Dalton Transactions

Antimony(+5) Ion Induced Tunable Intramolecular Charge Transfer in Hypervalent Antimony(V) Porphyrins

Journal:	Dalton Transactions	
Manuscript ID	DT-ART-03-2022-000675.R2	
Article Type:	Paper	
Date Submitted by the Author:	19-Mar-2022	
Complete List of Authors:	Holzer, Noah; University of Minnesota Duluth Sharma, Jatan K.; University of North Texas Peterson, Steven; University of Minnesota Duluth Bayard, Brandon; University of Minnesota Duluth Nesterov, Vladimir; University of North Texas Karr, Paul; Wayne State College D'Souza, Francis; University of North Texas Poddutoori, Prashanth; University of Minnesota Duluth	

Received 00th January 20xx.

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Antimony(+5) Ion Induced Tunable Intramolecular Charge Transfer in Hypervalent Antimony(V) Porphyrins⁺

Noah Holzer,^{a,||} Jatan K. Sharma,^{b,||} Steven Peterson,^a Brandon J. Bayard,^a Vladimir N. Nesterov,^b Paul A. Karr,^c Francis D'Souza,^{b,*} Prashanth K. Poddutoorj^{a,*}

The +5 oxidation state of antimony induces push-pull style intramolecular charge transfer in an elegantly designed axial dimethoxyantimony(V) porphyrin series: SbP(OMe)₂.PF₆, SbDMP(OMe)₂.PF₆, SbDMP(OMe)₂.PF₆, SbTMP(OMe)₂.PF₆, sbTMP(OMe)₂.PF₆, with phenyl (P), 4-methoxyphenyl (MP), 3, 5-dimethoxyphenyl (DMP), and 3,4,5-trimethoxyphenyl (TMP) units, respectively, in its meso positions. The Sb(+5) makes the porphyrin ring electron-poor, whereas the methoxy groups on the phenyl unit produced electron-rich sites within the molecule. The presence of electron-poor and electron-rich parts in the same molecule resulted in a push-pull type intramolecular charge transfer (ICT). However, the ICT is strongly dependent on the position of the methoxy groups on the phenyl ring. The charge transfer character is more pronounced in *meta*-methoxy substituted antimony(V) derivatives (SbDMP(OMe)₂.PF₆, SbTMP(OMe)₂.PF₆) than the para-methoxy or no-methoxy substituted antimony(V) derivatives (SbP(OMe)₂.PF₆, SbMP(OMe)₂.PF₆). Steady-state and transient spectroscopic techniques, as well as solvatochromism techniques, were employed to establish the tunable ICT. Additionally, time-dependant density functional theory (TD-DFT) calculations were used to complement the experimental results. The systematic study of antimony(V) porphyrins, especially tunable push-pull nature could play an important role in instigating high yield charge-separated states in multi-modular donor-acceptor systems for solar energy conversion and molecular electronic and photonic applications.

Introduction

Donor-acceptor (D-A) systems with "push-pull" architecture have gained a lot of attention in recent years because of their impressive properties towards a variety of applications.¹⁻⁴ For instance, a porphyrin comprised of a push-pull system with an electron-donating group at the peripheral position and an electron-withdrawing group at the opposite led to remarkably improved solar energy conversion efficiencies in dye-sensitized solar cells.⁵⁻¹⁰ This nature not only minimizes the energywasting electron recombination in electron transfer reactions but also provides directionality to electron flow thus increasing the efficiencies of the photoinduced processes. Additionally, these systems showed potential applications in mimicking photosynthetic components,^{2,11–13} molecular electronics and photonics,¹⁴ and nonlinear optics.^{15,16} Within these D-A systems, porphyrin molecules evolved as ideal photosensitizers due to their versatile optical, redox, and structural properties. synthetically challenging strategies were employed. The most common one has been linking (or fusing) the electron-rich and electron-poor units on the peripheral positions, either meso- or β -pyrrolic, of the porphyrin ring.^{3,10,13} Despite impressive design strategies, it has never been

To introduce the push-pull nature in porphyrin, several

attempted to utilize the central element in the porphyrin cavity to induce the push-pull behaviour. Among porphyrin molecules, the main group porphyrins hold unique redox and structural properties. By insertion of a specific main-group element in the porphyrin cavity, it is feasible to tune the porphyrin properties for a specific role, that is either as electron donor or electron acceptor, in D-A systems. For example, insertion of aluminium(III) ion makes the porphyrin predominantly an electron donor,¹⁷ whereas phosphorus(V) ion insertion makes the porphyrin an electron acceptor.^{18–20} In addition, both the aluminium(III) porphyrin and phosphorus(V) porphyrin have similar axial bonding capabilities. Making use of these advantages, recently, we reported a push-pull type μ -oxo porphyrin heterodimer which exhibits intramolecular charge transfer (ICT) from aluminium(III) porphyrin to phosphorus(V) porphyrin.21

Within the main-group, group 15 porphyrins, such as phosphorus(V) and antimony(V) porphyrins, have distinctive properties. Both porphyrins hold relatively high oxidation potentials compared to other main-group or transition metal

^{a.} Department of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, Minnesota 55812, USA. Email: ppk@d.umn.edu

^{b.} Department of Chemistry, University of North Texas, 1155 Union Circle, # 305070, Denton, Texas 76203-5017, USA. Email: francis.dsouza@unt.edu

^c Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, Wayne, Nebraska 68787, USA.

⁺Electronic Supplementary Information (ESI) available: Crystallography data, details of synthesis and physical methods, ESI mass spectra, NMR spectra, absorption spectra and data, Beer-Lambert curves, electrochemical voltammograms, fluorescence spectra, phosphorescence spectra, and transient absorption spectra. See DOI: 10.1039/x0xx00000x IlEqual contribution.

Scheme 1. Synthesis and nomenclature of the investigated antimony(V) porphyrins. Reaction conditions: (i) SbCl₅, Pyridine (ii) CH₃OH, CHCl₃, Pyridine, and (iii) NH₄PF₆

porphyrins.^{18,20,22-25} Therefore, in principle, it is possible to induce the push-pull charge transfer in porphyrin molecules by utilizing the high oxidation state of antimony and phosphorus ions. To test this hypothesis, Sb(+5) ion was inserted in a series of tetraarylporphyrins, where the meso-aryl (= phenyl(P), 4methoxyphenyl (MP), 3,5-dimethoxyphenyl (DMP), and 3,4,5trimethoxyphenyl(TMP)) group is systematically changed to evaluate its role. The structures of these compounds are shown in Scheme 1. The high-valent antimony(V) centre is known to withdraw electron density from the porphyrin ring. As predicted, a strong intramolecular charge transfer (ICT) was observed in the molecule. This is because the Sb(+5) insertion creates both electron-rich and electron-deficient parts within the porphyrin structure. This method shows an alternative way to create a push-pull style ICT without opting synthetically challenging strategies. Using steady-state and transient spectroscopic techniques, accompanied by computational methods, the study unravels the intricate factors which induce the push-pull type charge transfer property as a function of meso-substitutions. Remarkably, the ICT can be turned on and off by selecting the methoxy positions on the aryl group.

The rich redox chemistry of the photoexcited antimony(V) porphyrins have been studied towards photocatalysis and electrocatalysis applications,^{23,26–28} donor-acceptor systems,^{22,23,29,30} and artificial photosynthetic applications.^{23,31} The axial-bonding minimizes aggregation effects of the porphyrins allowing for increased optical properties and providing an optimal surface for use in photochemical reactions.^{32–35} Combining the high oxidizing property of antimony(V) porphyrins and push-pull style ICT along with their

robust axial bonding capabilities provides tremendous opportunity for the use of these photosensitizers in the design of supramolecular architectures for artificial photosynthesis, optoelectronics, dye-sensitized photovoltaics, and photocatalysis applications.

