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Defluorophosphorylation of Fluoroalkyl Peroxides for the 
Synthesis of Highly Substituted Furans
Xue-Qiang Chu,*a Song-Zhou Cai,a Jia-Wei Chen,a Zi-Lun Yu,a Mengtao Ma,c Patrick J. Walsh,*b and 
Zhi-Liang Shen*a

Transformation of multifunctional materials with control over site-
selectivity and chemical diversity remains challenging. Herein, we 
present a metal-free, one-pot strategy for the 
defluorophosphorylation of polyfluoroalkyl peroxides that enables 
expedient construction of structurally diverse phosphoryl-
containing heterocyclic libraries. By judicious choice of reaction 
conditions, C3,4-diphosphoryl furans and C4-monophosphoryl 
furans can be easily accessed. In addition, synthetic derivatization 
of the obtained organophosphorus heteroarenes to value-added 
monodentate and bidentate phosphines has been demonstrated. 
Mechanistic studies revealed that regioselective 
defluorophosphorylation allows divergent product formations in 
two reaction modes.

Introduction
Phosphoryl-containing heteroarenes constitute an important 
class of structurally diverse skeletons that are widely found in 
natural products, pharmaceuticals, bioactive molecules, and 
functional materials (Figure 1, A, right).1-3 These 
organophosphorus compounds are universal precursors to 
trivalent phosphine ligands, which are a cornerstone of 
organometallic chemistry.4,5 P=O bonds are also found in 
nucleic acids and the backbone of DNA and RNA.6

While the incorporation of phosphoryl moieties into 
heterocycles has experienced significant advances, their 
selective installation onto furan derivatives can be challenging 
(Figure 1, A, left).7,8 The conventional C2/C5-phosphorylation of 

furans through metalation or electrophilic aromatic 
substitution is well known (Figure 1, B, a).9 These methods rely 
on air- and moisture-sensitive organometallics and/or toxic 
phosphorus reagents. During the past decade, Hirao-type10 or 
dehydrogenative C(sp2)–P bond cross-coupling reactions of 
(hetero)aryl electrophiles with H-phosphine oxides catalyzed by 
Pd,11-15 Cu,16,17 Ni,18-20 and others21 have been well documented 
(Figure 1, B, b). The necessity of harsh reaction conditions, 
expensive noble metal catalysts, utilization of pre-existing 
(hetero)arenes, and directing groups hinder the efficient 
synthesis of phosphorylated heterocycles. Another route to 
phosphorylated furans is through radical processes based on 
stoichiometric oxidants (Figure 1, B, c).22-24 In related studies, 
Lei’s group recently reported the Mn-catalyzed electrooxidative 
phosphorylation and diphosphorylation of furans.25 In this 
study, the site-selectivity is predominantly dictated by the 
inherent reactivity of the substrate (C2/C5 positions). Another 
route involves the cyclization of acyclic phosphorylated building 
blocks (Figure 1, C, d),26-29 or reaction of unsaturated alkenes or 
alkynes30,31 with phosphorus nucleophiles (Figure 1, C, e). These 
strategies exhibit limited flexibility in the installation of 
functional groups, especially fluorinated moieties, which 
generally confer desirable properties to the products.32 

Considering the importance of phosphorus-containing furans, 
and the difficulty in the formation of C3/C4-substituted 
derivatives, the development of concise C–P bond-forming 
methods leading to formation of multisubstituted furans33-36 is 
highly desirable.

The defluorofunctionalization of organofluorides has shown 
promise, as it confers synthetic versatility to normally 
unreactive C–F bonds.37-43 One of the most straightforward 
routes to access a C(sp3)–P bond is via the Michaelis–Arbuzov 
reaction (Figure 2, A).22 Recent research in transition metal-free 
defluorophosphorylation of aryl fluorides44,45 and gem-
difluoroalkenes46 by the groups of Sawamura, Li, Huang, and 
others add to the available methods for C–P bond formation 
(Figure 2, B–C). Our laboratory has recently leveraged selective 
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Figure 1. Synthesis and application of phosphorus-substituted furan scaffolds. A Furan and phosphorylated furans in natural products, pharmaceuticals, materials, and ligands. B 
Direct phosphorylation of furans. C Ring formation involving acyclic organophosphorus compounds and cyclization with P–C bond formation.

