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Catalyst-Free Transfer Hydrogenation of Activated Alkenes 
Exploiting Isopropanol as the Sole and Traceless Reductant
Tamal Kanti Das,†,a Agustin M. Rodriguez Treviño,†,a Sanjay Pandiri,a Sini Irvankoski,b Juha H. Siito-
nen,b Sara M. Rodriguez,c Muhammed Yousufuddin,c and László Kürti*, a

Both metal-catalyzed and organocatalytic transfer hydrogenation reactions are widely employed for the reduction of C=O 
and C=N bonds. However, selective transfer hydrogenation reactions of C=C bonds remain challenging. Therefore, the 
chemoselective transfer hydrogenation of olefins under mild conditions and in the absence of metal catalysts, using readily 
available and inexpensive reducing agents (i.e. primary and secondary alcohols), will mark a significant advancement 
towards the development of green transfer hydrogenation strategies.  Described herein is an unconventional catalyst-free 
transfer hydrogenation reaction of activated alkenes using isopropanol as an eco-friendly reductant and solvent. The 
reaction gives convenient synthetic access to a wide range of substituted malonic acid half oxyesters (SMAHOs) in moderate 
to good yields. Mechanistic investigations point towards an unprecedented hydrogen bond-assisted transfer hydrogenation 
process.

Introduction
The catalytic hydrogenation of unsaturated molecules is often 

the key transformation used in the production of fine chemicals, 
active pharmaceutical ingredients (APIs) and agrochemicals. Both 
homogeneous and heterogeneous catalyst systems, with molecular 
H2 as the hydrogen source, have been widely studied and used for 
traditional hydrogenation reactions.1 Transfer hydrogenation (TH) 
has emerged as a practical and greener alternative to traditional 
hydrogenation methods since it avoids the use of flammable gases 
and complicated experimental set-ups. Specifically, the serious 
safety hazards associated with the use of high-pressure 
hydrogenation reactors are eliminated by employing readily 
available, inexpensive and environmentally friendly alternative 
hydrogen sources in TH methods.2 The first TH reaction of a C=C 
double bond was reported nearly 120 years ago by Knoevenagel and 
coworkers. They described the simultaneous hydrogenation/ 
dehydrogenation of 1,4-cyclohexadiene derivatives [Scheme 1, 
eq.(i)].3 The Meerwein–Ponndorf–Verley reduction of ketones uses 
aluminum isopropoxide in isopropanol for the hydrogen transfer to 
C=O bonds and it represents a classic example of TH developed in the 
early 20th century.4 Following this pioneering reaction, several metal 
complexes (i.e., noble and transition metal complexes, main group 
and alkaline earth metal complexes) and small organic compounds 
have been successfully employed as catalysts for the reduction of 
C=O and C=N bonds utilizing primary and secondary alcohols and 
various unconventional hydrogen donors (e.g.; Hantzsch esters, 1,4-
cyclohexadiene, formic acid and even water).2,5-10 However, the 
chemoselective green TH reaction of C=C double bonds remained 
less explored due to their limited polarizability. Most methods 
reported the selective reduction of polarized C=C double bonds that  
require noble/transition metal-based catalysts (e.g. Pd, Co, Ru, Rh, Ir, 

Ni, Cu, Au etc.) in combination with ligands as well as expensive 
hydrogen donors.2,11 In an attempt to avoid metal-based catalysts, 
List and MacMillan groups independently reported an ammonium 
salt-catalyzed transfer hydrogenation of unsaturated aldehydes 
using a stoichiometric amount of Hantzsch ester as the hydrogen 
source [Scheme1, eq.(ii)].12

