

The Preparation of Silica Supported, Dilute Limit PdAu Alloys via Simultaneous Strong Electrostatic Adsorption

Journal:	Catalysis Science & Technology
Manuscript ID	CY-ART-09-2022-001662.R1
Article Type:	Paper
Date Submitted by the Author:	30-Mar-2023
Complete List of Authors:	Dong, Anhua; University of South Carolina , Department of Chemical Engineering Shakouri, Abolfazl; University of South Carolina, Chemical Engineering Karakalos, Stavros; University of South Carolina, College of Engineering and Computing Blom, Douglas; University of South Carolina, Williams, Christopher; University of South Carolina, Chemical Engineering Regalbuto, John; University of South Carolina , Department of Chemical Engineering

1	The Preparation of Silica Supported, Dilute Limit
2	PdAu Alloys via Simultaneous Strong Electrostatic
3	Adsorption
4	Authors: Anhua Dong, Abolfazl Shakouri, Starvros Karakalos, Doug Blom, Chris Williams,
5	John R. Regalbuto*
6	Affiliations: Department of Chemical Engineering, University of South Carolina, Columbia, SC,
7	29208
8	ABSTRACT
9	Supported, dilute Pd-in-Au alloyed nanoparticles might possess enhanced reactivity due to
10	the altered structural and electronic properties of the Pd atoms isolated in an Au nanoparticle
11	matrix. Simultaneous strong electrostatic adsorption (co-SEA) is a promising approach to
12	synthesize such nanoparticles at high metal dispersion. In this study, Pd sites diluted in Au
13	nanoclusters were achieved via co-SEA with dilute Pd/Au concentration ratios of the impregnating

14	solution. X-ray diffraction, CO chemisorption, and scanning transmission electron microscopy
15	(STEM) demonstrated ultrasmall nanoparticles (~1.7 nm) with homogenous alloying. Quantitative
16	analysis of CO adsorption with Fourier-transform infrared spectroscopy was used to diagnose the
17	disappearance of contiguous Pd surface ensembles with increasing dilution. Exclusively isolated
18	Pd sites were achieved at or below the ratio of Pd/Au=0.04. Catalysts comprising completely
19	isolated Pd exhibited turnover frequencies up to two orders of magnitude higher than pure Pd or
20	Au catalysts.
21	Key words: heterogenous catalysts, strong electrostatic adsorption, dilute limit alloys, FTIR,
22	isolated palladium sites, partial oxidation of 1-phenylethanol.
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
3/	
74	

37				
38				
39				
40				
41				
42				
43				
44				
45				
46				
47				
48	1 INTRODUCTION			

49	Interest has arisen for heterogenous catalysts comprising single atom alloys (or dilute limit
50	alloys, DLAs), in which one metal atom is diluted in the matrix of another supported metal
51	nanoparticle, due to potentially enhanced catalytic activity, stability or other improved properties
52	of the isolated atom ¹⁻³ . For example, the isolation of noble metal atoms in a non-precious metal
53	inert matrix enables the maximum noble metal utilization. Furthermore, DLA catalysts might
54	combine the traditional advantages of alloys and single atom materials. Active metal coordination
55	and the change in the electronic characteristics is intimately correlated to the interactions with the
56	adsorbates, which in turn influence the catalytic performance. Numerous papers report tuned
57	electronic properties of DLA catalysts by tailoring the atomic ratios, which are intimately related

58	to the reactivity. It has been reported that CO could bind more weakly on isolated Pt sites in Cu
59	nanoclusters than on Pt ensembles/monometallic nanoparticles, which could improve CO-
60	tolerance stability or thermal stability ^{4, 5} . Zhang et al. ⁶ affirmed the altered hydrogenolysis
61	reaction pathway from dehydrogenation to dehydration over isolated Pt-Cu catalysts. Chen and
62	Zhan ⁷ overviewed the electronic structure of DLA catalysts, and concluded that a combination of
63	a lower density of state near the Fermi level, narrowing in the valence bands, and charge transfer
64	have a tremendous effect on the adsorption behavior of reactants/intermediates in the catalytic
65	processes. Similarly, Pei et al. ⁸ reported that excess electrons on the surface Pd monomers from
66	the alloyed Ag matrix boosted the catalytic performance in acetylene hydrogenation. Density
67	functional theory (DFT) simulation has also shown charge transfer in the dilute limit alloys, which
68	influences the adsorption strength of various species ⁹ .
69	Catalysts with isolated Pd sites anchored on the surface of Au nanoparticles have shown
70	with initial promise for many reactions such as hydrogenation, dehydrogenation, oxidation, C-C
71	coupling, etc. ¹⁰⁻¹³ . For example, Liu and colleagues ¹⁴ reported that a small amount of Pd in Au
72	nanoparticles improved the activity of Au in the hydrogenation of 1-hexyne by nearly 10-fold,
73	while at the same time retaining its high selectivity. It is proposed that the isolated Pd atoms on

74	the Au surface facilitated hydrogen dissociation and banded CO and H atoms more weakly. Indeed,
75	Lee et al. ¹⁵ recently reviewed the available literature, and noted that dilute alloy catalysts with
76	isolated atom or small ensembles in Cu, Ag, or Au host metals generally showed highly selective
77	and enhanced hydrogenation activity. These effects are not limited to hydrogenation, as Wrasman
78	et al ¹⁶ have shown that dilute Pd in Au alloy nanoparticles can generate the active oxidant in
79	selective alcohol oxidation. This effect occurs even on even on inert carbon support due to the
80	increased hydrogen dissociation ability of the isolated Pd sites in Au. Finally, it has been also
81	reported that DLA catalysts with isolated metal sites showed enhanced anti-coking and/or CO
82	poisoning resistance ^{4, 13} .
83	A facile and generalizable method to synthesize supported single atom or dilute limit alloys
84	with high metal dispersion and controlled composition will benefit efforts to explore these
85	materials. Current preparation techniques most frequently include vacuum physical deposition
86	(VPD), galvanic displacement, sequential reduction (SR), and co-precipitation or deposition-
87	precipitation ^{14, 17} . Each of these methods has drawbacks; VPD is equipment-intensive, subject to
88	impurities and not so scalable, while SR and precipitation methods involve incipient impregnation

or colloidal synthesis, which normally produce large particles. Galvanic displacement is possible