Results and discussion

Synthesis

Scheme 1 summarizes the reaction that was used to obtain the target molecules. Free-base and antimony(V) porphyrins were prepared by previously established methods.^{25,36,37} However, necessary modifications were adopted to suit the present set of porphyrins. The antimony(V) insertion in all the free-base porphyrins was achieved within 1 h by using SbCl₅ to get the dichloroantimony(V) porphyrins. Column chromatography was utilized extensively to purify dichloroantimony(V) porphyrins. Additionally, a counterion exchange technique was also used for SbPCl₂.PF₆ and SbDMPCl₂.PF₆ to remove additional impurities. At this stage, the antimony(V) porphyrins possess two active axial Sb-Cl bonds. These bonds were utilized to react with methanol to synthesize the target axial dimethoxyantimony(V) porphyrins. Interestingly, the reaction times with methanol strongly depend on the position and number of the methoxy substitutions. The reactivity of dichloroantimony(V) porphyrins follows: $SbPCl_2^+$ (1 h) > $SbDMPCl_2^+$ (21 h) > $SbMPCl_2^+$ (48 h) > $SbTMPCl_2^+$ (72 h). This trend suggests that the reactivity of Sb-Cl bond directly depends on the electron density of the porphyrin ring, i.e. the

Article

Figure 1. X-ray crystal structures of the investigated antimony(V) porphyrins with 30% ellipsoids. For clarity, the counterion PF6⁻ and the co-crystallized solvent molecules are omitted.

increase in the electron density reduces the Sb—Cl reactivity. As the *p*-substituted groups are better electron directing than the *m*-substituted groups to increase the electron density on the ring (discussed in below sections), therefore, it is reasonable to witness a longer reaction time for SbTMPCl₂⁺ than the SbMPCl₂⁺ and SbDMPCl₂⁺. The SbPCl₂⁺ do not possess any methoxy substitution, therefore, it is the most reactive porphyrin in the studied series.

Structural characterization

Single crystals of the studied porphyrins suitable for X-ray diffraction studies were grown via the slow diffusion method, see the experimental section for details. The compounds crystallize with PF_6^- counterion and solvent molecules in the asymmetric unit. The molecular structures of the investigated porphyrins are presented in Figure 1 and the bond length, bond angles, and dihedral angles are summarized in Tables S1-S13. Additional crystallographic data for these compounds can be obtained from the Cambridge Crystallographic Data Centre (2130977, 2130978, 2130979, and 2130980 for SbP(OMe)2+, $SbMP(OMe)_2^+$, SbDMP(OMe)₂⁺ SbTMP(OMe)₂⁺, and respectively). Detailed analysis of the coordinates reveals that the meso-substituted aryl units are tilted with respect to the porphyrin macrocycle such that the dihedral angle is between 61.50 - 71.49°, 64.14 - 66.56°, 64.41 - 87.34°, and 58.40 -77.98° for $SbP(OMe)_{2^{+}}$, $SbMP(OMe)_{2^{+}}$, $SbDMP(OMe)_{2^{+}}$ and $SbTMP(OMe)_2^+$, respectively. The antimony atom lies essentially within the plane of the 4 nitrogens of the porphyrin ring.

Preliminary characterization of the investigated compounds was carried out by ESI mass spectrometry and the data is spectra are shown in Figures S1-S4. As shown, the mass spectrum of each antimony(V) porphyrin showed an intense peak which corresponds to the mass (m/z) of [M – PF₆]⁺. The ¹H, ¹³C, ³¹P and ¹⁹F NMR spectra of antimony(V) porphyrin are shown in Figures S5-S8. Shielding effects are apparent for the protons on the axial methoxy unit. The methoxy protons are strongly shifted upfield to ~–2.00 ppm in the antimony(V) porphyrin due to the ring current effect of the porphyrin macrocycle. The ³¹P NMR spectra of all the investigated compounds also revealed a septet between –144.53 to –145.29 ppm from the PF₆⁻ counterion.

Absorption studies

The UV-visible spectra of antimony(V) porphyrins $(SbP(OMe)_2.PF_6, SbMP(OMe)_2.PF_6, SbDMP(OMe)_2.PF_6 and SbTMP(OMe)_2.PF_6)$ and their free-base porphyrins $(H_2P, H_2MP, H_2DMP, and H_2TMP)$ are measured in CH_3CN, CH_2Cl_2, and toluene. The spectra of antimony(V) porphyrins and free-base porphyrins are shown in Figure 2 and Figure S9 in CH_2Cl_2, respectively, and the data are summarized in Tables 1 and S14. As shown in Figure S9, each free-base porphyrin exhibited a typical D_{2h} symmetry type porphyrin spectrum with a B-band

Figure 2. (a) UV-visible absorption spectra of SbP(OMe)₂.PF₆ (red), SbMP(OMe)₂.PF₆ (green), SbDMP(OMe)₂.PF₆ (magenta), and SbTMP(OMe)₂.PF₆ (violet) in CH₂Cl₂.

Table 1. Optical and redox data of investigated compounds in CH ₂ Cl ₂ .				
Porphyrin	Absorption λ in nm (logε in M ⁻¹ cm ⁻¹)	FWHM of B- band (nm)		
ZnTPP	585 (3.32), 547 (4.08), 418 (5.54)	10		
SbP(OMe) ₂ .PF ₆	592 (4.27), 551 (4.55), 513 (3.72), 421 (5.98)	11		
SbMP(OMe) ₂ .PF ₆	607 (4.84), 560 (4.62), 523 (4.02), 439 (5.86)	25		
SbDMP(OMe) ₂ .PF ₆	595 (4.39), 555 (5.01), 514 (4.21), 429 (5.77)	49		
SbTMP(OMe) ₂ .PF ₆	604 (4.65), 559 (4.84), 519 (4.27), 444 (5.57)	78		

(Soret) and four Q-bands. The band positions and molar extinction coefficients of the four free-base porphyrins are comparable suggest that the electronic structure of the porphyrin ring is very similar in all four porphyrins. On the other hand, the antimony(V) porphyrins showed D_{4h} symmetry type spectra with one B-band (Soret) and two Q-bands. Unlike the free-base porphyrins, the antimony(V) porphyrins showed significant differences within the series, See Figure 2 and Table 1. The band positions and molar extinction coefficients are considerably different from each other. The SbP(OMe)₂.PF₆ (red) shows a spectrum with a sharp B-band at 421 nm and two Q-bands at 551 and 592 nm. The full-width half-maxima (FWHM) for B-band was found to be 11 nm. On contrary, the SbMP(OMe)₂.PF₆ (green) revealed a broad and red-shifted (by 9-18 nm) absorption spectrum with the B- and Q-bands at 439, 560, and 607 nm, respectively. The FWHM for B-band was estimated to be 25 nm, which is double than that of SbP(OMe)₂.PF_{6.} In the case of SbDMP(OMe)₂.PF₆ (magenta), the characteristic B-and Q-bands appear at 429, 555, and 595 nm. Interestingly, the observed spectrum is redshifted compared to the SbP(OMe)₂.PF₆, but blue-shifted relative to the $SbMP(OMe)_2.PF_6$. The FWHM further increased to 49 nm compared to the former two compounds, SbP(OMe)₂.PF₆ and

SbMP(OMe)₂.PF₆. Lastly, the SbTMP(OMe)₂.PF₆ (violet) spectrum displays the highest spectral broadness and redshifts compared to any of the three former compounds. The B-band of this compound is almost ~150 nm wider with FWHM of 78 nm and centered around 444 nm. The two Q-bands appear at 559 and 604 nm. Similar trends were observed in acetonitrile and toluene, see Figure S10 and Table S15.

To verify the origin of the spectral broadness the UV-visible absorbance was measured as a function of concentration in CH₃CN and toluene. As shown in Figure S11, the absorbance of SbP(OMe)₂.PF₆ and SbTMP(OMe)₂.PF₆ are linearly dependent on the concentration and obey the Beer-Lambert equation. Therefore, the obtained linear curve rules out broadening as a result of aggregation. Hence, the observed spectral broadness is a purely intrinsic property of the studied Sb(V) porphyrins.