Scheme 1: The evolution of green transfer hydrogenation reactions for 
C=C bonds.
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Realizing the need for a green and efficient TH reaction to 
selectively reduce C=C bonds, a few strategies have been introduced 
in the past 10 years. A Rh-catalyzed TH reaction was reported using 
γ-valerolactone-based ionic liquids and H2 (i.e., @30 bar) to reduce 
C=C bonds. This strategy showed high turnover frequency and 
catalyst recyclability, however, it still requires the presence of a 
noble metal (Rh) complex, flammable H2 gas and high-pressure 
reactor [Scheme 1, eq.(iii)].13a In 2018, the Li group used a hetero-
bifunctional catalyst derived from Pd/C nanoparticles and 
Ru/diamine species along with sodium formate as the hydrogen 
source to simultaneously reduce alkynes and ketones: showing poor 
chemoselectivity.13b Catalytic transfer hydrogenation of maleic acid 
to succinic acid using a flow technique was reported using 
stoichiometric formic acid and Pd/C catalyst. The reaction requires 
high catalyst to substrate ratio and high temperature (~200 °C) in the 
flow reactor for optimal efficieny.13c Recently, Iridium-catalyzed TH 
reaction of nitroalkenes was reported by the Wang group using 
formic acid as hydrogen source and water as solvent. The reaction 
was performed with low catalyst loading; however, it could not 
eliminate the use of noble metals and the scope is limited to only 
nitroalkenes [Scheme1, eq. (iv)].13d Most recently, earth abundant 
Fe-catalyzed TH reaction of alkenes, using the combination of n-
butanol and poly(methylhydrosiloxane), was reported by the 
Webster group. This reaction avoids the use of noble metals but it 
still requires excess amounts of poly(methylhydrosiloxane) as 
hydrogen source for the reduction of unfunctionalized alkenes 
[Scheme1, eq. (v)]. 13e

Despite the advancements outlined above, a metal-free 
chemoselective, green and cost-effective TH method for alkenes 
remains highly desirable. Nearly all known TH strategies require a 
catalyst which is either synthesized in multiple steps from toxic and 
expensive noble/transition metal complexes or purchased from 
commercial sources, therefore, a catalyst-free TH reaction of alkenes 
using a readily available and inexpensive hydrogen source would 
contribute significantly to the evolution of green TH reactions in 
terms of simplicity and cost-effectiveness. Herein, we report the 
catalyst-free transfer hydrogenation reaction of activated alkenes 
exploiting isopropanol as the sole and traceless reductant. 

Results and discussion

The present study was initiated after a serendipitous 
observation: the C=C bond in benzylidene Meldrum’s acid 1a was 
unexpectedly reduced when heated in isopropanol under reflux 
conditions. The overall transformation gave rise to the benzyl-
substituted malonic acid half oxyester 2a in 66% isolated yield (Table 
1, entry 1). It is noteworthy that the substituted malonic acid half 
oxyesters (SMAHOs) are an important class of molecules well known 
as pro-nucleophiles or enolate surrogates for a range of olefination 
and addition reactions in modern synthetic organic chemistry.14 To 
our surprise, the reduction of the C=C bond (i.e., a formal 
hydrogenation) did not require the presence of any catalyst and 
occurred readily in boiling isopropanol which, apparently functioned 
as both the solvent and the sole reductant. To the best of our 
knowledge, this is the first example of a catalyst/metal-free transfer 
hydrogenation reaction of electron-deficient alkenes using 
isopropanol as the sole hydrogen source. Realizing the potential of 
this catalyst-free TH reaction as a greener and more economical 