89

90	for only a limited number of metal systems.
91	We have previously demonstrated that simultaneous electrostatic adsorption (co-SEA) is
92	an effective method to synthesize highly-dispersed and well-alloyed bimetallic nanoparticles
93	(~1nm) with 1:1 atomic ratios ¹⁸ . This simple method can be applied to a wide variety of metal
94	precursors and oxide and carbon supports ¹⁹ . The synthesis of dilute limit alloys can be achieved
95	simply by controlling the concentrations of metal precursors in the impregnating solution. We
96	have recently employed the co-SEA synthesis of dilute Pd-in-Cu alloys on silica has been
97	successfully achieved, demonstrated by rigorous fitting and DFT interpretation of the Fourier-
98	transform infrared (FTIR) spectra of adsorbed carbon monoxide ²⁰ .
99	In this work, we extend co-SEA to the synthesis of a series of silica supported DLA
100	nanoparticles of Pd isolated in Au. With a comprehensive battery of characterization, we combine
101	in-situ IR spectroscopy and chemisorption to probe the isolation of surface Pd sites in Au
102	ensembles and the fraction of surface Pd. Powder X-ray diffraction (XRD) and scanning
103	transmission electron microscopy (STEM) measurements reveal particle size and the homogeneity
104	of PdAu alloying. In-situ X-ray photoelectron spectroscopy (XPS) reveals electronic interactions

105	between the two metals. The DLA series was finally characterized by evaluating the reactivity for
106	the partial oxidation of 1-phenylethanol, showing significant improvement in activity.
107	2 EXPERIMENTAL
108	2.1 Materials
109	Aerosil 300 (A300) from Evonik Corporation was used as amorphous silica support with
110	the surface area of 283 m ² /g. The point of zero charge (PZC) of A300 is 3.6 and water-accessible
111	pore volume is 3.2 ml/g. Tetraamminepalladium (II) nitrate solution (99.99%, Sigma-Aldrich)
112	$(PdTANO_3)$ and gold ethylenediamine $Au(en)_2Cl_3$ (AuBen) was used as the cationic Pd and Au
113	precursor, respectively. AuBen was made from tetrachloroauric (III) acid trihydrate (99.9%, Alfa
114	Aesar) according to the reported literature ^{21, 22} . Other chemicals in AuBen preparation involve
115	diethyl ether (99.9%, VWR), ethylenediamine (99%, Alfa Aesar) and anhydrous ethanol (>99.5,
116	sigma-aldrich). NaOH and HCl were used to adjust the solution pH, which were supplied by VWR.
117	2.2 Adsorption Surveys and Catalysts Preparation
118	To explore the adsorption of Pd and Au precursors on silica during co-SEA, uptake
119	surveys versus pH of cationic $[Pd(NH_3)_4]^{2+}$ and $[Au(en)_2]^{3+}$ complexes were performed with initial
120	concentrations Pd and Au of 100 ppm and the silica surface loading (SL) at1000 m ² /L. The detailed

128

Figure 1. Uptake survey of Pd-Au pairs.

The synthesized series, including the electrostatic adsorption of hydrated Pd and Au cationic complexes onto the deprotonated and negatively charged silica surface is depicted in Scheme 1. It is presumed that drying and reduction in hydrogen leads to nanoparticles of the same

135 Scheme 1. Electrostatic adsorption of Pd, Au precursor complexes on silica support (a); palladium

and/or Pd-Au alloy formed on gold clusters after H_2 reduction (b).

137	Actual molar Pd/Au ratios of of 1.27:1, 0.23:1, 0.080:1, 0.040:1, 0.020:1, 0.012:1 and
138	0.010:1 were obtained by controlling Pd concentrations as listed in Table 1. The mass of Pd was
139	diluted from 1.54 wt% to 0.01 wt%. The initial pH of the 0.34 L metal precursor solution was
140	adjusted to around 11.5, then 1.2 g silica support was added resulting in a pH shift down to about
141	10.5 in all cases, in the optimal pH range for strong electrostatic adsorption as seen in Figure 1.
142	The slurry was placed on an orbital shaker for 1 hour and then vacuum filtered to obtain the powder
143	catalysts. Five ml aliquots of precursor solution were taken before and after contacting the support
144	to determine the loadings of Pd and Au as measured by ICP-OES (PerkinElmer Optima 2000 DV).

145	For the sake of comparison, monometallic Pd, Au catalysts were produced by SEA and
146	one bimetallic catalyst (Pd/Au=0.02:1) was made by simultaneous dry impregnation (co-DI). For
147	the latter preparation, appropriate amounts of metal precursors were dissolved into 3.84 ml DI
148	water, which was the water accessible pore volume of 1.2 g of the silica support. As a control, pure
149	silica support was treated in a metal free ethylenediamine aqueous solution to simulate the SEA
150	procedure in the absence of metals.
151	The wet powders were dried at room temperature for 48 hours in darkness, and then
152	reduced in a horizontal reduction furnace at 400 °C for 1 hour at the ramp rate of 5 °C in 250 sccm
153	of 20% H ₂ in N ₂ . The co-SEA prepared catalysts were denoted as Pd_xAu_1 , where x is the molar
154	ratio of Pd/Au. In the labels of the monometallic catalysts, the subscripts indicate the metal
155	loadings. The sample labelled as $Pd_{0.02}Au_1$ _co-DI were produced by dry impregnation.

156Table 1. Catalysts information and concentrations of metal precursors in the synthesis.

Catalysts	molar ratio		mass loading (wt%)		precursor conc. (ppm)	
	Pd _x :Au ₁	Pd ₁ :Au _y	Pd	Au	PdTA	AuBen
Pd ₁ Au ₁	1:1	1:1	0.88	1.45	32	59
Pd _{1.27} Au ₁	1.27:1	1:0.79	1.54	2.2	45	84

Pd _{0.227} Au ₁	0.227:1	1:4.4	0.27	2.3	8.9	84
$Pd_{0.08}Au_1$	0.080:1	1:13	0.10	2.3	3.0	84
Pd _{0.04} Au ₁	0.040:1	1:25	0.05	2.2	1.5	84
Pd _{0.02} Au ₁	0.020:1	1:50	0.024	2.3	0.74	84
$Pd_{0.012}Au_1$	0.012:1	1:83	0.014	2.2	0.54	84
$Pd_{0.01}Au_1$	0.010:1	1:100	0.010	2.3	0.37	84
Au _{2.2}	0:1	0:1		2.2	0	84
Au ₁	0:1	0:1		0.84	0	40
Pd _{0.97}	1:0	1:0	0.97		36	
Pd _{0.10}	1:0	1:0	0.10		3.6	
Pd _{0.02} Au ₁ _co-DI	0.020:1	1:50	0.024	2.3	92	8670

158 *2.3 Catalyst Characterization*

159	Temperature programmed reduction (TPR) was conducted in a Micromeritics 2920
160	equipped with a thermal conductivity detector. Fresh samples of around 200 mg were pretreated
161	in Ar at 180 °C for 1 hour, cooled down to room temperature, switched to 10% H_2 /Ar at flowrate
162	of 50 sccm, and then increased to 800 °C at a ramp of 5 °C/min.
163	Powder X-ray diffraction (XRD) was carried out with a Rigaku MiniFlex II with a high
164	sensitivity D/teX Ultra Si slit detector. XRD patterns were recorded from 10-90° 20 with 0.02°

