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Cyclic(alkyl)(amino)carbene Ruthenium Complexes for Z-
Stereoselective (Asymmetric) Olefin Metathesis †
Jennifer Morvan,a François Vermersch,b Jan Lorkowski,a Jakub Talcik,a Thomas Vives,a Thierry 
Roisnel,a Christophe Crévisy,a Nicolas Vanthuyne,c Guy Bertrand,*b Rodolphe Jazzar*b and Marc 
Mauduit*a 

The first Z-stereoselective catechodithiolate ruthenium complexes containing cyclic(alkyl)(amino)carbene ligands are 
reported. Isolated in nearly quantitative yields or in-situ generated, these catalysts demonstrated remarkable Z selectivity 
(Z/E ratio up to >98/2) in ring-opening metathesis polymerization (ROMP), ring-opening-cross metathesis (ROCM) and cross-
metathesis (CM). Thanks to the efficient chiral HPLC resolution of racemic CAAC-complex precursors, optically pure 
dithiolated complexes were also synthesized allowing to produce enantioenriched Z-ROCM products in >99/1 Z/E with good 
levels of enantioselectivity.

Introduction
Discovered in the mid of last century, olefin metathesis1 has become 
a practical and versatile synthetic tool to efficiently produce carbon-
carbon double bonds. Relevant applications were successfully 
disclosed in various fields such as natural product synthesis,2 the 
transformation of renewable feedstocks3 or the production of 
innovative materials (polymers).4 This resounding success stems 
from the elaboration of well-defined, air stable and easy to handle 
ruthenium-benzylidene complexes that proved to be highly tolerant 
towards many organic functionalities.1 Obviously, the asymmetric 
version of this reaction was also intensively studied with either 
optically pure ruthenium or molybdenum catalysts, offering a 
straightforward access to highly valuable chiral building blocks with 
high enantiopurity.5 As the Z-alkene moiety is ubiquitous in 
numerous relevant chiral molecules, special attention has been given 
to the design of catalysts which can control both the 
enantioselectivity and the Z-selectivity6,7 of metathesis 
transformations. Nevertheless, as depicted in Figure 1, examples 
remain scarce.8 For instance, chiral Mo-complexes Mo-1 bearing a 
monodentate BINOL-type ligand demonstrated a high 
enantioinduction in asymmetric ring-opening cross-metathesis 
(AROCM) combined with a remarkable degree of Z-selectivity (Figure 
1, eq. 1).8a,b Stereogenic-at-ruthenium complex Ru-1 featuring a 
chiral bidentate N-heterocyclic carbene (NHC) ligand furnished 
tetrahydropyran products in high ees and good to excellent Z:E ratio 
(Figure 1, eq. 2).8c Optically pure cyclometalated Ru-catalyst Ru-2 has 
proved to be highly efficient in AROCM, affording various Z-alkenes 
with high ees (Figure 1, eq. 3).8d Noticeable, Ru-2 also promoted the 
first Z-asymmetric cross-metathesis (ACM), albeit a moderate 50% ee 
was observed (Figure 1, eq. 4).8e

A. State of the art in Z-enantioselective olefin metathesis

B. First achiral and optically pure Z-stereoretentive
CAAC-containing ruthenium complexes (this work)
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• The sample is dissolved in dichlorom ethane, injected on the chiral
column, and detected with an UV detector at 254 nm and a circular 
dichroism detector a t 254 nm. The flow-rate is 1 mL/min.

