is the following:
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Ftotal = Finertial − Fdeformation − Fdrag, (8)

Assuming a density ratio of one between the fluids inside and outside of the drop, the above

equation can be rewritten as:

md(1 + Cam)ar = (Fshear gradient − Fwall)− Fdeformation − Fdrag, (9)

Where ar is the migration acceleration of the drop. Since the droplet in this study has large

distances from the wall, the wall effect is negligible compared to the shear gradient force

in the inertial lift [31, 33, 36]. Also, to the best of our knowledge, there is no analytical

equation for the shear gradient lift in the literature to date.

The drag force is computed based on its physical definition [37]:

Fdrag =
1

2
CDρvr|vr|Ad, (10)

CD =
24

Rerel
(1 + 0.1Re0.75rel ), (11)

Rerel = Re
vr
Uc

a

W
, (12)

Where CD is the drag coefficient, vr is the relative velocity between the drop and the fluid

in the lateral direction (which is essentially its migration velocity), and Ad is the frontal

projected area of the drop. Equation 11 is consistent with the findings of [37–41] and those

of [42] at a viscosity ratio of one. Although eq. 11 is derived for steady flows, researchers

have shown that the drag coefficient in unsteady flows depends heavily on an unsteady

parameter that includes the density ratio [43, 44]. Since the density ratio in the present

study is one, the aforementioned unsteady parameter becomes zero, and hence, CD for

unsteady flows (including oscillatory cases) can be approximated as the one for steady flows

using this equation. The parameter Ad is calculated based on the projected area of the drop

on a plane having a normal vector parallel to its migration velocity. Thus, the value of this

parameter varies at different instances. This procedure leads to a more precise computation

of the drag force.

Considering a viscosity ratio of one, the deformation-induced lift for a drop that has a

distance higher than its diameter from the closest wall leads to the following compact form

7

Page 7 of 26 Lab on a Chip



[45, 46]:

Fdeformation = 75.4CapµVavga(
a

W
)2

d

W
, (13)

Where Cap = Ca a
W

is the drop capillary number, Vavg is the average velocity of the carrier

fluid across the channel, and d is the distance of the drop from the channel center. The

linear dependency of this force with respect to the distance d in the specified region is also

confirmed in [19].

The lift force analysis in this work is solely based on the drop trajectory. Therefore, to

get a lift profile that spans a wide range of d, the drop is released from two different initial

locations:

• y∗ = 0.46 and z∗ = 1 (the upper release)

• y∗ = 0.98 and z∗ = 1 (the lower release)

The upper release is chosen such that the whole range of studied d falls within the validity

domain of the deformation force equation (eq. 13). This enables us to plug eq. 13 into the

force balance equation (eq. 8) to get the inertial force once the total force is calculated as

elaborated below. We will compare the inertial force at different Ca values for the steady

flows in the results section. The lower release initial location is slightly off from the channel

center since it is also an equilibrium point, and if a drop is placed there, it does not move at

all [18]. The initial z component for both releases is on the main axis for faster convergence

since the drop eventually focuses on the main axes according to our previous work [47]. These

different initial locations do not alter the drop equilibrium position [48–51]. The results of

each parameter computation for both releases will be combined to reflect its overall behavior

within the channel cross-section.

The migration velocity and acceleration of the drop is calculated by taking the first

and second temporal derivatives from its trajectory numerically. Since time-step varies

throughout the simulations to keep the Courant–Friedrichs–Lewy (CFL) number at 0.9, the

following equations are used to obtain the corresponding derivatives [52]:

vr = ḋi ≈
−hi

(hi−1)(hi + hi−1)
di−1 +

hi − hi−1

hihi−1

di +
hi−1

(hi)(hi + hi−1)
di+1, (14)
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ar =
dvr
dt

= d̈i ≈
2
[
di+1 +

hi

hi−1
di−1 − (1 + hi

hi−1
di)

]
hihi−1(1 +

hi

hi−1
)

, (15)

In which hi = ti+1 − ti, hi−1 = ti − ti−1, and di and ti denote the distance from center and

time at the current step, respectively. Both non-uniform finite difference schemes have a

second-order accuracy.