165	step size using a Cu-K α radiation source (λ =1.5406 Å) at 30 mA and 15kV. Fityk version 1.1.3
166	software was employed for silica background subtraction and Gaussian peak fitting. Average
167	particle sizes were determined with the Scherrer equation with a shape factor of 0.94 23 .
168	Pulse CO-chemisorption was measured over PdAu DLA catalysts on a Micromeritics 2920
169	equipped with a TCD to quantify Pd sites on Au nanoparticles surface. All the measured samples
170	were in-situ reduced in a U-tube installed into the equipment at 400 $^{\circ}$ C for 1 hour in 10% H ₂ /Ar at
171	a ramp of 5 °C/min, cooled down to room temperature and then pulsed with 10% CO/He until the
172	discretely injected gas volumes was unchanged by TCD. The difference between the amounts of
173	injected CO and the measured residual amount in the gas effluent was used to calculate the amount
174	of adsorbed CO on PdAu alloys. A small volume of CO was detected over the monometallic Au
175	sample (0.05 cm ³ /g _{cat}), which was then subtracted from the DLA catalysts to determine the
176	population of adsorbed CO on Pd. The stoichiometry of CO/Pd derived from CO-FTIR analysis
177	was applied to estimate Pd dispersion.
178	An aberration corrected JEOL 2100F scanning transmission electron microscopy (STEM)
179	was employed to obtain average particle sizes and size distributions as well as to image the
180	bimetallic nanoparticles at high magnification. Sample preparation involved ultra-sonicating the

181	catalyst powder in ethanol and adding a drop to the copper TEM grid supporting a holey carbon
182	film. Particle size distributions were achieved with analysis class size of 1 Å based on at least 700 $$
183	particles by using Particle 2 software. Number average particle sizes were calculated as
184	$D_n = \sum n_i D_i / \sum n_i$ and the volume average size, for comparison with XRD, as $D_v = \sum n_i D_i^4 / \sum n_i D_i^{3.24}$.
185	To probe the electronic structure and surface composition of the reduced PdAu DLA
186	samples, X-ray photoelectron spectroscopy (XPS) was performed on a Kratos AXIS Ultra DLD
187	XPS system with a monochromatic A1K source and a catalysis cell for in-situ pretreatment. Before
188	procuring spectra, samples were in-situ reduced in the chamber at 180 °C for 1h in 20 $\% H_2.$
189	Binding energy was calibrated with the C1s peak at 284.8 eV 25 (and was consistent with using the
190	Si 2p peak at 104.0 eV). With a subtraction of Shirley background, XPS spectra were fitted with
191	XPS Peak 4.1 software by using a mixed Gaussian/Lorentzian function and fixing spin-orbit
192	splitting area ratio.
193	Fourier-transform infrared spectroscopy (FTIR) with CO as probe molecule was employed
194	to probe the atomic geometry of surface Pd sites. FTIR measurements were performed on a Thermo

196 detector. A cylindrical stainless-steel cell was used in all FTIR experiments for in-situ

Electron model 4700 spectrometer in transmission mode with a liquid-nitrogen-cooled MCT

197	pretreatment. After fine grinding, 15 mg sample was pressed into pellets in a diameter of 0.5 inch
198	under the pressure of 3 bar for 20s. The spectra were recorded in a single beam mode with a total
199	of 64 scans and a resolution of 4 cm ⁻¹ in the 4000-450 cm ⁻¹ spectral region. Prior to collect the
200	spectra, each sample was first reduced in 20% H_2/N_2 at 180 °C for 1 hour at the ramp of 5 °C/min,
201	cooled down to room temperature in N ₂ , with one spectrum collected and set as the background.
202	The lower reduction temperature was employed for the in-situ IR characterization as it completely
203	eliminated the adsorption of CO onto Au. Afterward, 1% CO/Ar was turned on and spectra were
204	collected until the sample was saturated with CO. Subsequently, 1% CO/Ar was switched by pure
205	N ₂ to flush away the gas-phase and any physiosorbed CO. Meanwhile, spectra were acquired until
206	the signal of adsorbed CO signal stabilized.
207	Gaussian functions were used to resolve IR spectra subtracted that of the pure Au sample
208	by using Fityk software. Curve fitting was firstly conducted on monometallic Pd catalysts to
209	optimize the full width at half maximum (FWHM) in the Gaussian function and deconvoluted CO
210	bands position. In the deconvolution of IR spectra over PdAu DLA catalysts, the peak parameters
211	of monometallic Pd samples, including FWHM, height and position, were initially employed and
212	then optimization by principally by the peak height, and in some cases with small variations of the

213	peak position and FWHM. The deconvoluted peak area corresponded to varied CO bands were
214	used to calculate the fraction of linearly adsorbed CO molecules.
215	2.4 Partial Oxidation of 1-Phenylethanol
216	Catalysts were evaluated for the partial oxidation (or dehydrogenation) of 1-phenylethanol
217	(PE) to acetophenone in a 110 ml semi-batch reactor (Autoclave Engineers) at 50 psig of O_2 and
218	160°C, with a stirring rate of 400 rpm. In most cases, the initial reactor loading was 50 ml 1-
219	phenylethanol and 106 mg catalyst. Oxygen was provided to the reaction medium from the hollow
220	shaft of the impeller outlet holes above and below the liquid level (Dispersamax TM , Autoclave
221	Engineers). Much attention was placed on ensuring the safety of the reaction. The reactor is
222	equipped with a rupture disk, as is standard for performing high pressure reactions. In addition, a
223	needle valve was installed to control O_2 flow to the reactor. This valve is opened only to the level
224	required to maintain the reaction pressure in the vessel. Thus, in the event of a thermal runaway,
225	the reactor will quickly become starved of oxygen, and the rate will be limited, providing the
226	opportunity to shut the system down. No evidence of any uncontrolled reaction was observed. The
227	compositions of liquid reactant and products at various reaction times were measured using a gas
228	chromatograph (HP 5890) with an HP-5 capillary column and a flame ionization detector coupled

229 to an autosampler. Turn over frequencies (TOFs) based on Pd or total metal (Pd+Au) were

230 calculated according to the following equations:

231 Conversion (%) =
$$\frac{converted n_{PE} (mol)}{initial n_{PE} (mol)} * 100$$
 equation (1)

232
$$TOF_{metal} = \frac{convertea n_{PE} (mol)}{n_{metal} (mol) * reaction time (h)}$$
equation (2)

233

234 3. RESULTS AND DISCUSSION

235 *3.1 Catalyst Characterization*

236	Temperature programmed reduction profiles for pure Au, Pd, and Pd/Au bimetallic
237	nanoparticles (Figure S1) showed reduction of pure Au at about 145 °C and pure Pd via SEA at
238	about 170 °C. A DI-derived Pd sample at the same loading gave a lower reduction peak,
239	presumably due to weaker interaction of the precursor with the silica surface. The reduction
240	temperature of the 1:1 Pd:Au sample lowered toward that of Au, and low ratios of Pd:Au looked
241	similar to pure Au. The Au-containing samples contained positive peaks from 200 $^{\circ}$ C - 250 $^{\circ}$ C
242	presumed to arise from the decomposition of the ethylenediamine ligand from the gold precursor
243	²⁶ . This peak shifted downward in temperature with the addition of even small amounts of Pd and

in proportion to the amount of Pd added, which is an indication that the two metals are in intimatecontact.