Column Mobile Phase t1 k1 t2 k2  Rs

Chiralpak IF Heptane / isopropanol / 
dichlorom ethane (70/10/20) 5.00 (+) 0.69 6.54 (-) 1.22 1.76 6.41

RT [min] Area Area% Capacity Factor Enantioselectivity Resolution (USP)
5.00 2317 50.03 0.69
6.54 2314 49.97 1.22 1.76 6.41
Sum 4631 100.00

Chiralpak IF
Heptane / isoprop anol / 

dichlorom ethane (70/10/20)

(X= Cl or Br)

Figure 1 (A) Previously described Z-enantioselective olefin metathesis catalysed 
by Mo- or Ru-complexes. (B) Development of achiral and optically pure Z-
stereoretentive CAAC-Ru complexes (this work). 
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Despite these significant breakthroughs, the development of 
new chiral Z-selective metathesis catalysts remains a 
challenging objective. Recently, our groups reported an 
expedient access to the first optically pure Ru-3 complexes9 
containing cyclic(alkyl)(amino)carbene (CAAC)10,11 ligands 
(Figure 1, b). These new chiral complexes demonstrated 
excellent catalytic performances in asymmetric olefin 
metathesis with good enantioselectivities (up to 92%).9 In light 
of these promising results, we wished to investigate the 
development of their Z-enantioselective congeners (Figure 1, 
b). Herein, we focused our attention on catechodithiolate Ru-
complexes,7e,f a class of catalysts which combine easy 
accessibility (one step from commercially available 2nd 
generation Hoveyda-type complexes)12 and remarkable 
efficiency towards a wide range of Z-alkenes in high purity 
(>98% Z). Since, their asymmetric version has not yet been 
reported, we investigated both achiral and chiral CAAC ligands 
and their use in Z-stereoselective ROMP, ROCM, CM and also in 
asymmetric ROCM. 

Results and discussion
We initiated our study by the synthesis of catechodithiolate Ru-
catalysts starting from previously reported CAAC-containing 
Hoveyda type complexes Ru-3 (Scheme 1).13 Even in the 
presence of the sterically congested chiral quaternary center 
(i.e. Ru-4c), complexes Ru-3a-c featuring a N-2,6-diethylphenyl 
(DEP) group afforded the expected dithiolate Ru-4a-c in nearly 
quantitative isolated yields (97-99%, within 20 min at ambient 
temperature). In marked contrast, Ru-3d-f complexes 
containing the bulkier N-2,6-diisopropylphenyl (DIPP) group 
appeared more challenging. In this case, Ru-3d required a 
prolonged reaction time (6 h, 40 °C) to afford the corresponding 
dithiolate Ru-4d in 99% isolated yield, whereas rapid 
decomposition of the corresponding dithiolate Ru-species was 
observed for Ru-3e-3f. 
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Scheme 1 Synthesis of catechodithiolate CAAC Ru-4a-d. a Isolated yield.

Figure 2 Solid-state structure of complex Ru-4d from single crystal X-ray diffraction. 
Displacement ellipsoids are drawn at 30% probability. Hydrogen atoms have been 
omitted for clarity.

The latter, likely results from a severe steric clash between the 
catechol dithiolate and the DIPP moiety of the CAAC ligand (also 
observed when comparing %Vbur of Ru-3a-3b to that of Ru-3e-
3f)14 leading to extremely short-lived Ru-4e-4f complexes. 
According to the dissymmetry of the CAAC unit, 2 rotamers 
could be expected for Ru-4 complexes.15 However, 1H and 13C 
NMR analysis showed that only one rotamer is observed in 
solution for Ru-4a-d (See Supplementary Information (SI) for 
details). Nuclear Overhauser effects (nOe) between the 
prominent benzylidene proton and the aryl alkyl groups were 
observed in NOESY experiments performed in Tol-d8 at 0 °C 
which features the N-Aryl above the styrenyl-ether moiety. 
While we were not able to obtain suitable crystals from DEPCAAC 
Ru-4a-c, we could perform an X-ray diffraction analysis of Ru-4d 
(Figure 2), which confirms the structure of the rotamer 
observed in solution.16