C(sp3)–F bond cleavage manifolds of activated polyfluoroalkyl 
substrates47 or fluoroalkyl peroxides to give products featuring 
fluoroalkyl substituents (Figure 2, D–E).48,35 In this context, 
developing a tunable strategy for the production of 
fluoroalkylated heterocycles with control over the number of 
phosphine oxide moieties would be useful (Figure 1, C, f). Herein 

we report the synthesis of two types of phosphorylated 
heterocycles, C3,4-diphosphoryl furans and C4-
monophosphoryl furans, can be selectively synthesized by a 
divergent defluorophosphorylation of fluoroalkyl peroxides 
with H-phosphine oxides.
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Figure 2. Defluorophosphorylation protocols. A Michaelis-Arbuzov-type phosphonate synthesis starting from alkyl fluorides. B Phosphorylation of non-activated aryl fluorides via 
concerted SNAr pathway or radical pathway. C Phosphorylation of CF3-substituted alkenes via an SN2' pathway. D Defluorophosphorylation of perfluoroalkyl ketones. E Successive 
defluorination and dual sulfonylation relay of fluoroalkyl peroxides. F Classic Atherton-Todd reaction through phosphoryl-anion-initiated dehalogenation. G New design for the 
synthesis of C3,4-diphosphorylated and C4-phosphorylated furan derivatives through selective defluorophosphorylation. H Key results in reaction optimization. a Reaction conditions: 
(1-(tert-butylperoxy)-3,3,4,4,5,5,6,6,6-nonafluorohexyl)benzene (1a, 0.36 mmol), diphenylphosphine oxide (2a, 0.3 mmol), DABCO (0.75 mmol), and Cs2CO3 (0.75 mmol) in solvent 
(2.0 mL) at 70 oC for 24 h under air. b Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. c Isolated yield. d 1a (0.3 mmol), 2a (0.9 mmol), 
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Reaction Design and Optimization
At the outset of our studies, we were drawn to the Atherton-
Todd reaction, which involves the dehalogenation of 
tetrachloromethane by strongly nucleophilic anionic 
phosphorus species (Figure 2, F).49 This unusual reaction 
involves nucleophilic attack at the chloride of the Cl–C bond, 

generating a carbanion and P–Cl bond. The resulting 
electrophilic P–Cl center can react with nucleophiles. We 
desired to adapt this mode of reactivity to fluorocarbons (Figure 
2, G). There are few reports describing phosphorus species-
promoted defluorination, probably due to the inert nature of C–
F bonds toward nucleophiles.50,51

With the challenges associated with the cleavage of strong C–
F bonds in mind, we commenced our investigation by treating 
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Table 1. Substrate scope of fluoroalkyl peroxidesa
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[P2], 30, 53%
[P1], 31, 74%

[P2], 11, 60%
[P1], 12, 42%
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from Pregnenolone
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[P1], 51, 22%

from amide derivative
[P2], 52, 53%
[P1], 53, 41%
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F F
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[P2], 34, 82%
[P1], 35, 44%

[P2], 36, 77%
[P1], 37, 56%
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[P1], 39, 77%

[P2], 40, 87%
[P1], 41, 62%
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[P1], 43, 41%
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H H
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Ph O Rf
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a [Conditions A]: 1 (1.2 equiv.), 2a (0.3–0.6 mmol), Cs2CO3 (2.5 equiv.), DABCO (2.5 equiv.) in DCE (2 mL) at 70 oC for 24 h; [Conditions B]: 1 (0.3 mmol), 2a (0.9 mmol), 
Cs2CO3 (3.5 equiv.), DABCO (3.5 equiv.) in DMSO (2 mL) at 70 oC for 24 h.
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Table 2. Substrate scope of H-phosphine oxidesa
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OEt
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[P2], 68, 73% (in DMSO)
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Cl
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tBuOO F F
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DABCO (3.5 equiv.)
Cs2CO3 (3.5 equiv.)

