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Abstract10

Increasing renewable energy requires improving the electricity grid flexibility. Existing mea-11

sures include power plant cycling and grid-level energy storage, but they incur high operational12

and investment costs. Using a systems modeling and optimization framework, we study the13

integration of electrochemical energy storage with individual power plants at various renewable14

penetration levels. Our techno-economic analysis includes both Li-ion and NaS batteries to15

encompass different technology maturity levels. A California case-study indicates localized in-16

tegration to be cost-effective for greater grid flexibility. Li-ion can mitigate the residual demand17

fluctuations of small to medium-sized plants, while NaS batteries would be best-suited for larger18

storage with higher renewable penetration. Overall, the battery-enabled renewable integration19

could reduce the the unmet grid demand by 75%, the renewable curtailment by 58%, and the20

CO2 emission intensity by 16% while including the life cycle emissions of the battery and the21

renewable farm. Our scenario-based analysis also indicates that rather than replacing all fossil22

power plants, it is more economical to combine batteries and renewables with individual fossil23

plants to achieve a clean energy grid.24

Keywords: Clean Energy, Simultaneous Design and Operation, Decentralized Integration, Op-25
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1 Introduction1

As the world’s energy demand grows, there is a push to adopt carbon-neutral energy sources to2

counter the rising CO2 emissions from the fossil fuel-dominant power sector. Renewable energy3

is inherently cleaner and more sustainable than fossil fuels. Owing to technological improvements4

and policy efforts, the contribution of renewable energy in the U.S. power generation mix has5

nearly doubled over the past decade. Nearly 90% of this growth can be attributed to the variable6

renewable energy (VRE) sources of wind and solar.1 However, a major challenge towards widespread7

implementation of VRE sources is their spatio-temporal variability and non-dispatchability. During8

abundant solar energy production in the day, fossil-based electricity generators have to reduce their9

production to accommodate the excess solar energy. These generators are then required to rapidly10

increase their outputs to meet the peak evening demand when limited solar power is available.11

This leads to a ‘duck’ shape appearance of the residual energy demand curve, with the belly of the12

duck representing the low afternoon energy loads and the high evening loads depicted by the arch13

or the neck.2 The rapid changes in the residual loads require electricity grid operators to carefully14

balance the energy supply and demand to avoid electricity undersupply as well as overproduction.15

Thus, maintaining electricity grid reliability under high renewable penetration scenarios requires16

additional measures to increase the flexibility of electricity grids.17

Promising methods to achieve grid flexibility include the cycling of conventional generating18

units, curtailment of excess renewable energy, demand-side response, expanding transmission ca-19

pabilities, and energy storage. Among these, power plant cycling and energy storage are the20

most effective measures to ensure grid flexibility.3,4 The cycling of conventional natural gas-fired21

(NGCC) and coal-fired thermal power plants provides fast load-following capabilities to meet fluc-22

tuating demands. However, the rapid ramp-up/ramp-down of power output and the frequent23

startup/shutdown induce thermal and mechanical stresses to critical components such as the boil-24

ers and turbines.5 The increased wear and tear increases the operating and maintenance costs by25

2-5%, and reduces the plant lifetime.6,7 Furthermore, the partial load operation of conventional26

units that are typically designed for base-load operation reduces the power generation efficiency27

and increases both the fuel consumption and CO2 emissions.828

Energy storage ensures long-term grid reliability by decoupling the supply and the demand29

of energy. Integration of energy storage is typically considered at the grid-scale9–11 or with a30

renewable generation facility12–16. However, this requires large storage capacities to effectively31

manage energy supply-demand fluctuations. For instance, to enable 20% renewable penetration in32

the grid, an estimated storage capacity of 200 GW/1000 GWh would be required to provide peak33

shaving capabilities.17 The integration at grid-scale also requires capital-intensive modifications34

to the grid infrastructure. Furthermore, a limited number of storage technologies are currently35

suitable for large-scale energy storage considering the large power capacity and the long-duration36

discharge requirement. These primarily include pumped hydrostorage and compressed air energy37
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storage, which are often geographically limited.1

Figure 1: Two configurations of power generation systems and energy storage integrated with
electricity grids. (a) Independent, grid-level integration of fossil power plants, renewable energy
power plants and energy storage, and (b) Localized integration of energy storage with individual
power plants. The electrochemical energy storage is comprised of several Li-ion/NaS cells, which
form a battery module. A combination of several modules forms the entire battery pack.

Figure 1a depicts the conventional view of integrating energy storage at the grid-scale, which2

is independent of the power generation systems. This results in conservative costs and limited3

operational flexibility. The challenges associated with both the power generation and storage sys-4

tems to mitigate renewable intermittency can potentially be addressed by the localized integration5

of energy storage with individual power plants as shown in Figure 1b. There are several benefits6

to considering the localized integration. Firstly, the operational synergies that exist between the7

energy storage system and the host power plant can be leveraged to attain increased flexibility of8

the conventional generating units for accommodating variable renewable energy. During periods9

3
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of significant renewable availability and resulting low net demand, some of the excess power plant1

output can be stored locally. On the other hand, for peak demand periods and low renewable avail-2

ability, the stored power can be discharged to meet the net demand. This can reduce the cycling3

rates for fossil energy plants while at the same time ensuring power supply-demand balance in grids4

with high renewable penetration. Secondly, it broadens the scope of candidate storage technolo-5

gies for the integration, which is otherwise limited by the required storage dynamics pertaining to6

grid-level integration. Thirdly, it allows faster response times to fluctuations in the grid electricity7

demand as compared to the conventional analysis. Since storage technologies such as batteries can8

respond within seconds as opposed to the minute-long response of even the fastest power plants9

such as NGCCs, the power plants can provide instantaneous response to demand fluctuations with10

a locally-integrated storage system. The localized integration also potentially requires lower storage11

capacities and can eliminate significant changes to grid infrastructure, thereby reducing the capital12

investment of storage integration.13

Majority of the works focusing on the integration of energy storage with coal or natural gas-based14

thermal power plants consider storing the excess energy as steam.18 Wojcik and Wang19 considered15

thermal storage to improve the flexibility of a subcritical oil-fired conventional power plant while16

operating the plant close to design conditions. Mehrpooya et al.20 performed an exergy analysis of17

a molten salt-based thermal storage system and a solar thermal field coupled with a conventional18

combined cycle power plant. Li and Wang21 performed dynamic modeling and simulation of a19

supercritical pulverized coal-fired power plant integrated with high-temperature thermal storage20

(HTTS). They proposed three HTTS charging strategies and two HTTS discharging strategies21

to demonstrate increased load-following flexibility of the power plant. Richter et al.22 showed22

benefits in using thermal energy storage for improving the operational flexibility of the plant while23

minimizing the cycling by maintaining a constant firing rate. Angerer et al.23 considered the use of24

sensible heat storage to decouple the gas turbines and the heat recovery steam generators (HRSG)25

of an NGCC plant. Through transient simulation of the integrated process, they demonstrated26

that the thermal storage reduces the dynamic operation of the power plant and thereby reduces27

the fatigue-induced damage to critical plant components by 90%. Computational studies by Li28

et al.24 and Rashid et al.25 further reinforced the promise shown by decentralized thermal energy29

storage systems for the operation of natural gas power plants at rated load conditions in fluctuating30

electricity markets.31

Electrochemical energy storage using batteries and chemical storage using hydrogen produc-32

tion has also been considered for the integration. Kim et al.26 presented a dynamic optimization33

approach to determine the optimal dispatch of an integrated system comprised of a coal power34

plant, NGCC plant, NaS battery, and renewable energy. They considered minimizing the total35

cost of dispatch and included constraints for limiting the damage to the NGCC plant steam drum.36