246	Powder XRD characterization of the PdAu DLA catalysts is shown in Figure 2. Raw
247	diffractograms (Figure 2a) are for the support-only (bottom), 0.97 wt% Pd-only (second from
248	bottom), the DLA series, and then Au-only pattern (top). Peaks from metal nanoparticles are very
249	broad as the particle size is ultra-small; the (200) fcc peaks are seen as right-hand shoulders on the
250	(111) peaks near 40° 20. With the high intensity detector employed, careful background
251	subtraction and peak fitting allows the identification of nanocrystalline features even smaller than
252	1 nm ²⁷ . The Pd-only sample exhibits discernable broad peaks (Figure 2b, bottom) which can be
253	fit as 1 nm Pd_2O particles. The Au-only sample (top pattern of Figure 2a) can be fit with metallic
254	fcc Au peaks with size 1.7 nm, however, the position of the (111) peak, at 39.1° 2 θ , is about 0.83°
255	2θ higher than that expected for bulk Au. This can be explained by the lattice contraction of
256	ultrasmall Au nanoparticles as has been firmly established by x-ray absorbance ²⁸ . The rest of the
257	samples, containing high to low amounts of Pd (bottom to top in Figures 2a and 2b) can all be fit
258	with a single set of fcc (111) and (200) peaks.

259	The peak positions from the raw data, and peaks shifts with a correction for the lattice
260	contraction of Au are shown in Figure 2c. The samples at higher Pd:Au ratios show an upward
261	shift in 2θ which approaches pure Au at the lowest Pd ratios, and which deviates from the lattice
262	contraction correction which should be constant given the constant Au matrix nanoparticle size.
263	While no discernable alloying is evidenced at the lowest Pd ratios, above 0.04:1 Pd:Au an upward
264	shift in peak position is consistent with adding a Vegard's law ^{29,30} correction to the lattice
265	contraction which implies alloying of the metals, until the final ratio of 1:27:1, at which point the
266	Au lattice contraction correction is not needed, possibly due to the presence of large amounts of
267	Pd.
268	Particle sizes derived from the peak broadening are given in Table 2. All of the gold-rich
269	catalysts have the same size (~1.7 nm) as the pure Au sample. The highest ratio of $Pd_{1.27}Au_1$
270	exhibited the smallest bimetallic particles of 1.4 nm. Pei et al ¹¹ detected smaller bimetallic
271	particles with even trace amounts of Pd in Au (from 4.2 nm to 2.8 nm) and concluded Pd promoted
272	the thermal stability of Au nanoclusters which caused a stronger PdAu-silica interaction. Qian et
273	al ³¹ also noticed smaller size of PdAu alloys with increased amount of Pd in fixed Au contents

275	formation. In contrast, sharp metallic [111] and [200] peaks appeared for a $Pd_{0.02}Au_1$ _co-DI sample
276	(Fig. S2), indicative of larger alloy particles. Peaking fitting reveals two sets slightly offset fcc
277	peaks, indicating two alloy phases with the average particle size of 11 nm.
278	Pulse CO chemisorption was employed to address the question of how much Pd was on
279	the surface, versus the amount in the bulk. Results are shown in Table 3 and are reported as uptake
280	per gram of catalyst and per gram of Pd. If all Pd were on the surface the uptake would be 9.4
281	μ mol/g _{Pd} . The Pd "dispersion" which in this case is the amount of Pd on the surface versus the
282	amount of Pd in the bulk of the alloy phase, is seen to vary from about 54% to about 33%. From
283	a Van Hardeveld and Hartog analysis ³² based on the XRD-determined particle size, the ratios of
284	total metal dispersion, or the number of Au + Pd surface atoms versus total atoms is listed in the
285	rightmost column of the table. That Pd dispersion is similar to the total metal dispersion suggests
286	that co-SEA leads to the formation of bulk alloying with little or no surface enrichment. Surface
287	enrichment of Pd is not expected, at least in the absence of a reactant which can pull it to the
288	surface, as the surface free energy of Pd (2.403 J/m ²) is somewhat higher than that of Au (1.626
289	J/m^2) ³³ . That the majority of the Pd goes into bulk alloying is consistent with the XRD data. Below

290	0.04:1 Pd:Au, while chemisorption indicates the absence of Pd from the nanoparticle surfaces, the
291	amount of the Pd is too small to produce a measurable XRD peak shift.
292	
293	
294	
295	
296	

Samplas	D _{XRD} (nm)	STEM		Bulk phase identified
Samples		D _V (nm)	D _n (nm)	by XRD or STEM
Pd _{0.97}	0.98	1.2	0.97	Pd ₂ O (Pd in STEM)
Pd_1.27Au_1	1.4	1.3*	1.1*	Bulk alloy, speckled
Pd_0.227 Au1	1.7			Bulk alloy
Pd_0.08}Au_1	1.7			Bulk alloy
Pd_0.04}Au_1	1.7	2.1	1.5	Bulk alloy
Pd _{0.02} Au ₁	1.7			Au
Pd _{0.012} Au ₁	1.7			Au
Pd _{0.01} Au ₁	1.8			Au
Au _{2.2}	1.7	2.0*	1.3*	Au

Table 2. Particle size and bulk phase identified by XRD and STEM.

298 * STEM estimates for a Pd_1Au_1 sample.

299

300

301

Table 3. Pulse CO chemisorption over PdAu DLA catalysts.