Catalytic performances of catechodithiolate CAAC Ru-4a-d 
were initially evaluated in the ROMP of norbornene 2a (Table 
1).17 All complexes demonstrated good reactivity at 0.1 mol%, 
allowing full conversion within 30 min and affording the 
expected polymer 3a in 89-98% isolated yield. While an 
excellent >95% syndiotacticity was observed in each case,18 a 
slight difference of Z:E ratio occurred ranging from 92:8 (entry 
3; Ru-4c) to >98:2 (entry 4; Ru-4d). Interestingly, Ru-4d 
significantly differs from its DEPCAAC-Ru congeners as well as the 
NHC-containing Z-Hov by producing 3a with the lowest 
dispersity (1.9) and molar mass (563 Kg/mol; entry 4).17c  

Table 1 Catalytic performances of catechodithiolate CAAC Ru-4a-d in ring-opening 
metathesis polymerization of norbornene 2a.

Ru-catalyst
(0.1 mol%)

CH2Cl2 (0.5 M)
30 °C, 30 min.2a 3a n

Z-Hov

Ru

O

S

S
iPr

Cl

Cl

NN

a Isolated yield. b Molar ratio of E and Z isomers were obtained by 1H NMR analysis 
(CDCl3). c Determined by 13C NMR spectroscopy at 55 °C (CDCl3) after 
hydrogenation of the polymers (see ESI). d Determined by SEC in THF at 40 °C.

entry Catalyst Yield(%)a
Z:E 

ratiob Syndiotacticity 
(%)c

Mw 
(Kg/mol)d Ðd

1 Ru-4a 93 97:3 >95 5 478 4.3

2 Ru-4b 91 96:4 >95 5 351 3.9

3 Ru-4c 98 92:8 >95 2 452 5.0

4 Ru-4d 89 >98:2 >95 563 1.9

5 Z-Hov 92 >98:2 Atactic 731 2.8
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It is also worth noting that Z-Hov afforded 3a as an atactic 
polymer despite similar high Z-selectivity (entry 5). The ROMP 
of norbornadiene17a,c or exo-norbornene derivatives 2b-g19 
were next studied with DEPCAAC Ru-4b and DIPPCAAC Ru-4d 
catalysts (Scheme 2, a). Here also, excellent Z-selectivities 
(>98:2) and yields (94-98%) were reached, except for substrates 
2e-g which gave no or low conversion even under more drastic 
conditions (see ESI for details). 
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Scheme 2 Scope of ROMP (a) and ROCM (b) catalysed by catechodithiolate DEPCAAC Ru-
4b or DIPPCAAC Ru-4d. a Conversions were determined by 1H NMR spectroscopy using 
1,3,5-trimethoxybenzene as internal standard. b Isolated yield. c Molar ratio of E and Z 
isomers were monitored by 1H NMR analysis (CDCl3 or DMSO-d6). d Determined by 13C 
NMR spectroscopy. e Catalysts Ru-4b,d were used. f Determined by GC analysis.

Of note, a prolonged reaction time (1-3 h vs 10-30 min.) was 
required for diol 3c, but without any alteration of the Z-
selectivity.20 Interestingly, polymer 3b was formed in up to 75% 
syndiotacticity with DEPCAAC Ru-4b, surpassing the Z-Hov 
catalyst (55%).21 The lower 50% syndioselectivity observed with 
DIPPCAAC Ru-4d could result from steric clash with the bulkier 
DIPP substituent.18 On the other hand, only atactic polymers 
3c,d were obtained from ROMP of functionalized norbornenes 
2c and 2d independent of the catalyst used, also suggesting that 
a significant steric clash occurred between the CAAC units and 
the substrates.22