Interestingly, their findings indicate that the flexibility of the system to meet changes in load de-37

mand is provided mostly by the NGCC plant, whereas NaS batteries are used sparingly and are38
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only deployed for scenarios with extreme ramp rates. The integration of Li-ion batteries with coal1

power plants can speed up the primary frequency control response as well as reduce the damage to2

power plant turbomachinery.27 Zachar et al.28 examined policy effects on the optimal design of an3

‘islanded’ microgrid power system comprised of fossil fuel-based power production sources, lead-4

acid batteries and renewables. Allman and Daoutidis29 explored the synergies between distributed5

renewable fuels and power systems through a framework for design optimization of a combined6

biorefinery and a microgrid with hydrogen energy storage. There has also been a growing emphasis7

on the localized integration of CO2 capture systems with existing power plants to act as an ‘indirect8

energy storage’ mechanism for mitigating renewable intermittency.30–33 This is achieved by flexi-9

ble scheduling of the energy-intensive solvent regeneration process synergistically with renewable10

availability.11

The dynamics of the power plant and energy storage as well as the spatio-temporal variability12

exhibited by the electricity markets and the renewable energy availability impact the storage size13

and integration economics. This necessitates the formulation of an optimization-based approach14

to consider the trade-offs between the cost and flexibility introduced by energy storage, as well as15

determine the integrated system operation under electricity demand and renewable fluctuations.16

In this work, we study a decentralized system of a power plant integrated with electrochemical17

energy storage. We consider two different types of electrochemical storage technologies: the mature18

and widely-used technology of lithium-ion (Li-ion) batteries and a developing, albeit promising19

technology in the form of sodium sulfur (NaS) batteries. Specifically, we investigate the optimal20

storage size for an existing NGCC power plant such that the benefits from the integration outweigh21

the upfront investment cost of the battery. We develop an optimization-based framework to evaluate22

the optimal integration decisions. To ensure that the system meets a time-varying grid demand, we23

model the time-varying operations of the power plant and energy storage. The presence of discrete24

and time-varying continuous decisions and the interactions between the system components result in25

a highly complex and large-scale model. To that end, we develop surrogate models for energy storage26

based on high-fidelity models. We apply the optimization-based framework for single power plants27

considering various demand profiles, as well as for power plants at a statewide scale with varying28

nominal capacities across California, U.S. The framework is then extended to the decentralized29

integration with renewable energy power plants and the battery integration results are compared.30

We address the following questions through our overall analysis:31

1. For given NGCC power plants, what are the optimal integration decisions under the spatio-32

temporal variability of grid electricity demand and renewable availability? How are these33

transferable for renewable power plants?34

2. How does the variability in the grid demand resulting from different penetration levels of35

renewables affect the selection of electrochemical energy storage?36

3. What are the economic/operational benefits obtained from the battery integration?37
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4. What is the added cost of going 100% renewable coupled with battery-based energy storage?1

5. Which electrochemical energy storage technology is more economical and beneficial for de-2

centralized integration?3

6. How do the battery size and economics change as we move from a single power plant analysis4

to a statewide study for different power plants?5

7. Which decentralized configuration is the most economical and sustainable to ensure that the6

grid electricity demand is met while incorporating variable renewable energy: (i) integration7

of battery with existing NGCC plants, (ii) integration of renewable energy and battery with8

existing NGCC plants, or (iii) replacement of existing NGCC plants with renewable energy9

and battery systems?10

Our mathematical programming-based optimization framework incorporating the battery and11

power plant models accounts for the trade-offs between the storage system cost and flexibility in12

decision-making. It also enables us to systematically evaluate the various differences between the13

technologically mature Li-ion technology and the promising NaS technology for the decentralized14

storage application. Specifically, we compare the two battery technologies in terms of different15

factors such as the high maturity of the Li-ion battery technology, and the long storage duration16

and lifetime offered by NaS batteries. This facilitates the assessment of the most-suitable electro-17

chemical technology for the decentralized integration with power plants under varying demand and18

cost scenarios.19

This article is structured as follows: Section 2 describes the overall methodology and the math-20

ematical modeling-based framework for the decentralized integration of batteries with individual21

power plants. This is also used to study the optimal energy storage investment decisions as well22

as the dynamic system operation. Section 3 discusses the results from the application of the opti-23

mization framework for various case studies. Finally, Section 4 summarizes the key findings of the24

work.25

2 Methodology26

As depicted by Figure 1b, the integrated system is connected to the electricity grid such that it is27

required to satisfy the time-varying power demand of the grid. We define the problem statement28

for optimization as follows: subject to a time-varying profile of net electricity demand of the grid,29

determine the optimal system design and dynamic operation for the integration of NaS/Li-ion30

batteries with existing power plants which minimizes the total integrated system cost of meeting31

the net demand over a specified time horizon. The net demand for power plants is considered to32

incorporate the variability of renewable energy, and is given by the total electricity demand of the33

grid less the renewable generation. The design decision of the optimization framework comprises34
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of the battery size. The dynamic operating decisions include (i) the battery operating state i.e.,1

charging, discharging or idle, (ii) the power output of the battery, and (iii) the power output of the2

power plant.3

The optimization objective is to simultaneously determine the long-term investment decision of4

the battery integration capacity as well as the short-term operational decisions of the integrated5

system dynamic operation which minimize the overall system cost to meet the time-varying grid6

demand. To model and simulate the dynamic operation of batteries, there exist several classes of7

models including electrochemical models, equivalent circuit models and data-driven models. Elec-8

trochemical models are high-fidelity first principles-based models which incorporate the complex9

thermo-electrochemical and physical battery phenomena.34,35 Although high-fidelity models accu-10

rately represent the dynamic battery operation, they introduce additional complexity when analyz-11

ing the integration with complex energy systems due to the highly non-linear representation of the12

underlying battery dynamics. To address this, simpler mathematical models known as equivalent13

circuit models are often employed for grid-level battery integration and analysis.36–39 These models14

use common electrical circuit elements such as resistance, capacitance and voltage source to rep-15

resent the battery electrochemical phenomena. The third category uses electrochemical simulation16

or experimental data to formulate ‘black-box’ battery models using data-driven techniques such as17

artificial neural networks (ANNs), recurrent neural networks (RNNs) and support vector machines18

(SVMs). Although these models show promise in accurately predicting the battery operation with19

low computational expense, they are mostly encountered in literature for Li-ion batteries, with few20

works focusing on the NaS battery application.40–4221

In this work, we consider an equivalent circuit model to simulate the Li-ion battery behavior22

while lending computational tractability for the optimization. Furthermore, we develop a data-23

driven reduced-order model of the NaS battery derived from complex electrochemical models. This24

model incorporates the thermal management strategies required to make the NaS technology suit-25

able for large-scale energy storage applications. Sections 2.1 and 2.2 elaborate on the working26

mechanism of the Li-ion and NaS battery technologies along with an overview of the reduced-27

order model development. The reduced-order models are then included in the overall optimization28

problem, which is given in Section 2.3 along with the key assumptions.29

2.1 Li-ion Battery Model30

The current market of energy storage and secondary batteries, in particular, is dominated by31