Samples	Q _{co}	Q _{Pd}	Pd dispersion	N _S /N _T *	
Sampres	$cm^{3}/g_{cat.}$	µmol/g _{Pd}	%	%	
Pd _{1.27} Au ₁	0.809	5.1	54	48	

Pd _{0.227} Au ₁	0.211	4.3	46	38
Pd _{0.08} Au ₁	0.067	3.3	36	38
Pd _{0.04} Au ₁	0.043	3.9	41	39
Pd _{0.02} Au ₁	0.017	3.1	33	39

* per Van Hardeveld and Hartog³²

Figure 2. XRD analysis of the PdAu DLA series, a) Normalized XRD profiles for (1) treated SiO₂,

306	(9) $Pd_{0.01}Au_1$, (10) $Au_{2.2}$ catalysts, b) background-subtracted and fitted XRD patterns; c)
307	comparison of results with Vegard's law.
308	
309	
310	
311	To gain further insight into the particle size and morphology, electron microscopy analysis
312	was performed on mono/bimetallic PdAu catalysts. Representative STEM images (Fig.3) revealed
313	regular spherical particles with tight size distributions. Particle size estimates from STEM (volume
314	averages) were largely consistent with XRD estimates as given in Table 3. Under the electron
315	beam, the pure Pd oxides would be reduced, so the size reported is assumed to be reduced and not
316	oxidized metal.
317	Careful inspection of high magnification images of the Pd ₁ Au ₁ sample (Figure 3c) reveal
318	specked nanoparticles indicative of well-mixed alloys ³⁴ . This effect is not seen (and is not expected
319	to be seen) at low Pd:Au ratio. To further investigate the isolation of a minority metal, PdAu
320	nanoparticles with inversed atomic Pd/Au ratio (1:0.04) were produced via the same synthetic
321	procedure of co-SEA on oxidized carbon and the microscopy images are presented in Fig. S3. The

- 322 clear occurrence of isolated, brighter Au atoms speckled throughout the dimmer Pd nanoparticles
- 323 (in yellow circles) supports the hypothesis that electrostatic adsorption is an efficient methodology
- to attain DLAs through atomically distributing one minority element into another host metal atoms.

326	Figure 3. STEM images of monometallic Pd _{0.97} _SEA (a), Au ₁ _SEA (b), Pd ₁ Au ₁ _co-SEA (c), and
327	$Pd_{0.04}Au_1$ _co-SEA (d) catalyst at low and high magnification as well as the particle size
328	distribution histograms.
329	X-ray photoelectron spectroscopy (XPS) analysis was conducted after <i>in-situ</i> reduction to
330	understand the electronic properties and surface composition. XPS Au4f, Pd3d, and Au4d core
331	level spectra were deconvoluted by using two contributions originating from Pd ⁰ and Au ⁰ , and are
332	shown in Fig.4. Assignments of resolved XPS spectra and the derived chemical composition are
333	listed in Table 4. Au $4f_{7/2}$ and Au $4d_{5/2}$ peaks were detected on monometallic gold sample at binding
334	energy (B.E.) of 84.3 eV and 334.7 eV, respectively, in close agreement to reported values ³⁵ . The
335	obtained binding energy of Pd^0 counterpart over $Pd_{0.97}$ was located at 335.4 eV and 340.1 eV for
336	$Pd3d_{5/2}$ and $Pd3d_{3/2}$, respectively, and the observed higher binding energy can be attributed to the
337	small particles ³⁶ . In PdAu DLA catalysts, with Pd dispersed in Au nanoparticles, Pd3d and Au4f
338	binding energies moved in the opposite directions, with $Au4f_{7/2}$ going down from 84.3 eV for pure
339	Au to 83.4 eV in the Pd_1Au_1 alloy and $Pd3d_{5/2}$ going up from 335.3 eV for pure Pd to 335.6 eV as
340	it was diluted. These shifts evidence charge transfer from Pd to Au in the alloys due to a higher
341	electronegativity of Au, and are consistent with the observations of many groups ^{14,33,35,37-39} . That

342	such small amounts of Pd exhibit an effect in the Au matrix can be explained by the very small
343	size (1.7 nm by XRD) of the Au matrices, and assuming that the Pd is homogeneously distributed
344	in the Au. Liu and colleagues ¹⁴ also detected charge transfer between Pd and Au on their carbon-
345	supported PdAu alloys with trace amount of Pd (0.4 at.%).
346	
347	
348	
349	
350	
351	
352	
353	Table 4.Binding energies of $Au4f_{7/2}$, $Pd3d_{5/2}$, and $Au4d_{5/2}$.

Samples	Binding Energy (eV)					
Sumples	Au4f _{7/2}	Pd3d _{5/2}	Au4d _{5/2}			
Pd _{0.98}		335.3				
Pd ₁ Au ₁ _co-SEA	83.8	335.5	334.2			
Pd _{0.227} Au ₁ _co-SEA	83.8	335.6	334.2			

Pd _{0.08} Au ₁ _co-SEA	83.8	335.6	334.2
Pd _{0.04} Au ₁ _co-SEA	83.8		334.2
Pd _{0.02} Au ₁ _co-SEA	84.0	weak Pd signal	334.4
Pd _{0.01} Au ₁ _co-SEA	84.3		334.6
Au ₁	84.3		334.7

356

Figure 4. XPS spectra comparison of Au4f (a), Pd3d and Au3d (b) over PdAu DLA catalysts.

359	
555	

360	The characterization to this point indicates that the co-SEA yields well alloyed PdAu
361	nanoparticles with, at the dilute limit, about thirty-five to forty percent of the Pd atoms at the
362	surface. In addition, the Pd and Au are in close enough proximity to allow electron transfer. A
363	final characterization is the use of CO-FTIR to determine to what extent the surface Pd is isolated
364	or exists as ensembles.
365	The PdAu DLA system is an ideal system to characterize Pd site isolation by CO-FTIR;
366	the matrix of Au will not adsorb CO in appreciable amounts, and Pd in ultrasmall nanoparticles
367	adsorb CO mostly in bridged and hollow sites ^{40, 41} . Thus, the disappearance of bridged and hollow-
368	adsorbed CO on Pd, which appears below 2000 cm ⁻¹ ^{42, 43} , with the persistence of linear-adsorbed
369	CO (bands above 2000 cm ⁻¹), without any interference from CO adsorption on the second metal,
370	is a sensitive probe of Pd site isolation ⁴² . The procedure for collecting spectra over an equilibrated
371	surface is illustrated in Figure S4 for the $Pd_{1.27}Au_1$ catalyst. Flowing 1% CO in Ar for 30 minutes
372	caused a gradual increase in the adsorbed CO bands (gas phase removed for clarity in Figure S4c)
373	and afterwards, CO is removed from the gas stream and the adsorbed species re-equilibrate
374	(Figures S4b and d). After purging CO from the gas phase, the linear CO peaks decreased a bit
375	while the bridged and hollow-bound CO peaks remained relatively constant. These spectra were