We next turned our investigation to ROCM transformation 
involving norbornenes 2e and 2f and various cross-olefin 
partners (Scheme 2, b). Here also, Ru-4d proved to be highly 
efficient with functionalized styrenes, furnishing internal 
alkenes in moderate to high yield (55-93%) and excellent Z-
selectivity (>98%). The reaction with aliphatic olefins7g also led 
to a remarkable Z-selectivity albeit lower conversions and yields 
were observed, and only traces of 9 were detected in the case 
of allylbenzene.
The catechodithiolate CAAC-Ru complexes were also 
investigated in cross-metathesis between 1-decene 13 and cis-
butenediol 14a (Table 2). We observed excellent Z:E ratios 
(98:2) across of our range of catalysts, with Ru-4d also 
appearing to be the most efficient, furnishing the expected Z-
product 15 in a moderate 48% isolated yield (entry 4). 
Performing the reaction at higher or lower temperature did not 
improve the conversion (entries 6 and 7). Since higher catalyst 
loading (10 mol%) or sequential addition of catalyst (4x 1.25 
mol%) were also unsuccessful to improve the conversion (17%, 
see ESI for details), we suspect self-poisoning of the active 
catalytic species.11e,f Next, we studied the performance of Ru-
4d in various CM reactions. As depicted in scheme 3, high levels 
of Z-selectivity were obtained, ranging from 95% to >98%.

Table 2 Catalytic performances of catechodithiolate CAAC-Ru-complexes Ru-4a-d 
in cross-metathesis between 1-decene 13 and cis-butenediol 14a.

OH

HO Ru-catalyst (5 mol%)

THF, 50 °C, 16 h
+

(4 equiv)
13 14a

OH

15

a Conversions were determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as internal standard. b Isolated yield. c Molar ratio of E and Z 
isomers were monitored by 1H NMR analysis (CDCl3). d Reaction performed at 20 
°C. e Reaction performed at 80 °C in 2-Me-THF 

entry Catalyst Conv. (%)a Yield (%)b Z:E ratio (%)c

1 Ru-4a 36 (32) >98:2

2 Ru-4b 35 (26) 98:2

3 Ru-4c 40 (31) 98:2

4 Ru-4d 50 (48) 98:2

5d Ru-4d 42 (36) >98:2

6e Ru-4d 50 (48) 98:2
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Scheme 3 Scope of cross-metathesis catalysed by catechodithiolate DIPPCAAC Ru-4d. a 
Conversions were determined by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene 
as internal standard. b Isolated Yield. c Determined by 1H NMR spectroscopy.

Nevertheless, the conversion remained moderate furnishing 
the corresponding Z-products in 18-43% isolated yield. 
Furthermore, only traces of 22 was observed in the case of 
styrene as olefin partner.
Having showed the high Z-selectivity in ROMP, ROCM and CM, 
we next investigated the performance in Z-enantioselective 
ROCM of optically pure catechodithiolate DEPCAAC-Ru 
complexes featuring various groups at the chiral quaternary 
center (i.e. Ph, 2-naphthyl, 3,5-dimethylphenyl). We also 
considered their nitro-Grela variant with a -NO2 activating 
group on the styrenylether fragment. First, we performed the 
preparative HPLC resolution of DEPCAAC Ru-3c-g,i on a Chiralpak 
IE phase (Scheme 3, see ESI for details),23 affording each 
enantiomer in nearly quantitative yield and excellent optical 
purity (>98.5% ee). Note that the chiroptical properties of these 
optically pure Ru-complexes were obtained through Electronic 
Circular Dichroism (ECD) (see ESI for details). We 
unambiguously confirmed the absolute configuration of second 
eluted Ru-3g,i complexes by X-ray diffraction study (S, Figure 
3)16 and attributed by analogy the same (S) configuration to 
second eluted Ru-3c,h. Optically pure complexes (–)-(S)-Ru-3c 
and (+)-(R)-Ru-3c were then converted into corresponding 
catechodithiolated counterparts (–)-(S)-Ru-4c and (+)-(R)-Ru-4c 
in 99% isolated yield (Scheme 4).

          

Figure 3 Solid-state structure of optically pure (–)-(S)-Ru-3g (left) and (–)-(S)-Ru-3i (right) 
from single crystal X-ray diffraction. Displacement ellipsoids are drawn at 50% 
probability. Most hydrogen atoms have been omitted for clarity.
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Scheme 4. Scope of optically pure DEPCAAC-Ru complexes Ru-3c,g-i and catechodithiolate 
Ru-4c. a Isolated yield after preparative chiral resolution. b Determined by chiral-
stationary phase HPLC analysis.