Li-ion battery storage. Li-ion batteries, which were first commercially developed for portable32

electronics, are now being increasingly used for diverse applications such as electric vehicles, military33

applications, medical devices and power tools. This massive growth can be attributed to their high34

energy density (300 Wh/kg) and high cell voltage (∼3.7 V) compared to most secondary batteries,35

along with their low self-discharge rates (0.1 - 0.3 %/day), fast response times (milliseconds) and36

high round-trip efficiency (95%).43–45 However, despite the technological maturity and the promise37
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shown by Li-ion batteries, there still remains a gap in the use of this battery technology for utility-1

scale energy storage due to its limitation in providing long-duration energy storage, safety concerns2

associated with the tendency to overheat at high voltages, battery degradation which reduces the3

lifetime, and environmental issues linked to its production and recycling.46–494

The schematic of a Li-ion cell is depicted in Figure 2a. The typical Li-ion cell comprises of5

a graphite-based negative electrode or anode, and a lithium cobalt oxide (LiCoO2)-based positive6

electrode or cathode. The half-cell reactions which take place in the anode (Eq. 1a) and cathode7

(Eq. 1b) during discharging, along with the overall cell reaction (Eq. 1c) are given by:8

LiC6←→Li+ + C6 + e−, (1a)

Li+ + CoO2 + e−←→LiCoO2, (1b)

LiC6 + CoO2←→C6 + LiCoO2. (1c)

The working mechanism of a Li-ion cell is different as compared to a conventional electrochemical9

process. The charge-discharge process is governed by an intercalation mechanism of the Li-ion in the10

crystalline lattice of the electrodes, as opposed to a traditional redox mechanism. When the cell is11

discharging, Li exits the surface of the graphite electrode layers, gives up an electron to the external12

circuit and enters the electrolyte in the form of Li+. Li+ travels to the positive electrode, where it13

accepts the electron from the external circuit to form Li, which enters the positive electrode particles14

at their surface. The opposite reaction occurs during charging. Along with the electrolyte which15

acts as a medium for Li+ transport between electrodes, the Li-ion cell comprises of a separator.16

The separator acts as an electrical insulator to avoid charge transfer between the electrodes, and17

prevents the cell’s self-discharge and internal short-circuit. The cell also includes current collectors18

which adhere to the electrodes and connect the battery to the external circuit.19

A representative profile of the cell open-circuit voltage (OCV), which is defined as the terminal20

voltage when there is no flow of current, is depicted in Figure 2a.50 The open-circuit voltage21

depends on the cell state of discharge (SOD). The cell SOD indicates the percentage of the overall22

capacity that has been discharged, with SOD value of 0 indicating that the cell is fully charged and23

SOD value of 100% indicating complete discharge. Conversely, the cell state of charge (SOC) is an24

indicator of the available cell capacity. As the cell is progressively discharged from the full-charge25

state, the OCV decreases steadily with an increase in the SOD. For high SOD levels, the OCV drops26

with only a small change in the SOD, requiring a careful discharge mechanism to avoid violation27

of the voltage limits.28

We consider an equivalent circuit model (ECM) for the Li-ion battery technology where the29

battery dynamics are modeled using common electrical circuit elements. The specific ECM we30

consider is the Rint model, where an ideal voltage source represents the open-circuit voltage along31

with a series resistance to account for polarization, i.e. the departure of the cell terminal voltage32

from the open-circuit voltage under load.51,52 The Rint model is a suitable model to capture33

8
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the nonlinear dynamics of Li-ion batteries while incorporating the OCV-SOC relationship and1

instantaneous voltage drop characteristics. It is proven to sufficiently capture the key phenomena2

in Li-ion batteries, accurately estimate the cell terminal voltage, while maintaining computational3

tractability53 for the optimization problem. The detailed mathematical representation of the Rint4

model is presented in Section S2.1 of the Supplementary Information. The model is valid under5

the assumption that external thermal management strategies such as air cooling are employed to6

maintain the battery temperature at a constant ambient temperature of 25 °C.7

Figure 2: Schematic and voltage profiles of the Li-ion and NaS cells.50,54–56 (a) The Li-ion cell
open-circuit voltage (OCV) decreases as the cell is progressively discharged. (b) When the NaS
cell is fully charged, the OCV is equal to the nominal voltage. As the cell discharges, a two-phase
region starts forming in the cathode, which results in a voltage drop.

2.2 NaS Battery Model8

NaS batteries, first commercially developed by the Tokyo Electric Power Co. (TEPCO) in collabora-9

tion with NGK insulators57, are excellent candidates for cost-effective, large-scale stationary energy10

9
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storage due to their low cost of electrode materials, high open-circuit voltage (∼2 V), high theo-1

retical energy density (150-240 Wh/kg), long cycling lifetime (over 10 years) and high round-trip2

efficiency (90%).58–60 However, the conventional room-temperature operation of the NaS batteries3

shows poor capacity retention and cycling properties. To enable the use of this battery technology4

for large-scale storage applications, high-temperature NaS batteries with operating temperatures5

of 300 - 400 °C are typically considered.61,62 Under these operating conditions, there is a risk of6

thermal runaway during high energy density operation. To address the thermal management issue7

of NaS batteries and make the technology suitable for large-scale storage applications, this work8

considers an active cooling strategy of the battery by the use of air as a cooling medium. Fur-9

thermore, the thermal management also has a strong influence on the internal cell resistance and10

voltage. To monitor this, the dynamic models of the NaS cell developed in this work consider the11

effect of temperature on the cell’s physical properties.6312

The typical configuration of a NaS cell is depicted in Figure 2b. Each NaS cell consists of molten13

sodium at the core which serves as the anode. This is separated from a molten sulfur cathode by a14

beta”-alumina solid ceramic electrolyte. The half-cell reactions in the cathode and anode, and the15

overall cell reaction are given by:55,5616

2 Na←→ 2 Na+ + 2 e−, (2a)

2 Na+ + x S + 2 e−←→Na2Sx, (2b)

2 Na + x S←→Na2Sx. (2c)

The forward reactions take place during the discharge operation. As the cell discharges, the17

sodium donates an electron to the external circuit and migrates to the sulfur container where it18

reacts with sulfur to form sodium polysulfide. In the fully charged state, the cathode is entirely19

molten sulfur. As the extent of discharge increases, the composition of the sulfur electrode changes20

to two-phase comprising of molten sulfur and sodium polysulfide. For further cell discharge, a21

single-phase polysulfide region is formed in the cathode. This change in the composition of the22

sulfur electrode as the reactions proceed also affects the cell electromotive force (EMF). Figure 2b23

shows the cell EMF profile with increasing level of discharge and mole fraction of sulfur in the24

cathode. The cell EMF is relatively constant for two-phase region, but the formation of the single-25

phase region results in a drop in the cell EMF. As the cathode composition is a result of the extent26

of cell discharge, the cell SOD is an important cell state which determines its voltage and internal27

cell resistance.28

Based on this working mechanism, reduced-order models for the NaS cell are developed based29

on the first principles models of Schaefer et al.64 using a nonlinear time-series analysis method30

known as NAARX (nonlinear additive autoregressive with exogenous input).65 The general form31

and description of the NAARX category of time-series models, along with a detailed overview of32

the model development process is given in Section S1 of the Supplementary Information. Due to33
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the different voltage profiles in the single-phase and two-phase regions of the sulfur electrode in1

the NaS cell, four different models are generated depending on the state of the sulfur electrode and2

the direction of power flow through the cell. Specifically, these models correspond to the following3

four states of the cell: single-phase charging, two-phase charging, single-phase discharging and two-4

phase discharging. The detailed mathematical representation of the NaS models is presented in5