To unravel the spectra trends, resonance structures are constructed for Sb(V) porphyrin bearing meso-phenyls with pand *m*-methoxy substitutions, see Figure 3. As shown, the *p*methoxy substitution induces a better effect (push-pull) than the *m*-methoxy group. This is because the *p*-methoxy resonance process builds up negative charge on the meso-carbon which ultimately pushed on to the porphyrin central ring. However, it is important to note that this push-pull nature is only feasible in presence of highly oxidized Sb(V) ion. Therefore, it is expected that the electronic structure in SbMP(OMe)₂.PF₆ and SbTMP(OMe)₂.PF₆ should be more perturbed than that of SbP(OMe)₂.PF₆ and SbDMP(OMe)₂.PF₆. As predicted, the absorption spectra of the SbMP(OMe)₂.PF₆ and SbTMP(OMe)₂.PF₆ were significantly redshifted, whereas no redshift was noticed in SbDMP(OMe)₂.PF₆ compared to the nonmethoxy phenyl substituted SbP(OMe)₂.PF₆.

Computational studies

The electronic structures of the antimony(V) porphyrins were predicted by performing DFT calculations. Figures 4 top row shows optimized structures. The structures were completely optimized to a stationary point on the Born-Oppenheimer potential energy surface using the

Figure 3. Antimony(+5) induced resonance structures of the para- and meta-methoxy phenyl substituted antimony(V) porphyrins.

B3LYP/GenECP model chemistry, 6-311G(d,p) for H, C, N, and O and def2TZVPP for Sb, as parameterized in the *Gaussian 16* software suite. All the optimized geometries revel planar porphyrin ring, which is coherent with X-ray structures. The meso-phenyl derivatives form an average dihedral angle of 77°, 70° , 80° , and 80° in SbP(OMe)₂⁺, SbMP(OMe)₂⁺, SbDMP(OMe)₂⁺, and SbP(OMe)₂⁺, respectively. On the other note, the axial methoxy units are perfectly perpendicular to the porphyrin plane, however, they are aligned in a way that they break the symmetry of the porphyrin. Figure 5 illustrates the frontier orbitals of antimony(V) porphyrin. The LUMO and LUMO+1 are localized primarily on the porphyrin ring and no major differences were observed as changing the meso substitutions. However, the HOMO and HOMO-1 showed a very different behaviour than the LUMOs. The HOMO of SbP(OMe)₂⁺ is largely localized on the porphyrin ring and a minor component of HOMO is delocalized over to the meso-phenyl ring. The delocalization gradually increases with increasing the number of methoxy substitutions on the phenyl

Figure 4. Top row: Optimized structures, and Bottom rows: Electrostatic maps of the antimony(V) porphyrin derivatives. Blue = electron acceptor region. Red = electron donor region

	НОМО-1	НОМО-1 НОМО		LUMO+1	
SbP(OMe) ₂ ⁺	-8.69 eV	-8.45 eV	-5.69 eV	-5.69 eV	
SbMP(OMe)2 ⁺	-8.24 eV	-7.89 eV	-5.43 eV	-5.43 eV	
SbDMP(OMe) ₂ ⁺	-8.19 eV	-8.10 eV	-5.60 eV	-5.60 eV	
SbTMP(OMe)2 ⁺	-7.94 eV	-7.87 eV	-5.52 eV	-5.52 eV	

Figure 5. Calculated frontier molecular orbitals and their energies of the investigated antimony(V) porphyrin derivatives.

This journal is © The Royal Society of Chemistry 20xx

Figure 6. Top row: Charge transfer state density difference between ground and first and second excited states. Cyan, ground-state density; purple, excited-state density. Bottom row: Electrostatic potential surface. Red, charge donor region; blue, charge acceptor region; GS, ground state; ES, excited state.

ring, and it becomes maximum in SbTMP(OMe)2⁺. The HOMO and HOMO-1 delocalization follows: $SbTMP(OMe)_{2^+} >$ $SbDMP(OMe)_{2^{+}} > SbMP(OMe)_{2^{+}} > SbP(OMe)_{2^{+}}$. The localized LUMO on the porphyrin ring and delocalized HOMO on the phenyl ring create conditions for push-pull type ICT in the molecule. Based on the frontier orbitals it is expected that the ICT could follow: $SbTMP(OMe)_{2^+} > SbDMP(OMe)_{2^+} >$ $SbMP(OMe)_{2}^{+} \approx SbP(OMe)_{2}^{+}$. From the energies of these frontier molecular orbitals, the HOMO and LUMO gaps were estimated to be 2.74, 2.44, 2.50 and 2.35 eV for SbP(OMe)2+, SbDMP(OMe)₂⁺, SbMP(OMe)₂⁺, and SbTMP(OMe)₂⁺, respectively. The electrostatic potential maps (Figure 4 bottom rows) further support possible ICT process. The blue regions indicate the electron acceptor part while the red regions indicate electron donor part in the molecule. As shown the red colour increases on the phenyl rings with methoxy groups and reached maximum in SbTMP(OMe)₂⁺. The electron density difference (between ground and excited states) and electrostatic potential maps of the investigated conjugates are calculated by time dependent DFT and are shown in Figure 6, top row. The ground-state charge density of meso-aryl is being transferred to the excited states (S1 and S2) of central antimony(V) porphyrin upon excitation of the porphyrins in SbDMP(OMe)₂⁺and SbTMP(OMe)₂⁺. The electrostatic potential maps (Figure 6, bottom row) further compliment this ICT process. The red regions localized on the meso-aryl indicate the loss of electron density, while the blue regions localized on the porphyrin ring are an increase in electron density. In the case of SbP(OMe)₂⁺and SbMP(OMe)₂⁺ such ICT is not witnessed, this is

exemplified in Figure S12, as the electrostatic potential maps remain green.

Electrochemistry

Cyclic and differential voltammograms of investigated antimony(V) porphyrins and their corresponding free-base porphyrins were measured in CH₃CN with 0.1 M TBA.PF₆ and in CH₂Cl₂ with 0.1 M TBA.ClO₄, respectively. Representative voltammograms are shown in Figures 7 and S13, and the data are summarized in Table 2. The nature of the redox processes is established based on the peak-to-peak separation values, and the cathodic-to-anodic peak current ratio. The voltammogram of free-base porphyrins revealed two reduction and two oxidation processes under our experimental conditions. All of these four processes are found to be reversible and oneelectron processes. All the four free-base porphyrins possess very similar reduction potentials. On contrary, the oxidation potentials reveal variations, especially, between p-methoxy and *m*-methoxy/*no*-methoxy substituted porphyrins. The H₂MP and H_2 TMP are oxidizing by ~10-100 mV lower potentials than the H₂P and H₂DMP compounds, which suggest that the HOMO of the H₂MP and H₂TMP have higher electron densities due to pmethoxy substitutions. Interestingly, within these two porphyrins the oxidation potentials of H_2MP are ~100 mV less positive than H₂TMP. These results are clearly complimenting the DFT and inductive effect from the resonance structures. Figure S14 shows the redox voltammograms of methoxybenzenes in CH₃CN with 0.1 M TBA.ClO₄ and data are

Figure 7. Cyclic and differential voltammograms of antimony(V) porphyrins in CH_3CN with 0.1 M TBA.PF₆. Scan rate 100 mV/s. Pulse period 200 ms Pulse amplitude 50 mV, Pulse width 50 ms.

	Potentials (V vs SCE)			
Sample	Reduction	Oxidation		
H_2P^a	-1.17, -1.49	1.01, 1.26		
H ₂ MP ^a	-1.23, -1.54	0.89, 1.06		
$H_2 DMP^a$	-1.22, -1.54	1.02, 1.26		
H ₂ TMP ^a	-1.26, -1.59	1.00, 1.15		
SbP(OMe) ₂ .PF ₆ ^b	-0.33, -0.75	1.78		
SbMP(OMe) ₂ .PF ₆ ^b	-0.34, -0.79	1.60		
SbDMP(OMe)2.PF6 ^b	-0.32, -0.76	1.73		
SbTMP(OMe)2.PF6 ^b	-0.34, -0.78	1.46		
MP ^c	-	1.76		
DMP ^c	_	1.50		
TMP ^c	-	1.37		

Table 2. Redox data of the investigated compounds.