Taking the first derivative from the steady flow trajectory at the lowest Ca (Ca = 0.09)

results in a very noisy curve that is impossible to interpret. Therefore, we use an accurate

non-linear regression by minimizing the sum of squared errors to fit the trajectories with

analytical expressions, from which we can take first and second derivatives analytically. The

trajectory from the upper release is very similar to an exponential decay. Therefore, we fit

a curve with the following form to it:

d(t) ≈ cebt + k, (16)

Where c, b, and k are all constants that should be determined by curve fitting. The constant

k is essentially the drop equilibrium distance from the center. The trajectory from the lower

release looks like the sigmoid logistic function. Consequently, we use the following equation

as its analytical general form:

d(t) ≈ c

1 + e−b(t−k)
+ offset, (17)

Where again, c, b, k, and offset are the regressor constants. The regression fits to both

trajectories from the upper and lower release have very high R2 scores of 0.99 as plotted in

fig. 2. This figure further confirms that the drop focuses at the same d∗ regardless of its

initial location.

Once the migration acceleration is derived following the aforementioned steps, it will be

multiplied by the effective mass of the drop, as pointed out in eq. 9, to calculate the total

force on the left-hand side of this equation. The term md in this equation is equal to 4
3
πa3ρ,

which is the total constant mass of the drop with the initial spherical shape. The exact

computation of the added mass coefficient requires separate extensive work. Therefore, as

a zeroth-order approximation, the term (Cam) in eq. 9 is considered to be 0.5, which is

the value for a solid spherical particle. Salibindla et al. have shown that the added mass

9
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0 500 1000
t∗

0.2

0.4

d∗

Upper release trajectory

Upper release fit

Lower release trajectory

Lower release fit

FIG. 2: Regression fits to both steady trajectories at Ca = 0.09

coefficient for deformable bubbles decreases as the bubbles deform and their aspect ratio

along their semi-major and minor axes increases [53]. Sangani et al have illustrated that the

changes in the added mass of the bubbles as a function of their surface tension (or Capillary

number) are very small and negligible [54]. Presas et al. have also mentioned that the

added mass generally increases as the surface of the particle becomes more rigid [55]. These

findings imply that the added mass coefficient for a non-deformable particle is the maximum.

Furthermore, after completing the calculations, it turns out that the left-hand side of eq. 9

is much smaller than the calculated drag force on the right-hand side. Consequently, this

observation combined with the findings and reports of the aforementioned studies confirms

that the more exact calculation of the added mass does not change the analysis and results

significantly compared to the presented ones with the upper-bound approximation used for

Cam in our work. Finally, by subtracting the drag force from the total force, the total lift

force can be obtained.

III. RESULTS AND DISCUSSION

In this section, we report the results of a single deformable droplet simulations in the

previously introduced microchannel that contains either steady or oscillatory carrier fluid.
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As we are interested in studying the effects of oscillation frequency and Capillary number

on the lift force, we fix the Re at a value of 10. Ca ranges between 0.09 and 1.67, and for

oscillatory cases, ω∗ values are chosen such that for a channel with a cross-section of 100µm

and water as the working fluid at room temperature, the frequency ranges between 2Hz and

200Hz, which is mostly referred to in the literature [56].

As mentioned earlier in the introduction, to the best of our knowledge, the literature is

missing a comprehensive and complete lift force analysis, taking all its dominant components

into account, or a migration velocity analysis versus distance from the channel center for

the case of deformable droplets or bubbles in the microchannel flows with a square channel

cross-section. Also, as we will see in the following sections of the paper, the inertial lift

turns out to be a function of Ca, and hence, we cannot compare it to those of other works

performed for solid or non-deformable particles for validation purposes. Therefore, since

our scheme is based on the droplet trajectory, which depends on inertial and deformation

effects, we have compared our numerical results from these effects to the corresponding

ones of other works for validation. For instance, the drop deformations at Ca = 0.2 and

different Deborah numbers are compared with those of Aggarwal and Sarkar [57] and are in

good agreement with theirs having a maximum error of 0.72%. The droplet trajectories at

Re = 8.25, Ca = 0.18, a
W

= 0.2 and Re = 21, Ca = 0.14, a
W

= 0.3 have been compared with

those reported by Marson et al. [58], where our results lie within their uncertainty bands.