alternative to the currently known catalytic TH reactions, we decided 
to investigate further and explore the scope and limitations of this 
unprecedented TH reaction. Initially, we carried out a few control 
experiments to understand the impact of changing some of the key 
reaction parameters on the feasibility of the overall transformation. 
Using primary or tertiary alcohols as solvents (e.g., methanol, 
ethanol or tert-butanol) at reflux temperature, the starting material 
1a remained unchanged and neither reduced nor ring-opened 
products were detected. A quick temperature screen revealed that 
the TH reaction does not proceed at room temperature (25 °C) in 
isopropanol solvent (Table 1, entry 3), however, heating the reaction 
mixture for 16 h at 60 °C afforded product 2a in 32% yield (Table 1, 
entry 2). Based on these initial experiments, our working hypothesis 
was that the reduction of the C=C bond proceeds via a hydrogen 
bond-assisted hydride-transfer (see header of Table 1).15 We 
anticipated that the use of either Brønsted or Lewis acids would 
further activate the ester carbonyls of the Meldrum’s acid moiety to 
make the C=C bond more electrophilic and thus would facilitate the 
hydride-transfer process.16 Therefore, we studied how employing 10 
mol% of various Brønsted and Lewis acid additives (Table 1, entries4-
16) affected the efficiency of the transformation. Hydrochloric acid 
in ethereal solution markedly improved yield of 2a from 66 to 82% 
(entry 4), while other Brønsted acids (e.g., HBr, AcOH, Amberlyst and 
CSA) produced similar or lower yields of the product 2a (entries 5-8). 

Table 1: Optimization of the TH reaction conditions.

entrya additive temp yield (%) of 2a

1 none reflux 66b

2 none 60 °C 32

3 none 25 °C <5

4 HCl (in ether 2 M) reflux 82

5 HBr (33% in H2O) reflux 40

6 AcOH (glacial) reflux 60

7 Amberlyst reflux 70

8 CSA reflux 64

9 Sc(OTf)3 reflux 41

10 B(OH)3 [Boric Acid] reflux 70

11 Ph-B(OH)2 reflux 58

12 4-MeO-Ph-B(OH)2 reflux 67

13 4-NMe2-Ph-B(OH)2 reflux 59

14 4-NO2-Ph-B(OH)2 reflux 83

15 3,5-di-F-Ph-B(OH)2 reflux 73

16 3,5-bis-CF3-Ph-B(OH)2 reflux 83b

17 3,5-bis-CF3-Ph-B(OH)2 25 °C <5

18 3,5-bis-CF3-Ph-B(OH)2 40 °C 10

19 3,5-bis-CF3-Ph-B(OH)2 60 °C 32

20 3,5-bis-CF3-Ph-B(OH)2 reflux 60c

21 3,5-bis-CF3-Ph-B(OH)2 reflux 16d

a Reactions were conducted on a 0.5 mmol scale. 1a (0.5 mmol) and additive 
(10 mol%) were suspended in i-PrOH (0.1 M) and then heated to the given 
temperature. The reaction was stirred for 16 h. All given yields are NMR yields 
using 1,3,5-trimethoxybenzene as standard. b Isolated yields. c Concentration: 
0.2 M. d Concentration: 0.5 M.

O O

Ph

OO

Me Me

i-PrOH (0.1 M)
additive (10 mol%)

temp., 16 h OH Oi-Pr

Ph

OO

H
H

O O

Ph

OO

Me Me

H

Me

O
H

possibly
via.

Me

1a 2a

Page 2 of 8Green Chemistry



Journal Name  ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3

Please do not adjust margins

Please do not adjust margins

[a] Unless noted 

otherwise, all hydrogenation reactions are carried out in i-PrOH (at 0.1 M concentration) with 0.5 mmol of the substrate 1, 0.05 mmol of 3,5-bis-CF3Ph-B(OH)2 
under reflux condition for 16 hours. See Supporting Information for detailed procedures. The yields shown are isolated yields of the half oxyester products 2 
after flash column chromatography. [b] Reaction carried out for 40 hours. [c] Reaction carried out without 3,5-bis-CF3-Ph-B(OH)2. [d] Reaction carried out at 60 
°C instead of reflux. 

Scheme 2: Scope of substrates for TH reaction
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Next, we screened electronically different aryl boronic acid 
derivatives as additives, as they are expected to activate the 
substrate 1a.17 Electron-deficient boronic acids furnished higher 
yields of 2a (entries 14–16) in contrast to electron rich boronic acids 
(entries 12–13). Among the screened additives, 3,5-
bis(trifluoromethyl)phenyl boronic acid was found to be the most 
efficient, furnishing 2a in 83% isolated yield (90% NMR yield) (entry 
16). Reactions carried out at lower temperatures (60, 40 and 25 °C) 
in presence of 3,5- bis(trifluoromethyl)phenyl boronic acid showed 
drastic drop in the yield of 2a (entries 17–19). The increase of the 
reaction concentration (e.g., 0.5 M & 0.2 M versus 0.1 M) resulted in 
a substantial decrease in the yield (entries 20 & 21).