Section S2.2 of the Supplementary Information.6

On comparison of the parameters of the Li-ion and NaS battery technologies from Table S2,7

we find that the specific investment and fixed operating and maintenance (O&M) cost of Li-ion8

batteries is lower than NaS batteries. However, Li-ion also has lower lifetime and lower maximum9

storage duration compared to NaS batteries. Thus, through the inclusion of these models in the op-10

timization framework, we aim to systematically decide the optimal integration decisions for a given11

power plant which account for the trade-off between the higher efficiency and the lower cost of Li-ion12

batteries, and the lower lifetime and less storage duration compared to the NaS technology. Note13

that each technology is evaluated in the optimization individually, and the optimization framework14

does not simultaneously include the models of both technologies. The overall optimization model15

formulation is given in the following section.16

2.3 Simultaneous Design and Integration Model17

The following assumptions preface the optimization model development:18

� Startup and shutdown operation of the NGCC power plant is not considered. At any given19

time, the power plant operates between its minimum non-zero load and nominal capacity.20

� All cells in the battery system have identical current, voltage and power output at any given21

time. Furthermore, the state of charge/discharge for all the cells is equal at any time.22

� The integrated system is not required to exactly meet the grid demand. Any excess or deficit23

of electricity supply to the grid is then penalized and added to the cost.24

� Degradation of the battery and the subsequent battery replacement is not modeled. To justify25

this assumption, we incorporate a low-end value of the battery lifetime along with conservative26

bounds on the battery operation. Similar assumptions have also been incorporated in previous27

systems-level studies which include batteries.28,6628

The optimization formulation minimizes the total system cost of meeting the grid demand. The29

decision variables in the framework include the design of the battery and the time-varying operation30

of the battery and the power plant. The optimization model along with the mathematical repre-31

sentation of the decision variables, the dependent variables and the model parameters is presented32

in Section S3 of the Supplementary Information. The overall framework including the optimization33

model and the single cell models for the Li-ion and NaS technologies given in Sections 2.1 and 2.234

forms a mixed-integer nonlinear programming (MINLP) problem.35
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3 Results and Discussion1

The optimization-based simultaneous design and operational scheduling framework is implemented2

for a time discretization of 10 minutes over a time horizon of one day to study the integration of3

energy storage with power plants. We consider case studies based on the state of California in4

the U.S. for the electricity market and renewable availability profiles. California is an important5

state to examine the effect of high renewable penetration on power systems, being the leading6

producer of renewable-generated electricity in the U.S. with more than half of the in-state electricity7

generation coming from renewable sources in 2019.67 The net electricity demand profile is obtained8

for representative days from the California Independent System Operator’s (CAISO) actual load9

data reports.68 The net demand is reported for 5 minute time increments and represents the total10

system demand minus the wind and solar energy generation. This is converted to a 10 minute11

increment profile by averaging the data of adjacent time periods and scaling the profile using the12

NGCC plant’s nominal capacity.13

Figure 3: Variation of NGCC power plant data and solar availability across the state of Cali-
fornia. The points on (a) represent the locations of the existing NGCC plants with the point size
proportional to the plant nameplate capacity. The points on (b) represent the corresponding CO2

emission intensities of the existing power plants. Solar PV capacity factors for the weather stations
across the state are depicted using Voronoi polygons. We see that the state has high amounts
of solar energy availability, making it important to address the integration issues arising from its
spatio-temporal nature.
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Data for the power plants’ nameplate capacities and CO2 emissions is obtained from the United1

States Environmental Protection Agency (U.S. EPA)’s latest Emissions & Generation Resource2

Integrated Database, eGRID2019, which was released in February 2021 demonstrating 2019 data.693

According to the database, there are about 65 power plants in the state with operational NGCC4

units in 2019. For a power plant with NGCC listed as its primary generating unit in eGRID2019,5

we assume the NGCC nameplate capacity to be the same as that of the entire plant. This is because6

although the plant’s generation mix may also include other fuel sources, its power production can7

be attributed majorly to its NGCC units. Figure 3a depicts the location of the power plants along8

with their nameplate capacities. Nearly 90% of the power plants have nameplate capacities below9

1000 MW. The plant nameplate capacity serves as an input parameter Pnom,ng in the optimization10

model of Section 2.3. Figure 3b represents the CO2 emission intensity of the 65 power plants. 4311

out of the 65 power plants have emission intensity in the range of 0.4 - 0.6 ton/MWh, which is the12

typical emission intensity for NGCC power plants.7013

In addition to the power plant data, weather data for the solar irradiation is obtained for Typical14

Meteorological Year (TMY3) sites across California from the National Renewable Energy Lab15

(NREL)’s National Solar Radiation Database (NSRDB).71 This dataset provides weather conditions16

for a typical, representative year based on historically observed conditions for different sites across17

the U.S. The solar irradiation data is converted to the corresponding solar PV capacity factor using18

the reference irradiation.72 Specifically, the solar PV capacity factor is defined by the following19

equation:3020

cfspt =
Ht

Href
ηarrηac/dcηwir, ∀t ∈ T , (3)

where, Ht denotes the actual solar irradiation at a given location at time t (in W/m2), Href denotes21

the reference irradiation of the solar panel, and the parameters ηarrηac/dcηwir denote the efficiencies22

of the PV array, DC-to-AC conversion and wiring, respectively. For a reference irradiation of 100023

W/m2 and a combined efficiency factor of 93.75%, the capacity factor is completely determined24

by the actual solar irradiation at a given time. The capacity factor of the solar panel is thereby25

pre-determined based on the solar availability for a given PV system configuration and is not a26

scheduling decision. The sole degree of freedom to regulate the amount of solar power output27

delivered is then the size of the solar farm. This is given by the following equation:28

P sp
t = cfspt sz

sp, ∀t ∈ T , (4)

where, P sp
t denotes the power output of the solar panel at time t (in MW), cfspt is the capacity29

factor at time t and szsp is the size of the solar farm (in MW). Figure 3 also shows the statewide30

variation of the solar capacity factor representing the solar energy availability. We observe that the31

solar availability across the state is the highest in the nation, with regions in Southern California32

showing an annual average capacity factor of nearly 23%.33
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The framework is first demonstrated for the integration of batteries with NGCC power plants1

and then extended to consider the integration with renewable energy plants. We consider the2

following two cases for the integration with renewable plants: (i) existing NGCC power plants3

integrated with battery-enabled renewable energy farms, and (ii) replacement of the existing NGCC4

power plants with battery-integrated renewable energy farms. If the integration of renewable energy5

and/or battery systems is optimal, we consider that these systems are co-located with the NGCC6

plants. In all these cases, the location of the integrated renewable energy/battery facilities for each7

of the existing NGCC plants is the same as the location of the NGCC plant.8

3.1 Integration with Fossil Power Plants9

At the grid-level, increasing penetration of renewables increases the demand variability for fossil10