Furthermore, we have shown that the numerical results are independent of the distance

between two consecutive drops in an infinite domain in the flow direction. This has been

done by comparing the drop trajectory at Re = 10, Ca = 1, and ω∗ = 0.1 for three different

channel lengths of 4W , 6W , and 8W in our simulations. The maximum difference between

the drop trajectories for L = 4W and L = 6W is 0.0003W (0.1%), and the one between

those of L = 4W and L = 8W is 0.0005W (0.2%). The results have also been shown to be

mesh independent by comparing the drop trajectories for the case of Re = 10, Ca = 1, and

ω∗ = 0.1 with two different grids of 196 × 114 × 114 and 256 × 152 × 152. The maximum

difference between their drop distances from the channel center is 0.0009W (0.3%). More

detail can also be found in our previous work [47].

Figure 3 illustrates the dimensionless average velocity of flow across the channel over

dimensionless time. It can be seen that while the steady regime has the largest constant

V ∗
avg in a single direction, the average of oscillatory V ∗

avg in each half of a periodic cycle
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decreases by increasing the frequency [25, 47]. Although the average of a sinusoidal function

in half of a period is constant regardless of its oscillation frequency ( 1
π
ω

∫ π
ω

0
sin(ωt)dt = 2

π
),

the lower maximum absolute value of V ∗
avg at higher frequencies is the chief reason for the

observed phenomenon.

200 400 600

t∗
−0.4

−0.2

0.0

0.2

0.4

V ∗
avg

steady

ω∗ = 0.01

ω∗ = 0.1

ω∗ = 0.5

ω∗ = 1

FIG. 3: Average velocity of flow across channel cross section versus time at Ca = 1.67 and
Re = 10

Figure 4 visualizes the dimensionless time-dependent frontal projected area of the droplet

(parameter Ad in equation 10) as it migrates toward its lateral equilibrium position traveling

both upper and lower-release trajectories. The first thing we note is that in the transient

stage before focusing, the drop has a higher average projected area while traveling the upper

trajectories (fig. 4b) compared to the one in the lower trajectories (fig. 4a) in each of the

flow regimes correspondingly. This is because the drop experiences more shear and deforms

easier when traveling the upper trajectories. Moreover, in each subfigure, the average of

A∗ is lower at a higher frequency since the average deformation parameter decreases by

increasing the frequency [47]. It is important to note that the minimum projected area of

the drop in the steady flow is its initial value when the drop is still undeformed and has a

spherical shape; in the oscillatory cases, this minimum value occurs when the direction of

the flow changes in each periodic cycle. Also, as expected, the drop at higher Ca deforms

more and has a higher projected area. This is why Ca = 1.67 is used for visualization here

among all the other cases in the present study.

Figure 5 demonstrates the dimensionless total lift coefficient as a function of the dimen-
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(a)

0 500 1000 1500 2000

t∗
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0.32

0.33

A∗

ω∗ = 1

ω∗ = 0.5

ω∗ = 0.1

ω∗ = 0.01

steady

200 250 300

0.29

0.30

0.31

(b)

FIG. 4: Transient cross-stream frontal projected area of the drop when it is released from a
(a) lower initial location, and an (b) upper initial location

sionless distance of the drop from the channel center in the steady flows and at different Ca.

Similar to [18], all of the lift coefficients in this work are obtained by dividing the derived

lift force, according to the introduced methodology in the previous section, by a factor of
π
8
ρV 2

avg,s(2a)
2, in which Vavg,s is the average of flow velocity across the channel cross-section

in the steady flow. As expected, we observe that each lift curve has a stable equilibrium

point at the corresponding drop focal point. Furthermore, at each Ca, the maximum pos-

itive total lift occurs when the drop migration velocity is also maximum. This maximum

value is the highest at the lowest Ca. In addition, the maximum negative total lift is at the

initial location of the upper trajectory, and its absolute value is the highest for higher Ca

except for Ca = 1.67. This is because as we go further up from the channel center and the

drop focal point, the deformation lift becomes the dominant force. According to equation

13, this force is larger at higher Ca. Also, the negative lift sign in this region is due to

the direction of the deformation-induced force, which is toward the center. The drop at

Ca = 1.67 is released from an initial location closer to the center compared to other cases

because it has the highest deformability among all. When it was released from the same

location as that of the others, it experienced an extremely large deformation that led to its

break up. Therefore, the selected initial point for Ca = 1.67 is the furthest possible one

from the center that results in the largest possible deformation of the drop throughout its

upper trajectory without its break up. Consequently, since the drop in this case starts to

travel from a closer distance from the center, it has a lower maximum negative total lift

compared to Ca = 1 and Ca = 0.5 (please refer to eq. 13 that shows the dependence of the
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deformation force on the drop distance from the center).