376	acquired with an <i>in-situ</i> reduction of 180 °C (instead of 400 °C) which completely eliminated the
377	uptake of CO onto Au. The final equilibrated spectrum of this and all the other samples comprise
378	Figure 5.
379	The CO-FTIR spectra of the series of single metal and bimetallic catalysts, following the
380	180 °C in-situ reduction (which followed a prior 400 °C reduction and handling in air to press the
381	IR discs) is shown in Figure 5. The pure Au is shown in the bottom spectrum, and pure Pd samples
382	are shown in the top two spectra. No CO was observed on the monometallic Au catalyst following
383	the lower temperature reduction. Besides the monometallic $Pd_{0.97}$ sample, another Pd-only sample
384	$(Pd_{0.10})$ was made, specifically for the IR study, with a lower Pd loading more representative of
385	the Pd loadings in the DLA catalysts. The SEA-derived 0.10 wt% Pd sample corresponds to the
386	amount of Pd present in the $Pd_{0.08}Au_1$ sample. Both of these samples show a set of linear
387	adsorption peaks above 2000 cm ⁻¹ and a set of multiply-bonded peaks below 2000 cm ⁻¹ . Gaussian
388	fitting revealed for both samples the three characteristic linearly adsorbed CO bands (L1, L2, L3)
389	in the regime of 2100-2000 cm ⁻¹ , centering around 2088 cm ⁻¹ , 2072 cm ⁻¹ and 2040 cm ⁻¹ , which
390	can be ascribed to linear carbonyls on terrace, edges and kinks sites on Pd [111] and [200] facets
391	^{42, 44-46} . The bridged CO stretching region with lower frequency ⁴⁷ can be curve fit with peaks at

around 1965 cm⁻¹ (B1) and 1890 cm⁻¹ (B2), ascribed CO bridge-bonded to pairs of Pd atoms on
[111] and [200] facets ^{48, 49}. In addition, another two stretching bands at 1850 cm⁻¹ (H1), and 1779
-1744 cm⁻¹ (H2), are required to finely fit the spectra due to CO bonded on three-fold hollow Pd
sites on [111] and more open facets^{41, 49}. The latter sites only appear on the higher loading Pd-only
catalyst, perhaps from a larger particle size. Assignments of IR peaks are summarized in Table 5.

397

Figure 5. IR spectra over monometallic and PdAu DLA catalysts.

399

411 Table 5. Assignments of CO adsorption on Pd sites over monometallic and PdAu DLA catalysts.

	Linear-CO on Pd (cm ⁻¹)			bridged CO on Pd (cm ⁻¹)			3-hollow CO (cm ⁻¹)		T .
Somelos	L1, L1'	L2	L3	B1	B2	В3	H1	H2	CO
Samples	O C U U C U U C U C U C U C U U C U C U	O C U U U U U U U U U U U U U U U U U U		eterracej	O IC (edge)	C C (corner]	C.	C C [200]	fraction (%)
Pd _{0.97} _SEA	2085	2071	2040		1935		1851	1779	24
Pd _{0.10} _SEA	2089	2072	2040		1935	1886	1851		28
Pd _{1.27} Au _{1_} co-SEA	2075 2063	2047		1966	1936	1896		1744	25
Pd ₀₂₃ Au ₁ _co-SEA	2078 2063	2040	2019	1946					81
Pd _{0.08} Au ₁ _co-SEA	2080 2063	2040	2022	1948					88

Pd _{0.04} Au ₁ _co-SEA	2063	2045	2013						100
Pd _{0.02} Au ₁ _co-SEA	2063	2042	2017						100
reference	2069 11	2078 46		1950	1940 ⁴³	1900 43	1859 ⁴⁷	1755	
101010100	2065 39, 47	2070		11, 39, 47	1910	1,00	1820 43	47	

*: CO bands in the blue rectangles corresponds to the cartoon figures in the blue rectangles. 412 413 Both Pd-only catalysts show a majority of bridged or hollow-bound CO, and with about 414 the same fraction (24-28%) of linear species. Interestingly, the high Pd loading (Pd_{1,27}Au₁) sample 415 also shows a high percentage of nonlinear sites, with an abundance of bridged sites and a decrease 416 of hollow sites compared to the Pd-only catalysts. Curve fitting the linear carbonyl region in this 417 418 spectrum gives a new CO band at 2063 cm⁻¹, which can be ascribed to linearly bonded-CO on isolated Pd sites associated with Au^{11,42,50}. The red shift of 7-30 cm⁻¹ in linear carbonyl frequency 419 might be interpreted by two factors: less competition in the anti-bonding π -back-donation from Au 420 than Pd ⁵⁰; or weakened dipole-dipole coupling because of the decreased amount of CO molecules 421 adsorbed on the diluted Pd sites ^{11,50,51}. The red shifts of the multi-adsorption IR peaks could be 422 also explained by the effects of the alloys and/or CO coupling. 423 Starting with the $Pd_{0.227}Au_1$ sample, the intensity of the bridge and hollow-bound peaks 424

diminishes rapidly until they disappear completely at the 0.04:1 ratio. An analysis based on the

426	area of IR-spectra resolved peaks can be used to quantify the fraction of isolated Pd on Au surface
427	20,40 ; a comparison of the ratios of linear peak intensity to total intensity is shown in Figure 6.
428	While the Pd-rich sample $(Pd_{1.27}Au_1)$ shows about the same ratio of linear species as the Pd-only
429	samples, the percentage of linear species raises rapidly in the lower loading samples and appears
430	to be 100% at or below 0.04:1 Pd:Au. As about 60 % of the Pd in that sample is alloyed in the
431	bulk and not on the surface (Table 2), the effective surface ratio of Pd is 0.016:1, or about 1 Pd:63
432	Au. Per the Hartog/van Hardeveld relation ³² , a 1.7 nm nanoparticle contains about 120 atoms,
433	and at 0.04:1 Pd, Au, it would contain about 5 atoms of Pd, of which about 2 would exist at the
434	surface. Lower Pd/Au ratios would contain correspondingly lower numbers of total and surface
435	Pd per nanoparticle.
436	

Figure 6. CO-FTIR estimated the fraction of linearly adsorbed CO bands.

The density of isolated surface sites of Pd in the gold matrix, obtained by this simple 440 synthesis, is reasonably high. Filie and the co-workers⁵² used a colloidal preparation of bimetallic 441 nanoparticles and noted a dual-site mechanism over their dilute Pd-in-Au alloys on SiO₂ at 1:50 442 Pd:Au due to the presence of both clustered and isolated Pd sites, suggesting partial isolation of 443 surface Pd atoms. Ricciardulli et al.53 synthesized catalysts with a sequence of SEA of Au 444 ethylenediamine followed by electroless deposition of Pd, and reported the initial isolation of Pd 445 at an Au/Pd ratio of 37, although bridged CO did appear in this and a 50:1 sample after prolonged 446 annealing in CO at 100 °C. Both of these works employed nanoparticles of larger size, about 6 447 and 7 nm, respectively, than the 1.7 nm particles produced here via co-SEA. 448