power plants. In other words, to mitigate the variability in renewable energy, fossil power plants11

need to vary/cycle their loads more frequently and more sharply. For a single NGCC power plant12

of 641 MW nominal capacity, we investigate how such increase in demand variability representing13

different levels of renewable penetration and steeper ramping requirements plays a role in the14

selection of battery storage technologies. The net demand profiles incorporating different degrees15

of variability are depicted in Figure 4a. The ‘base-case’ scenario refers to the nominal net load16

profile without any extreme ramp rates and demand fluctuations. As the amount of renewable17

shares increase, the net load during the day progressively decreases, with increasing demand during18

the peak evening hours.19

The cost minimization objective minimizes the sum of the battery investment and the operating20

cost incurred if the battery integration is selected, the power plant variable operating cost, the plant21

cycling cost, and penalty on any imbalance between the integrated system power supply and grid22

demand. Considering the nominal values of the cost parameters, we find that it is optimal to not23

integrate a Li-ion or a NaS battery with the power plant for the base-case profile. In the absence24

of storage integration, the net demand is met by the power plant through ramping its output25

as well as operation at partial load conditions. Although there is a large amount of cycling, the26

resulting cycling cost is insignificant (0.2% of the total cost). This indicates that at the nominal cost27

parameters, the NGCC cycling cost is insufficient to compensate for the large battery investment28

to reduce the power plant cycling. Through a cost sensitivity study (Supplementary Information,29

Section S5.1), we find that the NGCC specific cycling cost should be significantly greater than the30

unit battery investment cost to achieve favorable economics of integration.31

As the extent of renewable penetration is increased, we find that it is increasingly beneficial32

for the power plant to invest in a battery to meet the grid demand. Figure 4b shows the optimal33

battery integration sizes of the Li-ion and NaS technologies for the different levels of increase in34

renewable shares. Overall, the battery size increases with the renewable penetration. For Li-ion35

batteries, the size hits the upper bound of 400 MWh for a renewable penetration increase of 60%36

and beyond.37
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Figure 4: (a) Net demand profiles, (b) optimal battery size, and (c) battery cost at different
renewable penetration levels. The investment cost forms a major portion of the total cost, followed
by the charging cost and the cost of operating the battery. With an increase in the renewable
penetration levels, the battery size increases for both technologies. This results in a decreasing
trend in the LCOS up to a renewable penetration increase of 40%. Beyond a 40% increase in
demand variability, the extent of battery overdesign increases, thereby resulting in an increase in
the LCOS.

The corresponding operational profiles of the integrated system for the 80% change in the1

demand profile are depicted in Figure S4 of the Supplementary Information. The storage system2

is charged using the excess energy generated by the power plant during periods of low net demand3

in the middle of the day. The stored energy is then discharged to meet the demand peak during4

the evening hours. We also observe that the NaS battery exhibits a longer storage duration, which5

is 50% higher than the storage duration of the Li-ion battery. Although the batteries discharge in6

the evening hours to meet the demand peak, there is some fraction of the peak demand which is7

unmet. This is due to the operational limits imposed on the cell voltage and state which results in8

the underutilization of the storage capacity.9

To analyze if the self-discharge mechanism of the battery affects these results, we extend the10

analysis to also include the self-discharge rate. A self-discharge rate of 0.2% per day is considered11

for Li-ion batteries.73 The modified energy balance accounting for the self-discharge of the battery12

in the idle state is provided in Section S2.1 of the Supplementary Information. We find that the13

self-discharge has a negligible effect on the optimal solution. For instance, to compensate for the14

loss of energy due to self-discharge, the amount of energy charged to the battery increases by15

0.0006%, while the amount of energy discharged by the battery during peak hours reduces by16

0.006%. Overall, this results in a $10 per day increase in the total system cost. Thus, due to17
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the battery not being in the idle state for extended periods and the low self-discharge rate of the1

considered battery technologies, the effect of including the self-discharge mechanism on the overall2

results is negligible.3

The economic benefits of the battery system are assessed by measuring the levelized cost of4

storage (LCOS). LCOS represents the discounted cost to discharge one unit of electrical energy from5

the battery system. The LCOS is calculated based on the optimization results with the detailed6

mathematical representation shown in Section S4 of the Supplementary Information. Figure 4c7

depicts the battery LCOS at the different renewable penetration levels. With the increase in8

renewable penetration levels, the LCOS for both the storage technologies decreases for up to 40%9

increase in renewable penetration, and then increases. This indicates that the battery is increasingly10

overdesigned beyond the 40% level. Overall, the average capacity utilization of NaS batteries is11

38% higher than the capacity utilization of Li-ion batteries. On comparison of the cost of the two12

technologies from Figure 4c, we find that the LCOS of the NaS battery is higher than the LCOS of13

Li-ion for the demand variability increase levels of 20%, 40% and 80%. An interesting observation14

is for the 60% level, where the LCOS of NaS is lower than that of Li-ion. Thus, the lower lifetime15

and the lower storage duration coupled with the lower utilization of Li-ion technology compared16

to NaS batteries for these demand scenarios outweigh the cost benefits obtained from the lower17

investment cost of Li-ion batteries, contributing to an overall higher LCOS.18

3.1.1 Statewide integration19

The analysis for the single power plant case is expanded to a statewide study for NGCC power plants20

across California. We observe that for the nominal net demand profile, the battery integration is not21

optimal for any of the 65 power plants in the state. The net demand is met exactly by all the plants,22

thereby resulting in no electricity oversupply and undersupply costs. Next, we extend the analysis to23

consider demand scenarios with increasing variability from the nominal profile, i.e. 20%, 40%, 60%24

and 80% increase in renewable penetration. We observe that the battery selection is optimal at the25

higher demand variability, and the battery integration size increases with both the NGCC nominal26

capacity and the level of increase in demand variability (Supplementary Information, Figure S5).27

The corresponding system cost in terms of the levelized cost of electricity (LCOE) for the28

integrated system and the LCOS for the different levels of increase in renewable penetration is given29

in Figure 5 for the representative case of NaS battery. The LCOE represents the net present costs30

incurred by the integrated system to generate one unit of electricity. The detailed mathematical31

representation of the LCOE is presented in Section S4 of the Supplementary Information. From32

Figure 5a, we can see that the LCOE with battery selection shows an increasing trend with the33

nameplate capacity of the power plant and the renewable penetration level. We also observe that34

the average LCOS shows a decreasing trend as we increase the extent of renewable integration,35

making the decentralized battery integration more economical at higher renewable penetration36

levels. In addition, the battery integration results in an average of 18% reduction in the NGCC37
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variable operating cost, and an average of 53% reduction in the unmet demand as compared to the1

stand-alone NGCC plant (Supplementary Information, Figure S6).2

Figure 5: Integrated system cost represented by (a) LCOE and (b) average battery LCOS for 20%,
40%, 60% and 80% increase in renewable energy penetration considering NaS battery integration.