0.1 0.2 0.3 0.4 0.5

d∗
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

ftot
Ca = 1.67

Ca = 1

Ca = 0.5

Ca = 0.33

Ca = 0.25

Ca = 0.09

FIG. 5: Total lift coefficient for the steady flows at different Ca

Since the principal hypothesis underlying equation 13 is that the wall effect is negligible

due to the large distance of the drop from it [31, 33, 36], we can assume that the shear-

gradient force is the dominant component of the inertial lift in our study. After subtracting

the calculated deformation lift based on this equation from the obtained total lift (fig. 5),

we can derive the inertial lift, as shown in fig. 6. We see that the inertial lift coefficient

increases as we increase the Ca number. This could make sense as the more deformed shape

of the drop can help further increase the difference between the relative velocities of the

fluid with respect to the drop on the channel wall and center sides, which is the chief reason

for the shear-gradient force existence [31]. According to eq. 13, the deformation force is a

linear function of the drop distance from the center and is larger for higher values of Ca.

Because of this trivial conclusion, a plot of this force is not depicted here.

The discussions in the previous two paragraphs are also visible in fig. 7 where the inertial

and deformation lifts in the steady flows are plotted against the droplet migration velocity

(v∗) in subfigures (a) and (b), respectively, at various Ca. We further note that unlike the

linear dependency of the deformation lift on the flow average velocity Vavg, this force is a

non-linear function of the drop migration velocity. Also, the obtained total force from eq.

8 is orders of magnitude smaller than the calculated drag force in this equation. Therefore,

since the term Rerel in eq. 11 is negligible compared to 1, the derived total lift from eq. 8
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Ca = 0.33
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FIG. 6: Inertial lift coefficient for the steady flows at different Ca
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0.8

finert

Ca = 1.67

Ca = 1

Ca = 0.5

Ca = 0.33

Ca = 0.25

Ca = 0.09

(a)

−0.0100 −0.0075 −0.0050 −0.0025 0.0000
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Ca = 1.67

Ca = 1

Ca = 0.5

Ca = 0.33

Ca = 0.25

Ca = 0.09

(b)

FIG. 7: The relationships between droplet migration velocity with (a) inertial lift and (b)
deformation lift coefficients for the steady flows at different Ca

is approximately a linear function of the drop migration velocity.

Total lift curves acting on the drop in steady and different oscillatory flows at a few Ca

numbers are expressed in fig. 8. In each subfigure, the higher the drop migration velocity, the

larger are both the amplitude of oscillations and the distance between two corresponding

points (e.g. maximum or minimum in the oscillatory cycle) on two consecutive periodic

cycles. Hence, similar to steady regimes, the maximum absolute values of oscillatory lift

coefficients occur when the drop migration velocities are maximum as well. Similarly, the

lift oscillations around the drop focal point and near the lower initial point are lower because
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FIG. 8: Total lift coefficients for steady and oscillatory flows with different frequencies at
(a) Ca = 1.67, (b) Ca = 1, (c) Ca = 0.5, (d) Ca = 0.33, and (e) Ca = 0.25

the drop migration velocities are minimum at those locations.

The moving averages of the total lift coefficients in fig. 8 are plotted in fig. 9. The

selected d∗avg while computing the average of lift in each corresponding oscillatory cycle is

chosen to be the middle value of d∗ in that period. Therefore, since oscillatory cycles with
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lower frequencies have longer periods, the averaged lift curves at lower frequencies cover

a shorter length of d∗avg (a later beginning and a sooner ending). We first note that the

obtained averaged lift curves for the oscillatory flows are not necessarily as smooth as that

of the steady lift at the corresponding Ca. This observation becomes more pronounced as

we increase ω∗ or decrease Ca. Nevertheless, these fluctuations on the curves are negligible

compared to those of the original oscillatory lifts (fig. 8). Additionally, although the average

of inertial and deformation-induced lift forces decrease separately by increasing ω∗ [47], the

difference between them (fig. 9) does not follow the same pattern. This confirms the

existence of a drop focal point with an extremum distance from the channel center at an

intermediate frequency, as elaborated in our previous work [47]. Despite this, the average of

lift is the largest in the steady flow and the smallest in the oscillatory flow with the highest

frequency at each Ca in our study.