With the optimized reaction conditions in hand, we were ready 
to explore the scope and limitations of this unprecedented transfer 
hydrogenation reaction (Scheme 2). A series of electronically 
dissimilar alkylidene Meldrum’s acids was prepared by the 
condensation of Meldrum’s acid and substituted aldehydes (see SI, 
page S-5). The substituted malonic acid half oxyester products (2a–
2z) were isolated in moderate to good yields using the optimized 
reaction conditions. Alkylidene Meldrum’s acids with electron-
donating substituents at the para-position (Scheme 2B, 1n–1o) 
reacted slower than those with electron-neutral and electron-
withdrawing substituents (Scheme 2A, 1a–1m) to furnish the 
corresponding malonic acid half oxyesters (2a–2o) in moderate to 
good yields (43% to 87%).

Interestingly, the TH/transesterification reaction showed chemo 
specificity for the C=C bond of the alkylidene Meldrum’s acid moiety 
over the C=C bond of a simple unsaturated ester (2m). 
Alkylidene Meldrum’s acid substrates featuring ortho- and meta-
monosubstituted as well as fused arenes (1p–1v) were well-tolerated 
under the reaction conditions, furnishing the expected products 
(Scheme 2C & 2D, 2p–2v) in moderate to good yields (36% to 84%). 
Next, we investigated the reactivity of heteroarene-bearing 
alkylidene Meldrum’s acids (Scheme 2E, 1w & 1x) and found that the 
more electron-rich heteroarene rings resulted in a decrease of 
isolated yield (2w–2x; 33% to 19% and alkylidene Meldrum’s acid 
derived from pyrrole-2-carboxaldehyde did not reduce under this 
condition). Replacing the aromatic rings with cyclic alkyl substituents 
on the alkylidene Meldrum’s acid were also successfully reduced and 
transesterified (2y-2z, Scheme 2F). Overall, we found the TH reaction 
to be readily scalable; the larger scale (5 to 15 mmol) reactions 
afforded gram quantities of the products 2d, 2k and 2u (1.10 grams, 
2.32 grams and 1.03 grams, respectively).

We then shifted our attention to varying the structure of the cyclic 
1,3-dicarbonyl moiety. Thus, alkylidene barbituric acids underwent 
smooth TH under identical reaction conditions, however, unlike 
alkylidene Meldrum’s acids, the barbituric acid ring remained intact 
(Scheme 2G, 2aa–2ac). Interestingly, when the Meldrum’s acid 
moiety was replaced with 1,3-indandione and acyclic malonic 
ester/acid or malononitrile (1ae–1ah), the TH reaction was not 
successful. This observation indicates that a rigid, six-membered 
cyclic ester or an amide is a key requirement for the transfer 
hydrogenation reaction. Moreover, the acetophenone-derived 
alkylidene Meldrum’s acid 1ai also did not undergo transfer 
hydrogenation. Finally, we were curious to see if other secondary 
alcohols besides isopropanol would serve as viable reducing agents - 

the use of sec-butanol as solvent afforded the corresponding malonic 
acid half oxyester compound 2ad in 44% yield as an 1:1 inseparable 
mixture of diastereomers (Scheme 2H). 