As the integration of the NaS and Li-ion storage technologies is considered independently of each3

other in the optimization, we perform a comparison of the technologies using the post-calculated4

LCOE metric. Figure 6a depicts the NGCC nominal capacities and demand scenarios for which the5

LCOE with Li-ion battery integration is less than that with NaS battery integration, i.e. the Li-ion6

battery integration is more beneficial compared to NaS. Conversely, Figure 6b represents the cases7

which facilitate more favorable economics of NaS battery integration compared to Li-ion. Overall,8

we observe that there is a higher number of data points that favor Li-ion integration. Furthermore,9

NaS battery integration is observed to be more beneficial at higher levels of renewable penetration10

and for larger-sized power plants. This is due to the high maximum storage capacity and storage11

duration required to meet the demand for these cases, which is provided by NaS batteries. On the12

other hand, Li-ion integration is observed to be more beneficial for medium-sized power plants. In13

addition, Figure 6c shows the cases where the integration of neither battery technology is optimal.14

There are a total of 16 power plants with capacities below 74 MW for which the battery selection15

is not optimal for varying levels of renewable penetration. For lower renewable penetration levels,16

a Li-ion/NaS battery is not selected for a larger range of NGCC nominal capacities.17

The statewide average LCOE of the integrated system with Li-ion integration is shown in18

Figure 7 in comparison with the average LCOE with NaS battery integration. We find that the19

LCOE considering NaS battery integration is on an average a mere 5% higher than that considering20

Li-ion battery integration. Thus, although the specific investment cost of Li-ion battery is 65% less21

than the specific investment cost of NaS battery, the lower storage duration and lower lifetime22

of Li-ion technology result in marginal cost benefits obtained from the Li-ion battery integration23
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compared to the NaS battery integration. This suggests that further reduction in the investment1

cost of the NaS battery through technological improvements can potentially result in the integrated2

system LCOE with NaS battery integration being lower than that with Li-ion battery integration.3

Next, we extend this analysis to the integration of batteries with renewable energy power plants4

and compare the results.5

Figure 6: (a) Cases where Li-ion battery integration is more economical compared to NaS battery,
(b) cases for which NaS battery integration is more economical compared to Li-ion, and (c) cases
for which integration of neither battery technology is optimal. The percentage reduction in LCOE
with respect to NaS for (a), and with respect to Li-ion for (b) is represented by the color of the
data points.

Figure 7: Average LCOE of the integrated system with NaS battery and Li-ion battery integration
at different renewable penetration levels.

3.2 Integration with Renewable Power Plants6

The system considered in our analysis so far is an NGCC power plant integrated with battery7

storage. The system is designed to be flexible enough such that it meets the time-varying net8

demand of the electricity grid under intermittent renewable integration. The variability of renewable9
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energy is incorporated implicitly in the framework through a scaled net demand profile of the1

electricity grid. In this section, we extend this analysis to also explicitly consider the renewable2

availability at each power plant location. We consider the following two cases for this study: (i) an3

existing NGCC power plant integrated with battery storage and a renewable energy farm, and (ii)4

replacement of an existing NGCC power plant with a renewable energy farm and battery storage.5

The specific renewable energy technology considered is solar PV, due to the promise shown by solar6

power in the state of California as well as the need to address the critical challenges arising from its7

overgeneration. From Figure 6, we see that there exist a higher number of power plants/demand8

scenarios where Li-ion battery integration is favorable over NaS. Based on this, we consider the9

battery type as Li-ion battery for the analysis.10

Figure 8: Optimal operational profiles for (a) integrated system comprising the power plant,
renewable energy farm and Li-ion battery, (b) renewable energy farm, and (c) Li-ion battery system.

To begin with, the previously considered system configuration is extended to also consider a11

co-located renewable energy (solar PV) farm integrated with an existing NGCC power plant along12

with battery storage. In addition to the design decision of sizing the battery system, the sizing and13

operational decisions of the renewable energy farm are incorporated in the optimization framework.14

This enables us to study how the two power sources of fossil and renewable energy work in tandem15

to meet the electricity demand, while mitigating the intermittency of renewables using battery16

storage. We first consider the single NGCC power plant case with a nameplate capacity of 64117

MW. In place of the net demand profile, here we consider the actual grid electricity demand profile18

with the renewable availability data considered for the city of Oakland in California. The demand19
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profile is scaled with respect to the plant nameplate capacity. Since renewable energy is included as1

an additional power source, the scaled demand profile is increased by 20%. The specific investment2

cost of solar PV is considered to be a futuristic value of $300 per kW.3

Figure 9: (a) Optimal renewable farm, and (b) optimal battery integration size with NGCC
power plants across the state of California. Both the battery integration size and the renewable
size increases with the NGCC nominal capacity. More than half of the power plants have a battery
integration size less than 150 MWh and a co-located renewable farm size less than 200 MW.

Figure 8 shows the optimal system operation for a representative summer day. We find that it4

is optimal to integrate renewable energy with the 641 MW capacity NGCC power plant, with the5

co-located renewable energy farm sized at a capacity of 222 MW. It is also optimal to integrate a6

battery sized at its maximum capacity of 100 MW/400 MWh. On comparison with our previous7

analysis of Section 3.1, we find that the NGCC power plant operates at reduced capacity for a8

longer duration of time during the day, when renewable energy is readily available. During periods9

when there is a dip in the demand peak in the day, the excess renewable energy is stored by charging10

the battery. The stored energy is then discharged to meet the demand peak during evening hours,11

when the renewable output drops to zero.12

We compare the cost obtained from this analysis with the 60% increase in net demand variability13

case of NGCC integration with battery alone. This scenario is considered as the peak net demand14

during periods of limited renewable availability is close to the peak demand values when the actual15

demand is increased by 20%. The optimal LCOS of the battery for the NGCC-renewables-battery16

system is $433 per MWh, which is 6.5% lower than the LCOS of the integration of battery with17
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the NGCC plant. The lower LCOS is due to the reduction in the charging cost of the battery. For1

the case of NGCC power plant integrated with battery alone, the power plant increases its power2

output to charge the battery system. Thus, there is a significant amount of charging cost due to the3

power generation cost of the plant. On the other hand, in the case of the NGCC plant integrated4

with a renewable energy farm and battery, the battery is charged using the excess renewable output,5

which has near-zero marginal production costs.6

The analysis for the single power plant case is then extended to the different NGCC power7

plants across California. The data for solar energy at each power plant location is obtained from8

the weather station in its closest proximity, or the data for the corresponding Voronoi polygon it9

falls into (Figure 3). The optimal co-located renewable farm size and the battery integration size10

for the power plants across the state is given in Figure 9. We observe that both the renewable11

farm size and the battery integration size increases with the power plant nameplate capacity. In12

addition, the battery integration size shows a strong positive correlation to the renewable farm size13

(Pearson correlation coefficient of 0.78) and a moderate positive correlation to the average solar14

PV capacity factor (Pearson correlation coefficient of 0.34). This indicates that a bigger battery15

size is required to mitigate the intermittent power production of large renewable energy farms in16

regions with high amounts of renewable availability.17

Figure 10: System cost represented by (a) LCOE and (b) battery LCOS for NGCC power plants
across California integrated with renewables and battery.