DMSO, 70 oC, air, 24 h
[Conditions B]

+ P
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R1 R2
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PP
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R1
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Ph O C2F5

H
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[P2] [P1]
diphosphinylation monophosphinylation
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O
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1a 2

a [Conditions A]: 1a (1.2 equiv.), 2 (0.3-0.6 mmol), Cs2CO3 (2.5 equiv.), DABCO (2.5 equiv.) in DCE (2-4 mL) at 70 oC for 24 h; [Conditions B]: 1a (0.3 mmol), 2 (3 equiv.), 
Cs2CO3 (3.5 equiv.), DABCO (3.5 equiv.) in DMSO (2 mL) at 70 oC for 24 h. b 0.2 mmol scale. c 1:1 dr was determined by 31P NMR analysis.

(1-(tert-butylperoxy)-3,3,4,4,5,5,6,6,6-
nonafluorohexyl)benzene (1a) with diphenylphosphine oxide 
(2a) in the presence of the base combination Cs2CO3 and DABCO 
in toluene at 70 oC under air for 24 h (Figure 2, H). We were 
pleased to find that the target C3,4-diphosphoryl furan 3 was 
obtained in 40% assay yield (entry 1, determined by 1H NMR 
integration against an internal standard). Systematic evaluation 
of different solvents (entries 2–7) led to the discovery of DCE as 
the best solvent for the defluorinative annulation, affording the 
corresponding product 3 in 94% NMR yield and 87% isolated 
yield (entry 7, Conditions A). In addition, by switching the 
reaction solvent from DCE to DMF or DMSO a monophosphoryl 
furan derivative 4 was also furnished in 18% or 73% NMR yield, 
respectively (entries 8–9). Further adjustment of the substrate 
ratio and the loading of bases gave rise to product 4 in 81% NMR 
yield and 78% isolated yield (entry 10, Conditions B). It was 
found that these reactions proceeded with high regioselectivity. 
Moreover, the structures of products 3 and 4 were 
unambiguously assigned by X-ray crystallographic analysis.52

Controllable monophosphorylation and 
diphosphorylation reactions

The substrate scope of the mono- and diphosphorylation 
protocols was subsequently examined using Conditions A to 
generate the diphosphorylation and Conditions B to form the 
monophosphorylation products. As shown in Table 1, using 
Ph2P(O)H, polyfluorinated benzylic peroxides 1 bearing a variety 
of electronically and sterically varied aryl groups reacted 
smoothly to give the corresponding [P2] and [P1] products in 
42–91% yields. Substituents on the aryl ring, including alkyl (5–
8), methoxy (9–10), amino (11–12), halogens (13–23), 
trifluoromethyl (24–25), carbalkoxy (26–27), and cyano (28–
29), were tolerated under the mild reaction conditions. As for 
substrates with a naphthalene or thiophene motif, products 30–
33 were generated in acceptable yields. However, alkyl 
substituted substrate 1b’ was not a suitable candidate for the 
titled reactions. In particular, this method was applicable to the 
modification of biologically active molecules. For example, 
diacetone-D-glucose, -tocopherol, estrone, pregnenolone, 
amide, and thiazepine derivatives were successfully 
transformed to the furan products 44–55. An attractive feature 
of the present procedure is the highly selective cleavage of C–F 
bonds (34–43) and ability to incorporate fluoroalkyl groups in 
furan skeletons.

We subsequently probed the use of commercially available H-
phosphine oxides (2) as coupling partners for the assembly of 

Page 5 of 11 Green Chemistry



ARTICLE Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

[P2] and [P1] products (Table 2). Surprisingly, varying electronic 
(57) and steric character (58 and 69) on the P-Ar groups 
dramatically affected the reaction efficiency. Similarly, the 
utility of unsymmetrical phosphine oxide components led to the 
production of tri(hetero)arylphosphorus products 70–77 in 
moderate yields and as mixtures of diastereomers. Less reactive 
phosphinate oxide derivatives, unfortunately, were not 
converted into the desired products 78–83 under our current 
reaction conditions.