 $^{\it o}in$ CH_2Cl_2 with 0.1 M TBA.ClO_4. $^{\it b}in$ CH_3CN with 0.1 M TBA.PF_6. $^{\it c}in$ CH_3CN with 0.1 M TBA.ClO_4.

summarized in Table 2. The methoxybenzene, 1,3dimethoxybenzene, and 1,2,3-trimethoxybenzene revealed a one-oxidation irreversible process at 1.76, 1.50, and 1.37 V, respectively. The observed potentials are consistent with their electron densities.

Insertion of Sb(V) ion in the free-base porphyrins reveals dramatic effects on the redox potentials of the resulting antimony(V) porphyrins as they acquire very positive potential compared to their free-base porphyrin counterparts. This is due to the presence of +5 oxidation state of Sb, which makes the porphyrin highly electron-deficient, under these conditions the porphyrins have high oxidation and lower reduction potentials, see Figure 7 and Table 2. The cathodic scan reveals two reduction processes between -0.32 and -0.79 V corresponding to the successive addition of two electrons to the LUMO which

Article

is localized primarily on the porphyrin ring. The two reduction potentials are very similar in all of the four antimony(V) porphyrins, and they were found to be reversible and oneelectron processes. The anodic scan of the antimony(V) porphyrins revealed the oxidation process (from DPV curves) at 1.78, 1.60, 1,73, and 1.46 V for SbP(OMe)₂.PF₆, SbMP(OMe)_{2.}PF₆, SbDMP(OMe)₂.PF₆ and SbTMP(OMe)_{2.}PF₆, respectively, and correspond to the removal of electrons from the HOMO. As predicted from the DFT calculations and resonance structures, the HOMO of SbP(OMe)₂.PF₆ is mainly localized on the electron deficient central porphyrin ring. Therefore, highly positive potential 1.78 V was observed. However, this deficiency was nullified some extent in SbMP(OMe)_{2.}PF₆ due to the inductive effect from the meso pmethoxyphenyl group, hence, less positive potential 1.60 V was resulted. In the case of SbDMP(OMe)₂.PF₆, no inductive effect is feasible, moreover, the HOMO has a substantial contribution from the meso 3,5-trimethoxyphenyl ring. Hence the process becomes irreversible with potential of 1.73 V. Lastly, the SbTMP(OMe)_{2.}PF₆ system showed oxidation potential of 1.46 V, which is lowest in the series. This is a result of both the inductive effect and the presence of HOMO on the meso 3,4,5trimethoxyphenyl ring. Furthermore, oxidation process becomes irreversible and the corresponding currents are much higher than the reduction processes. These trends support the oxidation process occurring on the meso 3.4.5trimethoxyphenyl ring. Overall, a rich redox chemistry was noticed from the studied porphyrins. The most prominent feature is the high positive potentials for antimony(V) porphyrins. The potentials shifted positively by ~900 mV compared to their corresponding free-base porphyrins.

Solvatochromism

To envision the ICT character, emission images of antimony(V) porphyrin solutions were taken under ambient light and under UV irradiation (365 nm), see Figure 8. Solution concentrations were kept $\sim 1 \times 10^{-4}$ M in CH₃CN, CH₂Cl₂, and toluene. Due to solubility reasons, lower concentrations, $\sim 2.5 \times 10^{-5}$ M, were maintained in benzene. As shown in Figure 8 (left column) image, each sample has the same colour in four different solvents but has a different colour within the series. Unlike the antimony(V) porphyrin derivatives, their corresponding freebase porphyrins showed almost identical colours in any given solvent, see Figure S15.

Figure 8 (middle column) shows the fluorescence images of the antimony(V) porphyrins in CH₃CN, CH₂Cl₂, toluene, and benzene solutions under UV light 365 nm. In polar CH₃CN solutions, compounds SbP(OMe)₂.PF₆ and SbMP(OMe)₂.PF₆ fluorescence, exhibited а strong whereas the SbDMP(OMe)₂.PF₆, and SbTMP(OMe)₂.PF₆ were found to be non-fluorescent. Interestingly, in a moderate polar solvent such as CH₂Cl₂, the fluorescence from SbDMP(OMe)₂.PF₆ was recovered. However, the SbTMP(OMe)₂.PF₆ remains as a nonfluorescent compound. In non-polar toluene solutions, the trends were found to be very similar with CH₂Cl₂ solutions, that is SbP(OMe)₂.PF₆, SbMP(OMe)₂.PF₆, and SbDMP(OMe)₂.PF₆ are

Figure 8. Solvatochromism of (1) SbP(OMe)₂.PF₆, (2) SbMP(OMe)₂.PF₆, (3) SbDMP(OMe)₂.PF₆, and (4) SbTMP(OMe)₂.PF₆ in four different solvents under an ambient light (top panel) and 365 nm UV light (middle panel). Far right panel: Steady-state fluorescence spectra of SbP(OMe)₂.PF₆ (red), SbMP(OMe)₂.PF₆ (green), SbDMP(OMe)₂.PF₆ (magenta), and SbTMP(OMe)₂.PF₆ (violet) in CH₃CN, CH₂Cl₂, Toluene, and Benzene. Excitation wavelength = 550 nm.

fluorescent, and SbTMP(OMe)_2.PF₆ is non-fluorescent. Remarkably, a slight lowering the polarity, i.e. from toluene to benzene, the SbTMP(OMe)_2.PF₆ becomes fluorescent, which means all four compounds fluoresce in benzene solutions. The solvent-dependent fluorescence property hints at the presence of the charge transfer character in the molecule.

Emission studies

Steady-state fluorescence measurements were carried out in CH_3CN , CH_2Cl_2 , toluene, and benzene solvents with excitation wavelengths of 550 nm for free-base and antimony(V) porphyrins. The corresponding data are summarized in Tables S16 and 3. Figure S16 shows the fluorescence spectra of free-base porphyrins, and they all exhibit a very similar spectra and quantum yields (Φ_{flu}) with two intense emission bands between 630 and 750 nm in all the investigated solvents. However, the most interesting results come from their corresponding Sb(V) porphyrins. As shown in Figure 8 (right column), the fluorescence intensities depend on meso substitution as well as the solvent polarity. In polar CH_3CN , the SbP(OMe)₂.PF₆

compound exhibited an intense spectrum with band positions at 598 and 652 nm. The estimated $\, \Phi_{\rm flu}$ was found to be 0.040 and is comparable to the tetraphenylporphyrinatozinc(II) (ZnP), see Table 3. In the case of SbMP(OMe)₂.PF₆ the fluorescence spectrum is redshifted by ~30 nm, moreover, the Φ_{flu} is higher than the SbP(OMe)₂.PF₆. In contrast, compounds SbDMP(OMe)₂.PF₆ and SbTMP(OMe)₂.PF₆ are found to be nonfluorescent. In CH₂Cl₂ solutions, a similar trend observed for SbP(OMe)₂.PF₆ and SbMP(OMe)₂.PF₆. Interestingly. fluorescence from the SbDMP(OMe)₂.PF₆ is recovered and the Φ_{flu} found to be 0.024. However, the SbTMP(OMe)₂.PF₆ compound remains non-fluorescent. In nonpolar toluene solvent, the SbP(OMe)₂.PF₆ and SbMP(OMe)₂.PF₆, and SbDMP(OMe)₂.PF₆ are found to be fluorescent with high Φ_{flu} values. In contrary, the SbTMP(OMe)₂.PF₆ is still nonfluorescent. In attempt to recover the fluorescence from the SbTMP(OMe)₂.PF₆ the spectrum was collected in nonpolar benzene solutions, which is slightly more nonpolar than toluene. The fluorescence was recovered, but the Φ_{flu} calculated to be 0.007. Overall, the results conclude the

Table 3. Fluorescence quantum yields (Φ_{fiu}), lifetimes (τ_{fiu}), phosphorescence data, first excited singlet state energy ($E_{0:0}$) and triplet state energy (ET) of the antimony(V) porphyrins.