Figure 10 shows the system costs in the form of the LCOE of the overall system and the LCOS18

of the battery. We find that the overall system LCOE increases with the NGCC nominal capacity19

and the battery integration size. On the other hand, the battery LCOS shows a roughly decreasing20

trend with the battery size. The average LCOE of the integrated system is $35 per MWh, while21

the average LCOS is $272 per MWh. The average LCOE for our previous study of NGCC plants22

integrated with battery alone was $51 per MWh for the 60% renewable penetration case (Figure 7),23

and the average LCOS was $444 per MWh. Although there is now an additional investment in the24

renewable energy farm, the total system cost is reduced by 18%, and the overall system LCOE is25
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reduced by 31% compared to the previous case. The reduction in the LCOE and total cost can be1

attributed to the additional power output of the renewable energy farm and the reduction in the2

electricity undersupply costs.3

Figure 11: (a) Electricity undersupply comparison, (b) total energy generation comparison for the
three configurations, and (c) reduction in average electricity undersupply with increasing penalty.
The inclusion of renewable (solar) energy reduces the electricity undersupply of the system while
meeting the grid demand, and increases the total energy generation. This results in reduction of
the total system cost and the LCOE compared to the case when renewables are not included. The
reduction in electricity undersupply obtained from the integration of solar energy and batteries
with NGCC plants increases with the penalty imposed on the unmet grid demand.

The comparison of the total energy output and electricity undersupply of the stand-alone NGCC4

plant, NGCC plant with battery integration, and NGCC plant with battery and localized renew-5

able integration is shown in Figure 11. The total power generated by stand-alone NGCC plants6

under grid-level renewable integration is the same as that of NGCC plants integrated with batteries.7
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However, incorporating the localized integration of renewables increases the total energy output1

and reduces the electricity undersupply. Overall, the localized integration of both batteries and2

renewables with NGCC plants results in an average of 75% reduction in electricity undersupply3

compared to the stand-alone NGCC plant for the undersupply penalty of $1000 per MWh. Fig-4

ure 11c shows the sensitivity analysis of the reduction in the average electricity undersupply with5

increasing penalty. Overall, we observe that the reduction in the unmet demand obtained from6

the integration of both renewable energy and battery systems with NGCC power plants increases7

with the undersupply penalty and varies between 37 - 75%. As the penalty is increased, there is8

initially a steep increase in the reduction in the undersupply obtained from the integration. This9

is due to the increase in the battery and renewable farm size. Beyond the undersupply penalty of10

$600 per MWh, the undersupply plateaus once the maximum limits on the battery and renewable11

farm sizing are reached. In addition, a 39% reduction in the battery LCOS is achieved from the12

renewable integration due to reduction in the charging cost.13

To evaluate the carbon footprint of the integrated system, we calculate the CO2 emission inten-14

sity. This is defined as the ratio of the total CO2 emissions of the system to the total energy delivered15

over the operating horizon. The detailed mathematical representation of the CO2 emission inten-16

sity is shown in Section S4 of the Supplementary Information. We find that the integration of both17

the battery and the renewable energy reduces the average emission intensity of the NGCC power18

plants across the state from the base-case emission intensity of 0.44 ton/MWh to 0.36 ton/MWh,19

or an average reduction of 18%.20

Next, we evaluate how the CO2 emission intensity changes when we also account for the life21

cycle greenhouse gas emissions of the battery and the solar PV farm. The life cycle emissions22

represent the ‘cradle-to-grave’ CO2 emissions associated with the different stages in the life cycle23

of the energy system, such as the raw material extraction and the manufacturing, transportation,24

operation and end-of-life of the battery. As a basis, the unit life cycle emission intensity for the25

battery is considered to be 33 kg CO2-eq per MWh of energy discharged. The unit life cycle26

emission intensity for the solar PV farm is considered to be 46 kg CO2-eq/MWh.74–77 We find27

that the inclusion of the life cycle emissions of the battery and renewable farm in the analysis does28

not significantly affect the integrated system’s CO2 emission intensity. For instance, the average29

emission intensity for the integrated ‘NGCC + solar + battery’ system increases only by about 3%30

(from 0.36 ton/MWh to 0.37 ton/MWh). Figure 12a demonstrates the resulting emission intensity31

variation for the various plants across California. The minor increase in the emission intensity of32

the system on considering the life cycle emissions of the battery and renewable farm is due to the33

significantly higher emissions associated with the NGCC power plant which outweigh these life cycle34

emissions. Figure 12b shows the comparison of the emission intensity of the integrated system with35

the previously considered system of NGCC and battery. The integration of emission-free, clean36

renewable energy results in an overall 16% reduction in the emission intensity considering the life37

cycle emissions of the battery and the renewable farm.1
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Figure 12: Emission intensity of integrated system of NGCC power plant, renewable energy farm
and Li-ion battery shown as (a) spatial variation for the plants across California, and (b) comparison
with the integrated system of NGCC plant and battery. Adding renewables to the integrated system
results in a reduction in the average emission intensity, with the emission intensity of 48 out of the
65 power plants being in the range of 0.2 - 0.4 ton/MWh compared to the base-case range of 0.4 -
0.6 ton/MWh.

We now ask if it is possible to entirely replace NGCC power plants with renewable energy farms.2

The upper bound on the renewable farm capacity is taken to be 1.2 times the NGCC plant’s nominal3

capacity, with the same net demand profile. To meet the demand under the variable availability of4

a renewable farm, a battery is required. The optimal sizes of the renewable energy farms and the5

battery systems are shown in Figure 13. We find that to mitigate the intermittency of renewables6

and meet the same demand profile as the NGCC plant, the battery size of 100 MW/400 MWh7

is not sufficient for 15 out of the 65 plants and larger batteries are required. The battery size8

increases with the renewable farm size and the solar availability. In addition, the average battery9

LCOS increases to $397 per MWh, and the overall system LCOE increases to $2292 per MWh.10

Thus, although the complete replacement of the NGCC power plant with the renewable energy11

farm results in 100% reduction of CO2 emissions, the required battery size is significantly high to12

ensure that the grid demand is met sufficiently. Furthermore, consideration of the electricity over-13

supply and undersupply costs, as well as the investment cost associated with the renewable energy14

farm and battery storage results in a high overall system LCOE. Figure 13c shows the renewable15

energy curtailment for the case of battery integration with the renewable energy plant. We see16

that the curtailment is nearly twice that of the integration of NGCC plants with renewables and1
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battery. This indicates that the synergistic integration of batteries and renewables with individual2

fossil-based units is more beneficial and economical to achieve clean electricity grids as compared to3

the integration of batteries with stand-alone renewable energy plants which replace the fossil-based4

units.1

Figure 13: (a) Optimal renewable farm size, (b) optimal battery integration size, and (c) renewable
energy curtailment for replacement of NGCC plants with renewable energy farms across the state
of California.
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4 Conclusions2

We departed from the traditional grid-level integration of large-scale energy storage capacities3

and considered a decentralized integration scheme of energy storage integrated with individual4

power plants. Specifically, we considered an integrated system of NGCC power plants with storage5

technologies typically not considered for grid-level integration: electrochemical energy storage in the6

form of Li-ion and NaS batteries. To determine investment decisions in the battery storage under7

the spatio-temporal variability of electricity demand and renewable availability, we developed a8

mathematical programming-based simultaneous design and scheduling framework. The framework9

determines both the long-term design and the short-term operational decisions for the integrated10

system to minimize the cost of meeting the time-varying net grid electricity demand. To accurately11

capture the dynamic interactions between the system components while achieving computational12

tractability in the resulting large-scale optimization framework, we incorporated equivalent circuit13

models for the Li-ion battery and time-series reduced-order models for the NaS battery technologies.14