The latter was then evaluated in Z-enantioselective ROCM 
between exo-norbornene 2c and styrene to furnish 
enantioenriched cyclopentane 23 with 99% Z-selectivity and 
78:22 enantiomeric ratio (Table 3, entry 2). This catalytic 
performance is quite similar to that of (R)-Ru-3c affording 23 in 
29% isolated yield24 and 76:24 er (entry 1). 

Table 3. Evaluation of optically pure DEPCAAC Ru-complexes Ru-3c and 
catechodithiolate Ru-4c,g-f in Z-enantioselective ROCM of norbornene 2c.

Ru-catalyst (x mol%)

THF, 22 °C, time
+

(20 equiv)
2c 23

OH
OH

Ph

HO OH

Ph

Entry catalyst (mol%) Time 
(h)

Conv. (%)[a]

(yield)[b]

Z:E 
ratio[c]

er (Z)-
23[d]

1 (R)-Ru-3c (1) 2 99 (29) 65:3
5

76:24[e]

2 (R)-Ru-4c (5) 2 99 (26) 99:1 78:22

3[f] IS (R)-Ru-4c (5) 2 99 (26) 99:1 77.5:22.5

4[f] IS (R)-Ru-4g (5) 0.5 99 (20) 99:1 77.5:22.5

5[f] IS (R)-Ru-4h (5) 0.5 99 (44) 99:1 78.5:21.5

6[f] IS (R)-Ru-4i (5) 0.5 99 (31) 99:1 78:22

a Conversions were determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as internal standard. b Isolated yield. c Determined by GC 
analysis. d Determined by HPLC analysis on chiral phase. e er for (E)-23: 69.5:30.5. f 
The catechodithiolate catalyst was generated in situ by reacting 1 with Et2Zn 
followed by the addition of respective (R)-Ru-3 (see Scheme 5 and ESI for details)
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(5 mol%)

THF, 50 °C, time
R2

Ru

O

S

S
iPr

Cl

Cl

C(R) N
Me

Et

Et

IN SITU (R)-Ru-4h

+ ZnCl2

+

Cl

Cl

SH

SH

1 (1 equiv)

Et2Zn (R)-Ru-3h
(1 equiv) (0.66 equiv)

THF, 22 °C, 30 min.

5

5 h, 90% conv.a (63%)b

99:1 Z:E ratioc, 83.5:16.5 erd

4

1 h, 99% conv.a (56%)b

99:1 Z:E ratioc, 83:17 erd

24

0.5 h, 99% conv.a (33%)b,e

99:1 Z:E ratioa, 75:25 erd

28
no reaction

NO2

2c-h

X

R1

R1

R1 R1

X

R2

(20 equiv)

Ph Ph

OO O BnO OBn

Ph

TBDMSO OTBDMS

25

16 h, 50% conv.a (31%)b

98:2 Z:E ratioc, 74:26 erd

Ph

AcO OAc

6

0.5 h, 99% conv.a (83%)b

97:3 Z:E ratioc, 82:18 erd

26

0.5 h, 99% conv.a (36%)b,e

95:5 Z:E ratioc, 64.5:35.5 erd

O

Ph

OO O

Ph

N
Ph

O O

10
4 h, 88% conv.a (80%)b

99:1 Z:E ratioc, 72.5:27.5 erd

N
Ph

O O
7

8

0.5 h, 99% conv.a (66%)b

99:1 Z:E ratio[, 75:25 erd

N
Ph

O O

27

N
Ph

O O
AcO

no reaction

7

0.5 h, 99% conv.a](77%)b

99:1 Z:E ratioc, 82:18 erd

N
Ph

O O

MeO F3C

OO O

MeO

Scheme 5 Scope of Z-enantioselective ROCM catalysed by In Situ (IS) generated optically pure catechodithiolate DEPCAAC-Ru-4h. [a] Determined by 1H NMR spectroscopy using 1,3,5-
trimethoxybenzene as internal standard. [b] Isolated yield. [c] Determined by GC analysis. [d] Determined by HPLC analysis on chiral phase. [e] The corresponding polymer was also 
formed as by-product.