Synthetic Applications
Scale-up reactions of (1-(tert-butylperoxy)-3,3,4,4,5,5,6,6,6-
nonafluorohexyl)benzene (1a) with diphenylphosphine oxide 
(2a) toward [P2] (5 mmol scale) or [P1] (4 mmol scale) were 
conducted and the corresponding products 3 and 4 were 
isolated in 84% and 69% yields, respectively (Figure 3, A). We 
next subjected bis-polyfluoroalkyl-substituted arene 84 to 
multi-phosphorylation-heteroannulation (Figure 3, B). The -
conjugated heterocycles 85 and 86,53 which are potential 
structural constituents of optoelectronic materials, were 
produced in workable yields (38–44%). In addition, the resulting 
monophosphorylated and diphosphorylated products were 
transformed into trivalent phosphines (87-93) under reductive 
conditions in 47–99% yields (Figure 3, C).54 These phosphines 
are potentially useful in catalysis, which will be a subject of 
future research in our group.

Mechanistic investigations
To elucidate the phosphorylation/cyclization processes, several 
control experiments were performed (Figure 4). First, 
treatment of peroxide 1a with DABCO in DCE in the absence of 
diphenylphosphine oxide (2a) provided defluorinated 
unsaturated ketone 94 in 43% yield (Figure 4, A). A similar 
reaction performed in DMSO, however, was more complex and 
no intermediates were identified. Second, when independently 
synthesized ketone 94 was used in place of 1a under otherwise 
standard conditions, it was converted into the corresponding 
products 3 and 4 in 91 and 63% yields, respectively (Figure 4, B). 
These results indicate that the reactions are likely initiated by a 
base-mediated O-O bond cleavage followed by HF-
elimination.55 Third, when (E)-4,4,5,5,6,6,6-heptafluoro-1-
phenylhex-2-en-1-one (95) was subjected to the standard 
conditions, no [P2] or [P1] were formed, illustrating the 
necessity of the -fluoroenone for realizing these 
transformations (Figure 4, C). Fourth, the treatment of sterically 
hindered trifluoromethyl chalcone 96 with HP(O)Ph2 gave 
hydrodefluorinated product 97, diphenylphosphinic fluoride 98, 
and diphenylphosphinate 99 in 53%, 5%, and 4% yields, 
respectively (Figure 4, D). The byproduct diphenylphosphinic 
fluoride (98) is presumed to be formed via an anionic 
phosphorus species-promoted defluorination of 96. 
Intermediate 98 can react with the enolate of 97 to afford 99.49 

Four oxidized phosphorus-containing species, namely the 
phosphoryl fluoride 98, phosphoric acid 100, diphosphane 1,2-

dioxide 101, and diphenylphosphinic anhydride 102, were 
detected by in situ high-resolution electrospray ionization mass 
spectrometry (ESI-HRMS) analysis of the model reaction under 
Conditions B (Figure 4, E). Moreover, 31P analysis of the reaction 
mixture determined the existence of 100, 101, and 102. The lack 
of detection of 98 could attribute to its instability under basic 
conditions (see Supporting Information for more details).56 
These results support the fluorinative oxidation of the P–H 
bond.Error! Bookmark not defined. Additionally, the need for excess 
diphenylphosphine oxide (2) in monophosphorylation reactions 
is consistent with its defluorinating function (Figure 2, H, entry 
10). A reaction pathway involving the direct phosphorylation of 
product 4 or radical intermediates is ruled out, as indicated by 
the control experiments in Figure 4F and TEMPO-trapping 
experiment in Figure 4G. Finally, two deuterium-labeling 
experiments were performed (Figure 4, H). When 20 equiv of 
D2O was added to the reaction (Conditions B), a deuterium 
atom was incorporated into product 4 (73% yield, 78% 
deuterium). In contrast, the same reaction conducted in DMSO-
d6 afforded product 4 in 74% yield, with no deuterium 
incorporation. This observation confirmed that water was the 
hydrogen source for product 4. Finally, we note that the 
reaction to produce [P1] proceeds under N2 and air, suggesting 
that dioxygen is not an oxidant in this chemistry.