We propose that there are two possible distinct mechanistic 
pathways (Scheme 3, Path A or B) that could lead to the formation 
of the observed product 2: a TH followed by transesterification (i.e., 
ring-opening) or a transesterification followed by TH. Specifically, in 
Path A, alkylidene Meldrum’s acid derivative 1 first undergoes a 
concerted hydrogen bond-assisted hydride-transfer from i-PrOH to 
generate alkyl-substituted Meldrum’s acid 3. We surmise that the 
hydride-transfer step is the key step as it likely requires a hydrogen 
bonding network to create a cyclic transition state similar to the MPV 
reduction4 in order to facilitate the hydride-transfer process. The 
Lewis acid additive [3,5-bis(trifluoromethyl)phenyl boronic acid] 
further activates the alkylidene Meldrum’s acid moiety as a hydride 
acceptor, potentially through additional hydrogen bonding network. 
Finally, the alkyl-substituted Meldrum’s acid 3 undergoes a 
transesterification reaction with i-PrOH to furnish compound 2. On 
the other hand, Path B would first undergo a ring-opening 
transesterification to generate the corresponding alkylidene malonic 
acid half oxyester intermediate 4, which then would undergo a 
concerted hydride-transfer process to furnish the observed product 

2.

Scheme 3: Proposed possible reaction pathways leading to the product 
2.

To experimentally differentiate between these two possible 
mechanistic event sequences (i.e., Path A or Path B), we aimed to 
detect the intermediates 3 and 4 (Scheme 3) using 1H-NMR. Towards 
this end, alkylidiene Meldrum’s acid 1e was heated at reflux in i-PrOH 
only for 1 h. The 1H-NMR of the resulting crude reaction mixture was 
compared with the spectra of pure alkyl-substituted Meldrum’s acid 
3e and pure alkylidene malonic acid half oxyester 4e, synthesized 
independently (See SI Page S-10). This experiment clearly showed the 
presence of intermediate 3e along with the product 2e in a 1:5 ratio 
(Figure 1) (See SI, Page S-12). Surprisingly, presumed intermediate 4e 
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Figure 1: Mechanistic studies for the identification of reaction intermediates

Scheme 4: Mechanistic control experiments.

was not observed in the crude reaction mixture.  Moreover, 
complete conversion to product 2e occurred when intermediate 3e 
was heated in i-PrOH for 16 hours at reflux [Scheme 4, eq. (i)]. On the 
other hand, the proposed intermediate 4e, from the alternative Path 
B, remained unreacted under identical conditions [Scheme 4, eq. (ii)]. 
Taken together, these observations support Path A over Path B, that 
is, that a transfer hydrogenation occurs first, followed by a 
transesterification reaction (Scheme 3).

We further investigated whether the i-PrOH would still be viable 
as a reducing agent in the presence of a co-solvent. Using toluene as 
the main solvent in the presence of 5 equivalents of i-PrOH, the 
reduction of alkylidene Meldrum’s acid 1a did not occur based on the 
fact that product 2a was not detected. However, when equal 
volumes (1:1) of toluene and i-PrOH were used as the reaction 
medium, product 2a was isolated in 36% yield; in contrast, 83% of 2a 
was isolated when pure i-PrOH was used as the solvent. These results 
strongly suggest the critical importance of a hydrogen bonding 
network to making this TH reaction possible. We also studied the TH 
reaction in pure hexafluoro isopropanol (HFIP) and also using an 
HFIP-IPA (1:1 mixture).  Interestingly, the TH did not take place in 
pure HFIP medium, however, in the presence of HFIP-IPA mixture 
(1:1) the expected reduced malonic acid half oxyester 2a product was 
isolated in 40% yield along with the non-reduced ring opened half 
oxyester 4a in 24% yield. [Scheme 4, eq. (iii)].

Finally, a set of deuterium-labelling experiments were carried out 
to study the deuterium incorporation during the reduction. 
Reduction of 1ac with i-PrOD resulted in the formation of the 
reduced product 2ac with 68% D-incorporation at the enolizable C2 
position [Scheme 4, eq. (iv)]. Furthermore, when the reduction was 
carried out in the presence of i-PrOH-2-D resulted the reduced 
product 2ac with 84% D-incorporation at the benzylic position 
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1ac 2ac

Eq. (i)

Eq. (ii)

Eq. (iii)

Eq. (iv)

Eq. (v)

3,5-bis-CF3-Ph-B(OH)2
(10 mol%)

3,5-bis-CF3-Ph-B(OH)2
(10 mol%) H

H

NaBH4
(3 eq.)