449 *3.2 Partial Oxidation of 1-phenylethanol*

The probe reaction chosen to test the effect of isolated Pd in the Au matrix was the partial 450 oxidation (or dehydrogenation) of 1-phenylethanol to acetophenone. The oxidation of alcohols is 451 an important class of catalytic processes to obtain value-added fine chemicals⁵⁴. For this class of 452 453 reactions the support has been shown to have a substantial effect on the reactivity, with activity on silica among the lowest reported^{55,56}. Therefore, the effect of Pd isolation in Au should appear 454 most prominently over this support. As high temperatures can catalyze the cleavage of C-C bond 455 in the alcohol and lead to a low selectivity to the desired aldehyde^{50,57} a low temperature at 160 °C 456 was employed. At this temperature and with 50 psig oxygen, selectivity to acetophenone was 457 100%. 458

Figure 7a shows results from a series of catalysts for which the mass of catalyst was adjusted to 459 give the same number of total Pd sites, 0.64 mmol of Pd (except for the Au-only catalyst, which contained 460 461 0.64 mmol of Au.) Both pure metals exhibited low activity. Placing the same amount of Pd into the Au lattice at the ratio of 0.227:1 gave a much more active catalyst, and diluting the same amount of Pd even 462 463 further to 0.08:1 increased the activity further. While it is typical to attribute reactivity of alcohol oxidation over Pd/Au catalysts to both metals^{38,39,55,58,59}, the relative activity of the two metals in the alloyed particles 464 465 might be surmised from this comparison. Both catalysts contained the same amount of Pd, while the 466 $Pd_{0.08}Au_1$ sample contained 2.8 times more Au than $Pd_{0.227}Au_1$. The activity of the latter catalyst was only

467	about 10% higher than that of the $Pd_{0.227}Au_1$ catalyst with three times less Au. This suggests that the main
468	catalytic site in the reaction is Pd, and the role of Au is to modify it.
469	Figure 7. (a) Concentration of acetophenone per 0.64 mmol Pd vs reaction time (0.64 mmol Au for
470	monometallic Au); (b) turnover frequency based on total Pd and total (Pd + Au).
471	Runs with the remaining DLA catalysts (at lower Pd:Au ratios) could not be conducted
472	with a constant amount of Pd due to the low amounts of Pd in the remainder of the series, so a
473	constant mass of 106 mg was used and the high Pd dilutions were rerun with this sample mass.
474	Measured rates converted to turnover frequency based on Pd only and total metal are summarized
475	in Table 6 and plotted in Figure 7b. The turnover frequency based solely on Pd increases four
476	orders of magnitude as the Pd is isolated into the Au matrix, with the samples shown by IR to be
477	totally isolated (0.04 and lower) to be the most active by 1 to 2 orders of magnitude over catalysts
478	showing small ensembles of Pd $(1:1 - 0.08:1)$ and these in turn are almost two orders of magnitude
479	higher in activity than pure Pd or Au. As the Pd dispersions of the DLA catalysts are about the
480	same (Table 2) and are lower than the pure Pd (1 nm particles have about 100% dispersion), an
481	alternate calculation of turnover frequency based on surface Pd would show the same trend, or in
482	the case of pure Pd, an even greater difference in activity.
483 484	Table 6. Summary of TOFs based on Pd only and total metal (Pd+Au)

molar ratio Pd/Au	Rate mmol/g _{cat} h	Pd (µmol/L)	Au (μmol/L)	TOF _{Pd} (1/h)	TOF _{Pd+Au} (1/h)
0:1	110	0	248	0.40	0.40
1:0	94	194	0	0.50	0.50
1:1	797	230	230	27	13.5
0.227:1	1850	32	204	31	5.2
0.08:1	1240	18	258	68	4.4
0.04:1	445	10.	258	833	30.9
0.02:1	1780	4.0	248	4650	74
0.01:1	469	2.0	248	2480	19.8
(co-DI) 0.02:1	258	5.5	248	488	10.6

Turnover frequencies based on total metal loading are seen in Figure 7b from the right-

486	hand axis. These show activities higher by one to two orders of magnitude compared to the single
487	metals, with the highest TOF for the $Pd_{0.02}Au_1$ sample. The $Pd_{0.02}Au_1$ sample prepared by co-dry
488	impregnation as a control (presumably with larger particles and poorer alloying), had a much lower
489	TOF. The maximum TOF at high Pd dilution seen in both curves has also been observed in several
490	studies of Pd/Au alloys for glycerol oxidation ^{38,58,59} . In prior studies of series of Pd/Au alloys for
491	1-phenylethanol oxidation, activity maxima have been reported close to 1:1 Pd/Au ^{37,39} , although
492	neither of these studies tested dilute Pd alloys. In Figure 7b, there is also a slight downturn in TOF
493	past 1:1, similar to those trends, but then there is another maximum at high dilution which far

exceeds the first maximum. This second maximum suggests a second kinetic regime, the study of

495	which is beyond the scope of this paper.
496	Li et al. ⁶⁰ utilized DFT simulation and found that in the dehydrogenation of ethanol over
497	isolated Pd atoms in a Au [111] surface, the activation barrier for α -C-H cleavage is lower than O-
498	H bond scission and the dissociated H atom migrates to the 3-fold hollow sites with one isolated
499	Pd and two adjacent Au atomic ensemble, while β -C-H mainly adsorbed on Au sites with high
500	energy barrier. That interpretation is not inconsistent with the current results. That the 0.227:1 and
501	the 0.08:1 Pd:Au catalysts are up to two orders of magnitude less active than the lower Pd/Au
502	ratios, even though there is relatively little multiply-bound CO (Figures 5 and 6) in these catalysts,
503	suggests that the main increase in activity stems from an electronic effect of isolated Pd atoms;
504	surrounding the Pd with more Au helps. The charge transfer observed here from Pd to Au in the
505	alloys has been shown to facilitate the generation of gold anions which can easily adsorb O_2^{61} . It
506	is perhaps in the more dilute samples that this local environment is optimized.

507

494

```
508 4. CONCLUSIONS
```

509 Dilute Pd-in-Au homogenous alloys with ultra-small nanoparticles can be readily
510 synthesized via simultaneous electrostatic adsorption. The ratio of metals is easily controlled using

511	the concentration of the metal precursors in the impregnating solution. The nanoparticles generated
512	from this synthesis appear to be largely alloyed, with the fraction of Pd on the surface about equal
513	to the total metal dispersion. Pd atoms appear to become completely isolated at or below a Pd:Au
514	ratio of 0.04:1 or 1:25, with 35 to 40% of these being present at the surface and available for
515	reaction. The turnover frequencies for 1-phenylathanol dehydrogenation to acetophenone of the
516	DLA series increased up to two orders of magnitude or more as the Pd atoms were successively
517	diluted in a Au matrix.
518	
519	ASSOCIATED CONTENT
520	Supporting Information
521	The supporting information is uploaded as a separate file, including TPR, XRD data,
522	STEM images, and FTIR plots.
523	CORRESPONDING AUTHOR
524	John R. Regalbuto – University of South Carolina, Columbia, South Carolina 29208,
525	United States.
526	*Email: regalbuj@cec.sc.edu