Porphyrin	Fluorescence (λ, nm) o ($\Phi_{ m flu}$) Average Lifetime (τ, ns) (ChiSQ)				Phosphorescence ^b	E ₀₋₀	Ε _τ ь
	CH₃CN	CH ₂ Cl ₂	Toluene	Benzene	(nm)	(eV)	(eV)
SbP(OMe) ₂ .PF ₆	598, 652 (0.040)	600, 654 (0.038)	601, 655 (0.045)	601, 654 (0.043)	765, 862	2.09 ^c	1.62
	1.36 (1.03)	1.24 (1.02)	1.04 (0.99)	-			
SbMP(OMe) ₂ .PF ₆	626, 676 (0.057)	630, 679 (0.058)	632, 678 (0.048)	634, 680 (0.044)	761, 793	2.01 ^c	1.59
	1.05 (1.03)	0.97 (1.08)	0.57 (1.04) ^e	-			
SbDMP(OMe) ₂ .PF ₆	600, 658 (0.003)	603, 656 (0.024)	605, 658 (0.026)	605, 658 (0.023)	753, 837	2.10 ^c	1.65
	-	1.02 (1.02)	0.91 (1.07)	-			
SbTMP(OMe) ₂ .PF ₆	NF	NF	NF		768, 850	1.99 ^d	1.61
	-	-	0.27 (1.12) ^e	614, 659 (0.007)			
ZnTPP	603, 657 (0.044)	596, 645 (0.036)	597, 648 (0.047)	597, 647 (0.045)	789, 880	2.14 ^c	1.57

^{*a*}Fluorescence quantum yields (Φ_{flu}) were calculated by the steady-state comparative method using tetraphenylporphyrinatozinc(II) (ZnTPP, Φ_{flu} = 0.036 in CH₂Cl₂)³⁸ as reference sample. ^{*b*}THF:CH₂Cl₂:1,2-dibromoethane = 65%:22%:13% at 77K. ^cin CH₂Cl₂. ^{*d*} in Benzene. NF: Negligible Fluorescence. ^{*c*}Biexponential fit.

following: (i) the solvent dependent fluorescence studies are very much consistent with the trends that were noticed in solvatochromism studies, and (ii) solvent dependency indicates the presence of the ICT character in the studied systems, particularly, in SbDMP(OMe)₂.PF₆, and SbTMP(OMe)₂.PF₆. Figure S17 displays the phosphorescence spectra of investigated compounds at 77 K. The observed band positions are summarized in Table S15 and Table 3. The free-base porphyrin phosphorescence bands have a low signal-to-noise ratio, but the antimony(V) porphyrin derivatives showed intense spectra and have distinctive features between 725 to 900 nm.

Time-resolved fluorescence studies of antimony(V) porphyrin were measured in CH_3CN , CH_2Cl_2 , and toluene. The samples were excited at 561 nm and the emission was collected at the high-energy fluorescence band. The representative fluorescence decay profiles are illustrated in Figure S18 and the lifetime data were summarized in Table 3. The decay profiles of antimony(V) porphyrin in toluene and were able to fit the mono-exponential expression except for the SbMP(OMe)₂.PF₆ and SbTMP(OMe)₂.PF₆, which decays bi-exponentially with a minor component of a very long-lived lifetime. The average value was considered for discussion purposes. The lifetimes of antimony(V) porphyrin were found to be in the following order: SbP(OMe)₂.PF₆ > SbDMP(OMe)₂.PF₆ > SbTMP(OMe)₂.PF₆.

Energetics

The redox potentials can be used in combination with optical data to construct the energy level diagram of the states involved in possible charge-transfer processes. Figure 9 summarizes the

energy levels of the investigated compounds. The energies of the lowest excited singlet states (E_{0-0}) of antimony(V) porphyrin were calculated from the overlap of the absorption and fluorescence data, see Figure S19. For SbP(OMe)2.PF6, SbMP(OMe)₂.PF₆ and SbDMP(OMe)₂.PF₆ solvent CH₂Cl₂, whereas for SbTMP(OMe)₂,PF₆ solvent benzene was used. The triplet state energies were obtained from the positions of the phosphorescence bands. The energy of the CT state above the ground state can be roughly estimated as the difference between the oxidation of free methoxyphenyl derivative and first reduction potentials of antimony(V) porphyrin. From the electrostatic potential maps, it was found out the electron-rich and electron-poor regions are mainly centered on the meso aryl rings and central porphyrin ring, respectively, in the case of SbMP(OMe)_{2.}PF₆, SbDMP(OMe)₂.PF₆ and SbTMP(OMe)_{2.}PF₆. Therefore, it is reasonable to calculate the charge-transfer state energies from the redox potentials.

Femtosecond transient absorption studies

The energy level diagram shown in Figure 9 revealed the possibility of intramolecular charge transfer (ICT) in SbDMP(OMe)₂.PF₆ and SbTMP(OMe)₂.PF₆ having meso methoxyphenyl substituents. Steady-state fluorescence quenching and diminished lifetimes as a function of number of methoxy groups on the phenyl ring and of solvent polarity support such a claim. The data and pictures shown in Figure 8 clearly demonstrate the occurrence of ICT in nonpolar toluene for SbTMP(OMe)₂.PF₆, and for SbDMP(OMe)₂.PF₆ and SbTMP(OMe)₂.PF₆ in polar CH₃CN. To seek evidence for such a process, femtosecond transient absorption (*fs*-TA) spectral studies were performed both in toluene and CH₃CN, as shown in Figures 10 and 11. First, in SbMP(OMe)₂.PF₆,

Figure 9. Calculated energy level diagram of (a) SbP(OMe)₂.PF₆, (b) SbMP(OMe)₂.PF₆, (c) SbDMP(OMe)₂.PF₆, and (d) SbTMP(OMe)₂.PF₆ in CH₃CN.

Figure 10. fs-TA absorption spectra at the indicated delay times of (a) SbP(OMe)₂.PF₆ and (c) SbTMP(OMe)₂.PF₆ in oxygen-free toluene at the Soret band excitation. (b) and (d) show the corresponding decay associated spectra generated from global analysis

 $SbDMP(OMe)_2.PF_6$ and $SbTMP(OMe)_2.PF_6$ were chemically reduced using cobaltocene in CH₃CN to spectrally characterize

the reduced antimony porphyrins. Figure S20 shows such spectral data. In all cases, the addition of cobaltocene resulted

in new peaks, the first one is a broad peak centered around 500 nm, and an additional two peaks at 698 and 768 nm. The appearance of new peaks in this spectral range during transient spectral measurements would support the ICT process in these push-pull antimony porphyrins.

Figure 10a shows the fs-TA spectra of SbP(OMe)₂.PF₆ at the indicated delay times in toluene at Soret band (S₂) excitation. The $S_2 \rightarrow S_1$ internal conversion followed by solvent relaxation of the S_1 state occurred within the first few ps. The S_1 state was characterized by excited-state absorption (ESA) peaks at 450, 572, and 624 nm. In addition, a near-IR peak at 1260 nm was observed. and based on its similarity to other tetraarylporphyrins,^{39,40} this has been attributed to the $S_1 \rightarrow S_2$ transition. In addition to this, negative signals at 550, 592, and 654 nm were also observed. By comparison with the earlier discussed absorption and fluorescence spectra, the 550 nm peak to the ground state bleaching (GSB), 592 nm peak to both GSB and stimulated emission (SE), and the 654 nm peak to SE was assigned. The decay and recovery of the positive and negative peaks were accompanied by new peaks at 492, 652 (broad peak covering 560-710 nm range), and 848 nm. As no ICT was expected for this compound, the new spectrum was attributed to the T₁ state formed via the process of intersystem crossing (ISC). To analyse the fs-TA spectral data, decayassociated spectra (DAS) were generated from global target analysis. A sequential three-component model representing S2 \rightarrow S₁ \rightarrow T₁ states was utilized, as shown in Figure 10b. S₂ with a lifetime of 0.9 ps, S_1 state with a lifetime of 1.0 ns and T_1 state with a lifetime of > 3 ns was obtained. To confirm $S_1 \not \rightarrow T_1$ conversion, the nanosecond transient absorption (ns-TA) spectrum of SbP(OMe)₂.PF₆ was also recorded, as shown in Figure S21a that revealed broad spectral features corresponding to $T_1 \rightarrow T_n$ transition in the 560-720 nm range. From decay analysis, the lifetime of the T_1 state was found to be 9.6 µs.