The single power plant analysis and the statewide integration studies across California sug-15

gest that both the Li-ion and NaS battery integration size increases with the extent of renewable16

penetration, resulting in a decrease in the LCOS. However, there exists an optimal demand vari-17

ability increase level beyond which the battery is increasingly overdesigned and the LCOS thereby18

increases. For the 65 fossil power plants with operating NGCC units in the state of California,19

the Li-ion technology shows more favorable economics and is the preferred technology for small to20

medium-sized power plants, while NaS is the optimal technology for larger power plants and at21

high levels of renewable penetration. Although the investment cost of Li-ion battery is 65% less22

than that of NaS battery, the lower lifespan of the Li-ion battery technology and the lower storage23

duration contribute to a statewide average system LCOE with NaS battery integration comparable24

to the LCOE with Li-ion battery integration.25

In addition, we compare the battery integration with NGCC plants alone and the decentralized26

battery integration with two cases of renewable energy power plants: renewable energy integrated27

with existing NGCC power plants, and replacement of existing NGCC power plants with renewable28

energy farms. For the case where the NGCC power plant invests in a battery-enabled co-located29

renewable energy farm, the total average cost of the system is 18% lower and the LCOE is 31%30

lower than the integration of battery alone with the NGCC plant. This is due to the additional31

power output of the renewable farm and the reduction in the electricity undersupply while meeting32

the peak demand, facilitated by the battery-enabled renewable integration. In addition, the battery33

LCOS is reduced by 39% as the battery can now be charged using the excess renewable energy34

which has near-zero marginal production cost. Due to the integration of clean renewable energy,35

the NGCC plant’s emission intensity is reduced by 16%, which includes the life cycle emissions36

associated with the battery and the renewable energy farm. Furthermore, the proportion of the37

unmet grid demand is reduced by 75%. The complete replacement of NGCC power plants with1
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renewable energy farms eliminates the carbon footprint, but requires large battery systems to ensure2

that the grid demand is met. This significantly increases both the system LCOE and battery3

LCOS. Furthermore, the average renewable energy curtailment for the battery-enabled renewable4

integration with NGCC plants is 58% lower than the replacement of NGCC plants with battery-5

integrated renewable farms. Thus, the localized integration of battery storage and renewable energy6

with individual fossil power plants is a better alternative to counter the renewable intermittency,7

as compared to the integration of batteries with stand-alone renewable energy units.8

Overall, our analysis shows the advantages of battery-based electrochemical storage to address9

the issues of renewable intermittency and overgeneration in the state of California. Although Li-ion10

technology is found to be the best-suited for the decentralized integration, our findings also provide11

a cost benchmark for NaS batteries to be cost-competitive with the widely popular Li-ion batteries12

for the utility-scale energy storage application. Future works can consider the effect of the cost13

evolution of the two battery technologies through learning curves on the integration costs. The14

economics of the integration with renewable plants will be influenced by the capital cost of the15

renewable energy power plants, which can be further examined.16

As an extension of the analysis presented, carbon capture, utilization and storage (CCUS) can17

also be considered as an indirect energy storage system to mitigate the renewable intermittency.30,3118

To this end, the following two integration cases can be compared: (i) the integration of renewable19

energy and CCUS systems with existing fossil power plants, and (ii) the replacement of the existing20

fossil power plants with battery-integrated renewable energy farms. For the first case, the CCUS21

system can reduce the CO2 emissions of the fossil power plants and act as an indirect energy storage22

system to counter renewable intermittency. Furthermore, the renewable energy system can be used23

to meet the high energy requirement of CCUS. We have shown that case (ii) eliminates the carbon24

footprint but requires large-scale energy storage to counter renewable intermittency in the absence25

of a dispatchable power source. The objective of the systems-level analysis would be to study these26

trade-offs and determine the best configuration option to reliably meet the grid energy demand in27

scenarios with an emphasis on carbon reduction.28

In addition, this work incorporates conservative operational limits on the battery systems to29

address the safety concerns associated with the large-scale energy storage. The inclusion of the30

intricate safety characteristics can be an extension of the current work focusing on a more detailed31

design and deployment. Future works can also incorporate the battery degradation phenomena32

through estimation of the battery state of health (SOH). Specifically, for a potential extension of33

the framework to a capacity-expansion problem, it will be important to also account for battery34

replacement due to degradation. Although this work considers the integration of batteries primarily35

with NGCC power plants, the framework can be extended to also study how energy storage adds36

value to enable the flexible operation of nuclear power plants in electricity grids with significant37

renewable penetration.1
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[66] D. S. Mallapragada, E. Gençer, P. Insinger, D. W. Keith, and F. M. OSullivan, “Can industrial-25

scale solar hydrogen supplied from commodity technologies be cost competitive by 2030?,” Cell26

Reports Physical Science, vol. 1, no. 9, p. 100174, 2020.27

[67] U.S. Energy Information Administration, “State profile and energy estimates: California.”28

https://www.eia.gov/state/analysis.php?sid=CA#75. (accessed June 2021).29

[68] California ISO, “Today’s outlook.” http://www.caiso.com/TodaysOutlook/Pages/default.30

aspx. (accessed May 2021).31

[69] U.S. Environmental Protection Agency (EPA), “Emissions & generation resource integrated32

database (eGRID).” https://www.epa.gov/egrid. (accessed August 2021).33

[70] U.S. Energy Information Administration, “How much carbon dioxide is produced per kilo-34

watthour of U.S. electricity generation?.” https://www.eia.gov/tools/faqs/faq.php?id=35

74&t=11. (accessed March 2021).36

[71] National Renewable Energy Laboratory (NREL), “National Solar Radiation Database.”37

https://nsrdb.nrel.gov/. (accessed May 2020).1

33

Page 33 of 34 Energy & Environmental Science



[72] A. Arora, M. S. Zantye, and M. M. F. Hasan, “Sustainable hydrogen manufacturing via2

renewable-integrated intensified process for refueling stations,” Applied Energy, vol. 311,3

p. 118667, 2022.4

[73] W. M. Seong, K.-Y. Park, M. H. Lee, S. Moon, K. Oh, H. Park, S. Lee, and K. Kang,5

“Abnormal self-discharge in lithium-ion batteries,” Energy & Environmental Science, vol. 11,6

no. 4, pp. 970–978, 2018.7

[74] National Renewable Energy Laboratory (NREL), “Life cycle greenhouse gas emissions from8

electricity generation: Update.” https://www.nrel.gov/docs/fy21osti/80580.pdf. (ac-9

cessed June 2022).10

[75] H. C. Kim, V. Fthenakis, J.-K. Choi, and D. E. Turney, “Life cycle greenhouse gas emissions of11

thin-film photovoltaic electricity generation: Systematic review and harmonization,” Journal12

of Industrial Ecology, vol. 16, pp. S110–S121, 2012.13

[76] R. Yudhistira, D. Khatiwada, and F. Sanchez, “A comparative life cycle assessment of lithium-14

ion and lead-acid batteries for grid energy storage,” Journal of Cleaner Production, vol. 358,15

p. 131999, 2022.16

[77] Y. Liang, J. Su, B. Xi, Y. Yu, D. Ji, Y. Sun, C. Cui, and J. Zhu, “Life cycle assessment of17

lithium-ion batteries for greenhouse gas emissions,” Resources, Conservation and Recycling,18

vol. 117, pp. 285–293, 2017.916

34

Page 34 of 34Energy & Environmental Science