84% D incorporation

C2
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[Scheme 4, eq. (v)] (See SI Page S-9).  Both these observations are in 
accordance with our proposed mechanism of the hydrogen transfer 
process (see Scheme 3) and supports the involvement of a concerted 
8-membered cyclic transition state. 

Finally, to better understand the hydrogen-transfer process 
itself, we employed computational studies at 
B97D3/def2TZVP/CPCM(i-PrOH) level using a model of 1a reacting 
with a single molecule of isopropanol using orca 5.0.2.19 This 
simplified model arrives to the key transition state, which is expected 
to be further modulated by an external hydrogen bonding network. 
Carrying out a full conformational search of 1a and isopropanol using 
CREST/gfn2 followed by DFT refinement identified a highly bound 
precomplex, where the isopropanol is bound in a pocket of 1a 
through a C=O⋯H hydrogen bond (Figure 2A).20 The lowest energy 
pathway from this hydrogen-bonded precomplex towards the 
reduction is a concerted transfer hydrogenation event, with a 
calculated barrier of ΔGTS = 17.7 kcal/mol, fitting well with the 
needed elevated temperature. The identified lowest energy path 
proceeds via an 8-membered concerted hydride-proton exchange 
transition state (Figure 2A).21

Hydrogen bonded precomplex
GTS = 17.7 kcal/mol

A Hydrogen-bond assisted concerted hydride transfer

C Conformational bias for cyclic vs. acyclic systems

full conjugation partial conjugation

[scXRD]

Transfer hydrogenation TS

2.08

GTS = 27.2 kcal/mol
Transfer hydrogenation TS w/o C=O

1.27

1.39

1.00

1.69

1.23

1.52 1.521.03

B Removal of additional conjugation disfavors the transfer hydrogenation

1af

[crest + B93D3/def2TZVP]

O=C–C=O = 107.6°

1a

O=C–C=O = 8.0°

Hydrogen bonded precomplex

2.00

1a + i-PrOH

1aj + i-PrOH

orthogonal

Figure 2: Reduction barriers for the hydrogen bond-assisted transfer 
hydrogenation process.

In order to understand the experimentally observed 
requirement for a cyclic 1,3-dicarbonyl system, we also computed 
the pathway for a model compound where the distal C=O of 1a was 
replaced with a methylene unit (1aj, Figure 2A). This electronic 
change, while maintaining the cyclic backbone, resulted in an almost 
twice as high of a reduction barrier at ΔGTS = 27.1 kcal/mol compared 
to 1a, suggesting that the cyclic backbone is needed for 
conformational locking to achieve full planarization of the 1,3-
dicarbonly motif (Figure 2B). The co-planarity of both C=O groups 
with the C=C system results in full conjugation over the system and a 
significant increase of electrophilicity through π*-lowering. This 
planarization can be seen in the minimum energy conformer of 1a 
where the O=C-C=O dihedral angle 8.0° (planarization observed in 
scXRD dihedral angle for computed minimum energy geometry of 1af 
is 107.6°, and one of the carbonyl systems lies near-orthogonal 
structure of 1a, see SI, page S-8). Comparing this against the 
computed minimum energy conformer for acyclic dimethyl ester 1af, 
the non-planarity is highly pronounced: O=C-C=O to the C=C π-
system (Figure 2C). Such C=C conjugation to only one of the C=O 
systems results in higher reduction barrier, as observed for 1aj. 
Based on the twisted nature of 1a, it is likely the reduction also enjoys 
some contribution from strain-release effects. The observed higher 
yields with hydrogen bonding to solvent, and both protic and Lewis-
acidic activation can also be rationalized with this model, as all of 
these can bind to the distal carbonyl group and provide further π*-

lowering.

Scheme 5: Synthetic utility of SMAHOs.