The fs-TA spectra of SbTMP(OMe)₂.PF₆, expected to show ICT based on previous discussions, is shown in Figure 10c. The spectral features were drastically different from what was observed in the case of SbP(OMe)₂.PF₆. Rapid decay/recovery of the peaks corresponding to the S1 state revealed spectral features expected for the ICT state. These ESA peaks corresponding to the ICT state were located at 500, 695, and 770 nm (see spectrum at 6.2 ps delay time). Although energetically feasible, further relaxation of the ICT state peaks did not populate the T₁ state, likely due to the large energy gap as predicted by the energy gap law.41 Further, DAS were generated for data analysis yielded a S₁ lifetime of 2.9 ps and ICT lifetime of 0.25 ns (see Figure 10d). As expected, ns-TA spectra were very poorly resolved and hence such data is not The fs-TA spectra of SbMP(OMe)₂.PF₆ and shown. SbDMP(OMe)₂.PF₆ is shown in Figure S22 along with their corresponding DAS. Spectral features were close to that of SbP(OMe)₂.PF₆, that is sequential formation of $S_2 \rightarrow S_1 \rightarrow T_1$ states without much evidence of ICT. Lifetimes of the S₁ states agreed well with the fluorescence lifetime data. The T₁ state of SbDMP(OMe)₂.PF₆ was also characterized by ns-TA in toluene (Figure S21c) which revealed a lifetime of 11.8 µs (see Figure S21d for the decay curve).

Next, ICT features were probed in polar CH_3CN . Both SbDMP(OMe)₂.PF₆ and SbTMP(OMe)₂.PF₆ is expected to show ICT while SbP(OMe)₂.PF₆ and SbMP(OMe)₂.PF₆ are expected to behave like simple Sb(V) porphyrins. Figure 11a shows the *fs*-TA

Figure 11. *fs*-TA absorption spectra at the indicated delay times of (a) SbP(OMe)₂.PF₆ and (c) SbTMP(OMe)₂.PF₆ in oxygen-free CH₃CN at the Soret band excitation. (b) and (d) show the corresponding decay associated generated from global analysis.

This journal is © The Royal Society of Chemistry 20xx

at the indicated delay time of SbP(OMe)₂.PF₆ in CH₃CN at the Soret band excitation. The spectral features were like those observed in toluene. That is, ESA peaks at 450, 622, 676, and 1234 nm were observed. In addition, negative peaks at 548, 590, and 650 nm related to GSB and SE were observed. Decay/recovery of the positive and negative peaks was associated with new peaks with maxima at 486, 663, and 840 nm attributable to the T₁ state. DAS generated based on S₂ \rightarrow $S_1 \rightarrow T_1$ model (see Figure 11b) revealed a lifetime of 2.5 ps for S_2 state, 0.99 ns for S_1 state, and > 3 ns for T_1 state. The lifetime of the S₁ state agreed well with the fluorescence lifetime. ns-TA characterization of the triplet state (see Figure S23a) was also performed. In the visible region, the spectra revealed two main peaks at 598 and 654 nm due to $T_1 \rightarrow T_n$ transitions. The lifetime of the T_1 state was found to be 3.42 μ s relatively shorter than that observed in toluene (see Figure S23b for decay curve).

In contrast to SbP(OMe)₂.PF₆, *fs*-TA spectra of SbTMP(OMe)₂.PF₆ revealed ICT in CH₃CN as shown in Figure 11c. Clear spectral features of ICT state were evident within a ps, and ICT state relaxation to the ground state (not the T₁ state) was also rapid, as expected in the polar solvent. DAS shown in Figure 11d, yielded a lifetime for S₁ state 2.7 ps and that of the ICT state of 6.2 ps. As shown in Figures S24a and b, fs-TA spectral data on SbMP(OMe)₂.PF₆ revealed no evidence of ICT where the data could be fitted to on $S_2 \rightarrow S_1 \rightarrow T_1$ model. Interestingly, unlike in toluene, in the case of SbDMP(OMe)₂.PF₆, clear evidence of ICT was observed (see Figure S24c). That is, changing the polarity of the solvent promoted ICT in the case of SbDMP(OMe)₂.PF₆. A lifetime of 3.3 ps for the S₁ state and 20.8 ps for the ICT state were obtained from DAS analysis (see Figure S24d).

Experimental section

Synthesis

The chemicals and solvents utilized in this study were purchased from Alfa-Asear, Fisher Chemical, Acros Organics, Sigma-Aldrich, Tokyo Chemical Industry (TCI), or Accela and were used as received. Chromatographic materials were purchased from SiliCycle or Sigma-Aldrich. Synthesis of H_2P is reported elsewhere.³⁶ The other compounds used in this study were prepared as described in the supporting information or below sections.

Synthesis of axial dimethoxyantimony(V) porphyrins. Dichloroantimony(V) porphyrin (0.113 mmol) was dissolved in a mixture of 2 mL pyridine, 10 mL methanol, and 10 mL chloroform. This solution was flushed with N_2 for 10 min, then

the solution was heated to 70°C and stirred for 2 – 72 h under a nitrogen atmosphere. The solvent was removed under reduced pressure and the residue was purified by alumina column chromatography. The column was eluted first with CH_2Cl_2 to remove the free-base and then with CH_2Cl_2 : CH_3OH (= 99:1 to 93:7, see below for more details) to elute the product. The solvent was removed *via* evaporation and the product was converted to a PF_6 salt by dissolving it in 5 mL methanol and adding 200 mg NH_4PF_6 . The product was precipitated by the addition of 25 mL water and collected via vacuum filtration and vacuum dried.

SbP(OMe)₂.PF₆: Reaction time 2 h. CH₂Cl₂:CH₃OH (= 95:5) eluent was used for column to collect the product. Yield = 92 mg (86%). ¹H NMR (CDCl₃, 400 MHz): δ, ppm 9.55 (8H, s), 8.33 (8H, d, J = 7.08 Hz), 7.96 (12H, m), -2.18 (6H, s). ¹³C NMR (CDCl₃, 100 MHz): *δ, ppm* 146.2, 138.3, 135.0, 134.0, 130.1, 128.1, 123.2, 45.9. ³¹P NMR (CDCl₃, 162 MHz): δ, ppm–144.65 (1P, sept, J = 712.69 Hz). ¹⁹F NMR (CDCl₃, 377 MHz): *δ*, *ppm* -74.07 (6F, d, *J* = 712.52 Hz). ESI MS: m/z 795.1454 for [M - PF₆]⁺, calculated 795.1714 for $C_{46}H_{34}N_4O_2Sb^+$ X-ray quality crystals grown by using vapor diffusion of pentane into sample solutions in chloroform. Formula = $C_{46}H_{34}F_6N_4O_2PSb.3$ (Chloroform), M_r = 1299.59, monoclinic, $P2_1/n$, a = 12.4250(2) Å, b = 26.1150(5) Å, c = 12.4250(2)17.3913(4) Å, β = 108.590(2)°, α = γ = 90°, V = 5348.67(19) Å³, T = 229.99(12) K, Z = 4, 48200 reflections measured, 11477 unique ($R_{int} = 0.0471$) which were used in all calculations. The final R_1 was 0.0746 (I>2(I)) and wR_2 was 0.1890 (all data).