By taking another close look at fig. 8, we realize that each of the oscillatory total lift

coefficients can be fitted using an expression that comprises of a base curve, which can be

best fitted by a 4th order polynomial, combined with the absolute value of some sinusoidal

oscillations. Both the amplitude of oscillations and oscillatory periods can be controlled

by the drop migration velocity and have direct relationship with it. In other words, the

proposed expression can have the following form:

ftot ≈
{
m+ nv(t)

∣∣∣∣cos( c

av(t)
d(t) + b

)∣∣∣∣}{
gd4(t) + hd3(t) + kd2(t) + ld(t) + q

}
(18)

Where d(t) and v(t) are the time-dependent drop distance from the channel center and its

migration velocity, respectively, and m, n, a, b, c, g, h, k, l, and q are the constants to be

determined while performing the optimization. The constant m is just placed for achieving

higher accuracy for the fits, and it ends up to be almost zero compared to other constants in

the expression. The resultant curves are plotted in fig. 10 against their corresponding data

(fig. 8a) for Ca = 1.67 and ω∗ = 0.01, ω∗ = 0.1, ω∗ = 0.5, and ω∗ = 1 with R2 scores of

0.99, 0.99, 0.98, and 0.93, respectively. Similar curves having the same proposed expression

with R2 scores of 0.93 or higher and capable of capturing all the infinitesimal details are

obtained for other Ca numbers as well.

To further extend the total lift prediction to more general cases within a continuous range

of Ca and ω∗, we consider the steady and averaged oscillatory lifts (fig. 9) for regression
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FIG. 9: Averaged total lift coefficients for steady and oscillatory flows with different
frequencies at (a) Ca = 1.67, (b) Ca = 1, (c) Ca = 0.5, (d) Ca = 0.33, and (e) Ca = 0.25

with a 4th order polynomial here. In other words, the expression in the first bracket of eq.

18 is replaced with a value of 1. Using the analytical set of equations 19, we can derive the

unknown coefficients a, b, c, g, and h of the polynomial analytically. In these equations, the

subscripts for d and f denote their locations. For instance, the subscript max represents
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FIG. 10: The fitted total lift coefficients to the ground-truth data using the introduced
non-linear regression at Ca = 1.67 and (a) ω∗ = 0.01, (b) ω∗ = 0.1, (c) ω∗ = 0.5, and (d)

ω∗ = 1

where the magnitude of total (or averaged) lift is maximum and its first derivative is zero.

The obtained polynomials with this approach have R2 scores of around 0.9 or higher for the

cases presented in fig. 9.



ad4first + bd3first + cd2first + gdfirst + h = ffirst,

ad4max + bd3max + cd2max + gdmax + h = fmax,

4ad3max + 3bd2max + 2cdmax + g = 0,

ad4eq + bd3eq + cd2eq + gdeq + h = 0,

ad4last + bd3last + cd2last + gdlast + h = flast,

(19)

Parameters dfirst, dmax, deq, dlast, ffirst, fmax, and flast are already available for the cases
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in fig. 9 to solve the system of equations 19 for them. However, we use the multi-fidelity

Gaussian processes (MFGP) method to predict these unknown parameters for any given

double inputs of 0.25 ≤ Ca ≤ 1.67 and 0 ≤ ω∗ ≤ 1. MFGP is a Bayesian stochastic

approach that does a casual inference on a set of high and low-fidelity datasets, and it

is extremely effective if there are strong correlations between them [59]. This method is

described in detail in our previous work, and it is carried out to predict the distance of

the drop equilibrium position from the channel center (deq) with R2 of 0.99 and root mean

squared error (RMSE) of 0.01 in that work [47]. Here, we refer to the data for the cases in

fig. 9 except for Ca = 1 as our high-fidelity data. We generate similar data for all the cases

in that figure, but with a grid of 128 × 76 × 76 in the x, y, and z directions, respectively,

and having 13038 triangular elements for the discretization of the drop. We consider this

data as our low-fidelity dataset. Therefore, we have a total of 25 low and 20 high-fidelity

data points, which satisfies the required nested structure to apply MFGP on the data [59].