This transfer hydrogenation/transesterification method allows  
straightforward synthetic access to a wide variety of substituted 
malonic acid half oxyesters (SMAHOs).14 The method offers 
improved overall yields and operational simplicity when compared 
to the previously reported methods to access various half oxyester 

HO2C CO2i-Pr

Et3N (1 eq.)
Toluene (0.5)

80 °C, 15 h
-CO2

CO2i-Pr

5, 61%2k

NC NC Eq. (i)

HO2C CO2i-Pr

Cl

MeO

CHO

morpholine
(10 mol%)

tolune (0.25 M),
reflux, 48 h

i-PrO2C

OMe

6, 42%
DMF Cat.
(COCl)2 (1.25 eq.)
DCM (0.2 M)
0 °C-rt, 12 h

CO2i-Pr
Cl

O

(i)i-Pr2NEt (2 eq.)
Et2O(0.1 M),

-78 °C, 30 min

C CO2i-Pr

R

O

(ii) BnOH
(1.5 eq.),

-78 °C, 2 h
CO2i-Pr

O

O
Bn

R = 4-Cl-C6H4

9, 50% (over two steps)

7

8

Cl

Eq. (ii)

Eq. (iii)Cl

Cl

2d

HO2C CO2i-Pr

DMF Cat.
(COCl)2 (1.25 eq.)

DCM (0.2 M)
0 °C–rt, 16 h

CO2i-Pr
Cl

O

OMe OMe

DCM (0.5 M)
0-5 °C- rt, 2 h

1. AlCl3 (3 eq.)

2. HCl (aq.)
0-5 °C, 1 h O Oi-Pr

OMe

O
2t 10 11, 49% (over 2 steps)

Eq. (iV)
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derivatives from malonate esters or Meldrum’s acids.22 The resulting  
SMAHOs are valuable compounds for the  generation of versatile 
reactive intermediates, such as enolates, isocyanates and ketenes.14 
Towards this end, we carried out a few representative 
transformations (Scheme 5). In the first reaction, compound 2k 
underwent smooth decarboxylation when heated at 80 °C in the 
presence of triethylamine to furnish dihydrocinnamate ester 5 
(Scheme 5, Eq. i). Next, a Galat reaction was carried out using 
compound 2d in presence of 4-methoxybenzaldehyde which led to 
the formation of a substituted phenylacrylic acid derivative (6, 
exclusively the Eisomer; Eq. ii). Moreover, we were able to prepare 
mixed malonate ester 9 from 2d via the corresponding ketene 
intermediate 7 (Eq. iii). Finally, compound 2t was converted to the 
corresponding acid chloride 10, which was subjected to the Friedel-
Crafts acylation reaction to furnish the 2,3-dihydroindenone 
derivative 11 (Eq. iv).

Conclusions

In conclusion, we have discovered a previously unknown 
catalyst-free transfer hydrogenation reaction of alkylidene 
Meldrum’s acids and barbituric acids. This approach allows 
convenient access to synthetically useful substituted malonic acid 
half oxyesters (SMAHOs) and functionalized barbituric acids. Our 
new green strategy has a number of advantages over the reported 

TH reactions of C=C bonds in the recent past (see Equation iii-v, 
Scheme 1) 13: (i) the use of toxic noble and transition metal 
compounds and ligands are completely eliminated; (ii) the reaction 
conditions are significantly milder as we utilize the eco-friendly 
isopropanol as both solvent and hydrogen source, compared to 
harsh hydrogen sources (i.e. HCOOH, poly(methylhydrosiloxane) and 
flammable H2 gas) which limits the scope of the reaction; (iii) 
excellent chemo specificity; (iv) excellent functional group 
compatibility;  (v) operational simplicity; (vi) acetone is the only by-
product that is easily removable unlike in previous methods. In 
addition, we have provided a detailed mechanistic and 
computational rationale for the synergistic effect of the hydrogen 
bonding network created by the secondary alcohol and the near 
planar geometry of alkylidene Meldrum’s/barbituric acids which is 
key to the success of this TH reaction. 
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