SbMP(OMe)₂.PF₆. Reaction time 48 h. CH₂Cl₂:CH₃OH (= 97:3) eluent was used for column to collect the product. Yield: 111 mg (93%). ¹H NMR (CDCl₃, 400 MHz): δ, ppm 9.57 (8H, s), 8.25 (8H, d, J = 8.44 Hz), 7.46 (8H, d, J = 8.48 Hz), 4.16 (12H, s), -2.17 (6H, s). ¹³C NMR (CDCl₃, 100 MHz): δ, ppm 161.2, 146.5, 136.4, 133.9, 130.7, 123.0, 113.8, 56.0, 45.9. ³¹P NMR (CDCl₃, 162 MHz): δ , ppm –144.55 (1P, sept, J = 712.29 Hz). ¹⁹F NMR (CDCl₃, 377 MHz): δ, ppm -73.94 (6F, d, J = 712.52 Hz). ESI MS: m/z 915.1753 for $[M - PF_6]^+$, calculated 915.2137 for $C_{50}H_{42}N_4O_6Sb^+$ X-ray quality crystals grown from slow evaporation of acetone from acetone/water solution of the sample. Formula = $C_{50}H_{42}F_6N_4O_6PSb.2$ (Acetone), $M_r = 1177.75$, monoclinic, C2/c, a = 30.6284(7) Å, b = 10.75280(10) Å, c = 20.9262(5) Å, $\beta =$ 132.011(4)°, $\alpha = \gamma = 90°$, V = 5120.8(3) Å³, T = 219.99(11) K, Z = 4, 40217 reflections measured, 5552 unique (R_{int} = 0.0376) which were used in all calculations. The final R_1 was 0.0369 (I>2(I)) and wR_2 was 0.1060 (all data).

SbDMP(OMe)₂**.***PF*₆: Reaction time 21 h. CH₂Cl₂:CH₃OH (= 99:1) eluent was used for column to collect the product. Yield: 116 mg (87%). ¹H NMR (CDCl₃, 400 MHz): *δ*, *ppm* 9.62 (8H, s), 7.50 (8H, d, *J* = 2.24 Hz), 7.03 (4H, t, *J* = 2.22 Hz), 4.02 (24H, s), -2.13 (6H, s). ¹³C NMR (CDCl₃, 100 MHz): *δ*, *ppm* 159.8, 146.1, 140.2,

133.9, 122.7, 114.8, 101.9, 56.1, 46.1. ³¹P NMR (CDCl₃, 162 MHz): δ, ppm-145.06 (sept, J = 712.69 Hz). ¹⁹F NMR (CDCl₃, 377 MHz): δ , ppm -73.97 (6F, d, J = 712.71 Hz). ESI MS: m/z1035.2472 for $[M - PF_6]^+$, calculated 1035.2560 for $C_{54}H_{50}N_4O_{10}Sb^{\ast}. \ X\mbox{-ray quality crystals grown by using vapor}$ diffusion of pentane into sample solutions in ethylacetate:methanol (= 90:10). Formula C₅₄H₅₀F₆N₄O₁₀PSb.3(pentane), *M_r* = 1398.13, Monoclinic, C 1 2/c 1, *a* = 15.21938(12) Å, *b* = 25.80070(18) Å, *c* = 45.1560(4) Å, $\alpha = 90^{\circ}, \beta = 90.6426(8)^{\circ}, \gamma = 90^{\circ}, V = 17730.3(2) \text{ Å}^3, T =$ 150.00(10) K, Z = 12, 73318 reflections measured, 18893 unique $(R_{int} = 0.0423)$ which were used in all calculations. The final R_1 was 0.0471 (I>2(I)) and wR₂ was 0.1243 (all data).

*SbTMP(OMe)₂.PF*₆: Reaction time 72 h. CH₂Cl₂:CH₃OH (= 93:7) eluent was used for column to collect the product. Yield: 132 mg (90%). ¹H NMR (CDCl₃, 400 MHz): δ, ppm 9.64 (8H, s), 7.61 (8, s), 4.23 (12H, s), 4.03 (24H, s), -2.05 (6H, s). ¹³C NMR (CDCl₃, 100 MHz): δ, ppm 152.4, 146.4, 139.5, 133.9, 133.8, 122.9, 113.8, 61.5, 56.9, 46.4. ³¹P NMR (CDCl₃, 162 MHz): δ, ppm – 145.29 (1P, sept, J = 713.10 Hz). ¹⁹F NMR (CDCl₃, 377 MHz): δ , ppm -73.82 (6F, d, J = 712.97 Hz). ESI MS: m/z 1155.2711 for [M - PF₆]⁺, calculated 1155.2982 for C₅₈H₅₈N₄O₁₄Sb⁺ X-ray quality crystals grown by using vapor diffusion of pentane into sample solutions chloroform. in Formula $C_{58}H_{58}F_6N_4O_{14}PSb.2$ (Chloroform), $M_r = 1540.54$, triclinic, P-1, a =8.52553(12) Å, b = 14.3097(2) Å, c = 14.55804(17) Å, $\alpha =$ 104.0630(11)°, β = 103.8304(11)°, γ = 102.0038(12)°, V = 1604.74(4) Å³, T = 229.99(11) K, Z = 1, 24477 reflections measured, 6858 unique ($R_{int} = 0.0529$) which were used in all calculations. The final R_1 was 0.0618 (I>2(I)) and wR_2 was 0.1647 (all data).

Conclusions

A simple but novel antimony(V) porphyrin series has been designed to investigate the photophysical properties as a function of meso-substitution. The absorption studies indicate that the electronic structure of the molecule strongly depends on the meso-substitution ring. The p-methoxy substituted antimony(V) porphyrin $(SbMP(OMe)_2^+ and SbTMP(OMe)_2^+)$ showed significant red-shifted absorption spectra than SbP(OMe)₂⁺ and SbDMP(OMe)₂⁺. The oxidation potentials also reflect this trend in electrochemical studies as the SbMP(OMe)₂⁺ and SbTMP(OMe)₂⁺ undergo oxidation at lower potentials than SbP(OMe)₂⁺ and SbDMP(OMe)₂⁺. Interestingly, the reduction potentials are almost unaffected by varying the position and number of methoxy groups on the phenyl ring. The most intriguing results were observed from steady-state emission and solvatochromism studies. The fluorescence intensity strongly depends on the meso-substitution and solvent polarity. The SbP(OMe)₂⁺ and SbMP(OMe)₂⁺ were found strongly fluorescent in all the investigated solvents. However, the fluorescence from SbDMP(OMe)₂⁺ and SbTMP(OMe)₂⁺ is strongly solvent dependant, which reveals a charge transfer behaviour. The insertion of Sb(V) ion in free-base porphyrin induces unequal distribution of electron density in the resulting antimony(V) porphyrin. This results in a push-pull style ICT in the

molecule, and it reaches a maximum in the SbTMP(OMe)₂⁺ where the electron density difference between the center and peripheral is at its peak. The ICT is so strong in SbTMP(OMe)₂⁺, it was even manifested in nonpolar toluene solvent. From the transient studies, it was found that the ICT process in these porphyrins occurs on picoseconds time scale. The studied series also showed that the position of the methoxy group is important to induce the ICT process. The ICT can be turned on and off by choosing the position of methoxy substitutions on the meso-aryl unit. Overall, the investigated series provides an excellent opportunity to understand the photophysical properties of antimony(V) porphyrins as a function of meso-substitutions. Currently, we are further testing the design principle and the induced ICT process in other main-group porphyrin derivatives.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by Grant-in-Aid (GIA No. 380228 to PPK) and SEED Grant (to PPK) from the University of Minnesota Duluth and by the National Science Foundation (2000988 to FD). The authors also acknowledge NSF-MRI Program (CHE-1726652), and the University of North Texas for supporting the acquisition of the Rigaku XtaLAB Synergy-S X-ray diffractometer. The computational work was completed at the Holland Computing Center of the University of Nebraska, which receives support from the Nebraska Research Initiative.