While the selectivity remained moderate, it is worth mentioning 
that previous AROCM involving exo-norbonenes are scarce and 
have been obtained in even lower enantioselectivities (up to 
67:33 er for 23).25 We next turned our attention to optically 
pure nitro-Grela type pre-catalysts DEPCAAC-Ru-3g-i. 
Unexpectedly, the corresponding dithiolated complexes proved 
to be too unstable in solution to be isolated.7h Gratifyingly by 
capitalizing on recent results from our lab,9 we confirmed that 
(R)-Ru-4c can be generated in situ (IS) promoting the AROCM 
with the same efficiency (entry 3 vs 2). Under similar conditions, 
we observed faster reactivity with nitroGrela IS (+)-(R)-Ru-4g-i 
affording full conversion within 30 min. In all cases, (Z)-23 was 
exclusively formed with similar levels of enantioselectivity, 
meanwhile the highest isolated yield (44%, entry 5) was 
obtained with IS (+)-(R)-Ru-4h featuring a 2-napthyl at the chiral 
quaternary center.

Having identified in situ generated (+)-(R)-Ru-4h as the most 
efficient Z-enantioselective CAAC-Ru catalyst, we evaluated its 
scope across a broad range of substrates (Scheme 5). AROCM 
products 4-8 and 24-26 were formed in excellent Z-selectivity 
ranging from 95:5 to 99:1 Z/E ratio, except for 27 and 28 for 
which the starting-material was recovered despite a higher 
catalyst loading and/or a prolongated reaction time. The 
highest enantioselectivies (82:18 to 83:17 er) were reached 
with exo-norbornenes featuring an anhydride or a succinimide 
function, leading respectively to trans cyclopentanes 4-5 and 6-
7 with 56-83% isolated yield. A drop in enantioselectivity was 
observed with protected diols reacting with styrene (24-26; 
64.5:35.5 to 75:25 er), although these ers remain higher than in 
previous reports.22 Finally, a similar level of enantioselectivity 
was also observed with 1-decene as cross-olefin partner (10; 
72.5:27.5 er).

Conclusions
In summary, we have developed the first Z-stereoselective 
catechodithiolate ruthenium complexes containing 
cyclic(alkyl)(amino)carbene ligands. Amongst a selection of 
CAAC Ru-complexes, DEPCAAC Ru-4b and DIPPCAAC Ru-4d have 
proven to be efficient toward the formation of Z-internal 
olefins. Moderate to good yields and remarkable Z-selectivity 
(>98%) were obtained in various ROMP, CM and ROCM 
transformations. Notably, the resulting polymers from 
norbornene 2a and norbornadiene 2b were formed with good 
to excellent syndiotacticity (75 to >95%), surpassing that of 
NHC-based catechodithiolate Ru-catalysts. Additionally, thanks 
to the efficient and rapid access to optically pure CAAC Ru-
complexes (>98.5% ee), the first synthesis of enantiopure 
catechodithiolate DEPCAAC-Ru complexes was also achieved. 
Isolated or formed in situ, those new chiral Z-selective catalysts 
demonstrated good catalytic performances in Z-
enantioselective ROCMs involving reluctant exo-norbornene 
derivatives (up to 99:1 Z:E ratio; and up to 83:17 er). Further 
works dealing with the modification of the catechodithiolate 
ligand17a for improving the catalyst efficiency toward ACM 
reactions as well as the continuous flow synthesis of 
enantioenriched Z-alkenes are underway and will be reported 
soon.26
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