We randomly allocate 5 data points of the entire high-fidelity dataset as our test set since

the high-fidelity response is our main target. We train the algorithm on the remaining 40

training data points and evaluate its performance on the test set. We repeat this procedure

30 times and compute the average of evaluation metrics so that the selection of test sets

does not significantly affect the overall algorithm performance.

Table I presents the average of R2 and RMSE on our 6 remaining unknown parameters

after completing the aforementioned steps. We can see that the trained algorithm is capable

of predicting the intended parameters with very high accuracies. Especially, the accurate

prediction of fmax and flast is useful for determining the maximum and minimum values of

averaged total lift for any given input in the range, respectively. The slightly less accurate

prediction for dmax (i.e. where the maximum averaged lift occurs) is because of the present

randomness in its values among different cases. This is unlike the consistent pattern that

exists for other parameters for a combination of ω∗ values across different Ca numbers. The

similar lower accurate prediction for dlast is due to the lack of data points between Ca = 1

and Ca = 1.67 since all the cases with Ca ≤ 1 have the same upper release initial location.

However, the R2 score of around 0.8 for this prediction is still high, and it can help us

determine the furthest starting point from the center and the widest traveling region of a

droplet with 1 ≤ Ca ≤ 1.67 in the microchannel so that it undergoes the largest possible

deformation without breaking up.
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Parameter R2 RMSE
dmax 0.83 0.0138
dlast 0.78 0.0219
dfirst 0.97 0.0008
flast 0.93 0.0170
fmax 0.98 0.0017
ffirst 0.97 0.0005

TABLE I: MFGP averaged performance metrics on 30 randomly chosen test sets for the
parameters required for the determination of the analytical averaged total lift polynomial

coefficients

IV. CONCLUSIONS

The dynamics of particles and biological cells in microchannels has caught many re-

searchers’ attention because of several biomicrofluidic applications it has. The underlying

physics owes its behavior mainly to the presence of different lift forces in such channels.

Hence, many scientists have dedicated their time to calculate or measure these forces. How-

ever, most of these works have focused on analyzing the lift forces acting on solid and non-

deformable particles and studied the effects of parameters such as particles’ size, Reynolds

number, etc on them. Consequently, such analysis on deformable droplets or bubbles and

studying the effects of varying parameters like Capillary number is almost missing in the

literature. In this work, we have extended such analysis to the case of a single deformable

droplet in the channel. We have calculated the main components of the lift force based

on a unique methodology that merely depends on the drop trajectory. To do so, first, the

drop migration velocity and its frontal projected area as it travels its lateral trajectory have

been computed to calculate the drag force in the wall-normal direction accurately. After

applying Newton’s second law on the drop, the total lift profile is obtained over a region

where the drop has a distance higher than its diameter from the wall. It has been observed

that the total lift has a higher maximum at a lower Capillary, and its minimum decreases

as we increase the Ca. The inertial and deformation-induced lift forces both increase by

increasing the Ca number. Moreover, since the oscillatory flows within the microchannel

were previously shown to enable working with sub-micron biological particles as well as in-

troducing new focal points for them, we have also included these flow regimes in our analysis

and investigated the effects of oscillation frequency on the lift in addition to the Capillary

number. We have seen that for all cases, the total lift and for oscillatory ones, the ampli-
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tude of oscillations are both higher when the drop migration velocity is higher. At each

Ca, the steady lift and moving averages of oscillatory ones at different ω∗ have also been

compared. It has been shown that the steady lift has the largest magnitude, and the av-

erage of oscillatory one with the highest frequency in this study has the smallest strength.

However, there is not a constant decreasing pattern in the average of lift by increasing the

frequency, which is why the drop focuses furthest from the channel center at an intermediate

ω∗. Additionally, an accurate mathematical expression has been proposed that captures the

detailed total oscillatory lift curves at various ω∗ with R2 scores of 0.97 or higher. Finally,

the multi-fidelity Gaussian processes has been used to accurately predict the 7 unknown

parameters required to define a simple 4th order polynomial to fit the steady and averaged

oscillatory lifts with R2 scores of about 0.9 or higher for any given Ca and ω∗ within the

ranges of 0.25 ≤ Ca ≤ 1.67 and 0 ≤ ω∗ ≤ 1.
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