Notes and references

- 1 M. K. Chahal, A. Liyanage, A. Z. Alsaleh, P. A. Karr, J. P. Hill and F. D'Souza, *Chem. Sci.*, 2021, **12**, 4925–4930.
- B. Sekaran, Y. Jang, R. Misra and F. D'Souza, *Chem. A Eur.* J., 2019, **25**, 12991–13001.
- H. Hayashi, A. S. Touchy, Y. Kinjo, K. Kurotobi, Y. Toude, S.
 Ito, H. Saarenpää, N. V. Tkachenko, H. Lemmetyinen and H.
 Imahori, *ChemSusChem*, 2013, 6, 508–517.
 - I. Zegkinoglou, M. E. Ragoussi, C. D. Pemmaraju, P. S. Johnson, D. F. Pickup, J. E. Ortega, D. Prendergast, G. De La Torre and F. J. Himpsel, *J. Phys. Chem. C*, 2013, **117**, 13357– 13364.
 - J. Zhang, J. Z. Zhang, H. Bin Li, Y. Wu, Y. Geng and Z. M. Su, Phys. Chem. Chem. Phys., 2014, **16**, 24994–25003.
 - M. J. Lee, K. D. Seo, H. M. Song, M. S. Kang, Y. K. Eom, H. S. Kang and H. K. Kim, *Tetrahedron Lett.*, 2011, **52**, 3879– 3882.
 - Z. Parsa, S. S. Naghavi and N. Safari, *J. Phys. Chem. A*, 2018, **122**, 5870–5877.
 - T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau and M. Grätzel, Angew. Chemie - Int. Ed., 2010, **49**, 6646–6649.
 - A. Yella, C. L. Mai, S. M. Zakeeruddin, S. N. Chang, C. H. Hsieh, C. Y. Yeh and M. Grätzel, *Angew. Chemie - Int. Ed.*,

4

5

6

7

8

9

2014, **53**, 2973–2977.

- S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, *Nat. Chem.*, 2014, 6, 242–247.
- 11 T. Kim, J. Kim, H. Mori, S. Park, M. Lim, A. Osuka and D. Kim, *Phys. Chem. Chem. Phys.*, 2017, **19**, 13970–13977.
- 12 T. Higashino, K. Sugiura, Y. Tsuji, S. Nimura, S. Ito and H. Imahori, *Chem. Lett.*, 2016, **45**, 1126–1128.
- 13 M. B. Thomas, R. G. W. Jindasa, Y. Hu, B. Schmitz, H. Wang and F. D'Souza, *Can. J. Chem.*, 2018, **96**, 881–889.
- P. Arpaçay, P. Maity, A. M. El-Zohry, A. Meindl, S. Akca, S.
 Plunkett, M. O. Senge, W. J. Blau and O. F. Mohammed, J.
 Phys. Chem. C, 2019, 123, 14283–14291.
- 15 P. Rathi, Ekta, S. Kumar, D. Banerjee, V. R. Soma and M. Sankar, *Dalt. Trans.*, 2020, **49**, 3198–3208.
- M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos and E. M. N. Mhuircheartaigh, *Adv. Mater.*, 2007, **19**, 2737–2774.
- N. Zarrabi and P. K. Poddutoori, *Coord. Chem. Rev.*, 2021,429, in press.
- P. K. Poddutoori, B. J. Bayard, N. Holzer, S. Seetharaman, N. Zarrabi, N. Weidner, P. A. Karr and F. D'Souza, *Inorg. Chem.*, 2021, 60, 17952–17965.
- P. K. Poddutoori, A. Dion, S. Yang, M. Pilkington, J. D. Wallis and A. Van Der Est, *J. Porphyr. Phthalocyanines*, 2010, 14, 178–187.
- P. K. Poddutoori, G. N. Lim, M. Pilkington, F. D'Souza and A.
 Van Der Est, *Inorg. Chem.*, 2016, 55, 11383–11395.
- N. Zarrabi, B. J. Bayard, S. Seetharaman, N. Holzer, P. Karr,
 S. Ciuti, A. Barbon, M. Di Valentin, A. Van Der Est, F.
 D'Souza and P. K. Poddutoori, *Phys. Chem. Chem. Phys.*,
 2021, 23, 960–970.
- 22 S. I. Tsunami, K. Tanaka, J. Matsumoto, T. Shiragami and M. Yasuda, *Bull. Chem. Soc. Jpn.*, 2008, **81**, 583–589.
- 23 T. Shiragami, J. Matsumoto, H. Inoue and M. Yasuda, J. Photochem. Photobiol. C Photochem. Rev., 2005, 6, 227– 248.
- Y. H. Liu, M. F. Bénassy, S. Chojnacki, F. D'Souza, T.
 Barbour, W. J. Belcher, P. J. Brothers and K. M. Kadish, *Inorg. Chem.*, 1994, **33**, 4480–4484.
- T. Barbour, W. J. Belcher, P. J. Brothers, C. E. F. Rickard and
 D. C. Ware, *Inorg. Chem.*, 1992, **31**, 746–754.
- H. Inoue, T. Okamoto, Y. Kameo, M. Sumitani, A. Fujiwara,
 D. Ishibashi and M. Hida, J. Chem. Soc. Perkin Trans. 1,
 1994, 105–111.
- J. Jiang, K. L. Materna, S. Hedström, K. R. Yang, R. H.
 Crabtree, V. S. Batista and G. W. Brudvig, *Angew. Chemie -Int. Ed.*, 2017, 56, 9111–9115.
- 28 T. Shiragami, K. Kubomura, D. Ishibashi and H. Inoue, *J. Am. Chem. Soc.*, 1996, **118**, 6311–6312.
- 29 Y. Andou, T. Shiragami, K. Shima and M. Yasuda, J. Photochem. Photobiol. A Chem., 2002, **147**, 191–197.
- 30 T. Shiragami, Y. Andou, Y. Hamasuna, F. Yamaguchi, K. Shima and M. Yasuda, *Bull. Chem. Soc. Jpn.*, 2002, **75**, 1577–1582.
- 31 M. Ertl, E. Wöß and G. Knör, Photochem. Photobiol. Sci.,

2015, 14, 1826–1830.

- T. Tsukamoto, T. Shimada and S. Takagi, J. Phys. Chem. A, 2013, 117, 13037.
- T. Tsukamoto, T. Shimada and S. Takagi, *RSC Adv.*, 2015, 5, 8479–8485.
- T. Shiragami, K. Nabeshima, S. Nakashima, J. Matsumoto, S. Takagi, H. Inoue and M. Yasuda, *Bull. Chem. Soc. Jpn.*, 2005, 78, 2251–2258.
- J. Matsumoto, T. Fuchikawa, Y. Komiya, Y. Fueda, T.
 Matsumoto, T. Shiragami and M. Yasuda, *Chem. Lett.*, 2005, 34, 1484–1485.
- A. D. Adleb, F. R. Longo, J. D. Finarelli, J. Goldmacher, J.
 Assour and L. Korsakoff, J. Org. Chem., 1967, 32, 476.
- I.-C. Liu, J.-H. Chen, S.-S. Wang and J.-C. Wang, *Polyhedron*, 1996, 15, 3947–3954.
- P. P. Kumar, G. Premaladha and B. G. Maiya, J. Chem. Sci.,
 2005, vol. 117, pp. 193–201.
- O. Schalk, H. Brands, T. S. Balaban and A. N. Unterreiner, J.
 Phys. Chem. A, 2008, **112**, 1719–1729.
- N. Zarrabi, S. Seetharaman, S. Chaudhuri, N. Holzer, V. S.
 Batista, A. Van Der Est, F. D'Souza and P. K. Poddutoori, J.
 Am. Chem. Soc., 2020, 142, 10008–10024.
- 41 G. N. Lewis, M. Kasha and B. Gilbert, J. Am. Chem. Soc., 1944, **66**, 2100–2116.