On the basis of the experimental results above, and a 
literature survey, we propose mechanisms for the formation of 
[P2] and [P1] in Figure 5. The reaction is initiated by two base-
assisted eliminations (Figure 5, top left), first of the O–O bond 
to form a carbonyl group and subsequent HF elimination to give 
the pivotal unsaturated ketone B, which is supported by the 
isolation of 94 (Scheme 4, A). The ketone B easily undergoes a 
substitution/elimination sequence with P-nucleophile 2’ and 
loss of fluoride to form the -phosphorylated intermediate C 
(Figure 5, left). It is also possible that ketone B undergoes 
further β-F elimination to give an alkyne intermediate B’, which 
could react with 2’ to yield intermediate C. Next, the electron-
deficient nature of the unsaturated C=C bond of C sets the stage 
for an SN2’ reaction with 2’ with loss of another equivalent of 
fluoride to furnish diphosphorylated D. Deprotonation of the 
acidic -C–H gives an enolate that undergoes a 5-endo-trig 
cyclization followed by defluorinative aromatization to provide 
the furan product.

In the C4-monophosphorylation transformation (Figure 5, 
right), it is likely that P-nucleophile 2’ reacts with the 
intermediate B via an SN2’-type pathway in DMSO, leading to an 
-phosphorylated carbonyl compound H. The absence of a 
fluoride in the [P1] compounds, and the incorporation of 
deuterium on the furan ring, signal that a C–F bond must be 
reduced. We propose, therefore, that nucleophilic attack by the 
P-nucleophile 2’ on the most electron poor C–F bond, in analogy 
to the Atherton-Todd reaction, with loss of an equivalent of 
fluoride to afford the alkynyl species M. This step is supported 
by detection of phosphinic fluoride J as a byproduct. The P(O)-F 
elimination process may be accelerated by the coordination of 
the Cs cation with the departing fluoride anion57 and the strong 
electronegativity of the Rf group. After deprotonation of the - 
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C–H to give the enolate, cyclization and protonation (or 
deuteration in the presence of D2O) is proposed to generate the 
observed monophosphorylated product. We cannot rule out a 
pathway where intermediate E is directly defluoro 
dephosphorylated afford to alkynyl intermediate M. In addition, 
there is a possibility of forming an allenyl ketone O via the 
removal of a molecule of phosphinic fluoride J from 
intermediate H. Such reactive species O subsequently 
undergoes rephosphorylation with 2’ to give the alkyne M. We 
believe that different outcomes of two 
defluorophosphorylation reactions with the installation of one 
or two diaryl phosphoryl groups on 3- and 4-site of furan are 
mainly tuned by the reaction solvent and reactant ratio. 

It should be mentioned that DABCO undoubtedly participated 
in the activation of the perfluoroalkyl substrates. The initial 
reaction begins with DABCO-promoted Kornblum−DeLaMare 
reaction to convert the peroxy group to the carbonyl group with 
simultaneous elimination of a molecule of HF. The base of 
Cs2CO3 contributes to the successive defluorination, C-P bond 
formation, and ultimate intramolecular cyclization. Sometimes 
DABCO is considered as a temporary supernucleophile, and this 
property is manifested depending on the solvents and 
conditions.58 Further thorough investigations of the mechanism 
are ongoing in our laboratory.

Conclusions
A highly tunable defluorophosphorylation of fluorinated 
peroxides for the preparation of C3,4-diphosphoryl furans and 
C4-monophosphoryl furans under conditions with no added 
transition metals is disclosed. The resulting P(O)-containing 

products could be readily transformed into useful monodentate 
and bidentate phosphines. The present approach features 
broad substrate scope, procedural simplicity, and product 
diversity. It is easily scalable, and the chemoselectivity between 
the phosphorylated products can be readily controlled by 
choice of conditions. Mechanistic investigations reveal that the 
H–P(O) compound not only serves as a phosphorylating reagent 
but also can induce defluorination. We envisioned that this 
finding could enrich the current toolkit of P(O)-containing 
heteroarene synthesis and provide inspiration for C–F bond 
functionalizations.
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