527 ACKNOWLEDGEMENTS

- The authors acknowledge the financial support from National Science Foundation (IIP1939876).
 530
 531
- 532 **REFERENCES**
- 533 1. Gates, B. C.; Flytzani-Stephanopoulos, M.; Dixon, D. A.; Katz, A., Atomically dispersed
 534 supported metal catalysts: perspectives and suggestions for future research. *Catalysis Science &*535 *Technology* 2017, 7 (19), 4259-4275.
- 536 2. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P., Synergistic geometric and electronic
- 537 effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles.
- 538 *Nature communications* **2014**, *5*, 4948-5955.
- 539 3. Kuo, C.-T.; Lu, Y.; Kovarik, L.; Engelhard, M.; Karim, A. M., Structure Sensitivity of
- 540 Acetylene Semi-Hydrogenation on Pt Single Atoms and Subnanometer Clusters. ACS Catalysis
- **2019,** 9 (12), 11030-11041.

- 4. Liu, J.; Lucci, F. R.; Yang, M.; Lee, S.; Marcinkowski, M. D.; Therrien, A. J.; Williams, C.
- 543 T.; Sykes, E. C.; Flytzani-Stephanopoulos, M., Tackling CO Poisoning with Single-Atom Alloy
- 544 Catalysts. *Journal of the American Chemical Society* **2016**, 138 (20), 6396-6399.
- 545 5. Simonovis, J. P.; Hunt, A.; Palomino, R. M.; Senanayake, S. D.; Waluyo, I., Enhanced Stability
- of Pt-Cu Single-Atom Alloy Catalysts: In Situ Characterization of the Pt/Cu(111) Surface in an
- 547 Ambient Pressure of CO. *The Journal of Physical Chemistry C* **2018**, 122 (8), 4488-4495.
- 548 6. Zhang, X.; Cui, G.; Feng, H.; Chen, L.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L.; Hong,
- 549 S.; Wei, M., Platinum-copper single atom alloy catalysts with high performance towards glycerol
- 550 hydrogenolysis. *Nature communications* **2019**, 10 (1), 5812-5823.
- 551 7. Chen, Z.; Zhang, P., Electronic Structure of Single-Atom Alloys and Its Impact on The Catalytic
- 552 Activities. *ACS Omega* **2022**, *7*(2), 1585-1594.
- 553 8. Pei, G. X.; Liu, X. Y.; Wang, A.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X.; Yang, X.; Wang,
- 554 X.; Tai, Z.; Wilson, K.; Zhang, T., Ag Alloyed Pd Single-Atom Catalysts for Efficient Selective
- 555 Hydrogenation of Acetylene to Ethylene in Excess Ethylene. ACS Catalysis 2015, 5 (6), 3717-
- 556 3725.

- 557 9. Mamatkulov, M.; Yudanov, I. V.; Bukhtiyarov, A. V.; Neyman, K. M., Pd Single-Atom Sites
- 558 on the Surface of PdAu Nanoparticles: A DFT-Based Topological Search for Suitable
- 559 Compositions. *Nanomaterials*, **2021**, *11*(1), 1-17.
- 560 10. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H., Single-
- 561 Atom Alloy Catalysis. *Chemical reviews* **2020**, 120 (21), 12044-12088.
- 562 11. Pei, G. X.; Liu, X. Y.; Wang, A.; Li, L.; Huang, Y.; Zhang, T.; Lee, J. W.; Jang, B. W. L.;

Mou, C.-Y., Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the
selective hydrogenation of acetylene in excess ethylene. *New Journal of Chemistry* 2014, *38* (5),

565 2043-2051.

- 12. Liu, J.; Uhlman, M. B.; Montemore, M. M.; Trimpalis, A.; Giannakakis, G.; Shan, J.; Cao,
- 567 S.; Hannagan, R. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M., Integrated Catalysis-Surface
- 568 Science-Theory Approach to Understand Selectivity in the Hydrogenation of 1-Hexyne to 1-
- Hexene on PdAu Single-Atom Alloy Catalysts. *ACS Catalysis* **2019**, *9*(9), 8757-8765.

- 570 13. Reocreux, R.; Uhlman, M.; Thuening, T.; Kress, P.; Hannagan, R.; Stamatakis, M.; Sykes,
- 571 E. C. H., Efficient and selective carbon-carbon coupling on coke-resistant PdAu single-atom
- 572 alloys. *Chemical communications* **2019**, *55* (100), 15085-15088.
- 573 14. Liu, J.; Shan, J.; Lucci, F. R.; Cao, S.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M.,
- 574 Palladium–gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne.

575 *Catalysis Science & Technology* **2017**, *7*(19), 4276-4284.

- 576 15. Lee, J. D.; Miller, J. B.; Shneidman, A. V.; Sun, L.; Weaver, J. F.; Aizenberg, J.; Biener,
- 577 J.; Boscoboinik, J. A.; Foucher, A. C.; Frenkel, A. I.; van der Hoeven, J. E. S.; Kozinsky, B.;
- 578 Marcella, N.; Montemore, M. M.; Ngan, H. T.; O'Connor, C. R.; Owen, C. J.; Stacchiola, D. J.;
- 579 Stach, E. A.; Madix, R. J.; Sautet, P.; Friend, C. M., Dilute Alloys Based on Au, Ag, or Cu for
- 580 Efficient Catalysis: From Synthesis to Active Sites. *Chemical reviews* **2022**, 122 (9), 8758-8808.
- 16. Wrasman, C. J.; Riscoe, A. R.; Lee, H.; Cargnello, M., Dilute Pd/Au Alloys Replace Au/TiO2
- 582 Interface for Selective Oxidation Reactions. *ACS Catalysis* **2020**, 10 (3), 1716-1720.
- 583 17. Zhang, T.; Walsh, A. G.; Yu, J.; Zhang, P., Single-atom alloy catalysts: structural analysis,
- electronic properties and catalytic activities. *Chemical Society reviews* **2021**, 50 (1), 569-588.

- 585 18. A. Wong, Q. L., S. Griffin, A. Nicholls, J. R. Regalbuto*, Synthesis of ultrasmall,
- homogeneously alloyed, bimetallic nanoparticles on silica supports. *Science* 2017, 358, 1427–
 1430 (2017).
- 19. Regalbuto, J. R., Catalyst Preparation: Science and Engineering. *CRC Press* 2006.
- 589 20. De Castro, L.; Sahsah, D.; Heyden, A.; Regalbuto, J.; Williams, C., Dilute Limit Alloy Pd-
- 590 Cu Bimetallic Catalysts Prepared by Simultaneous Strong Electrostatic Adsorption: A Combined
- 591 Infrared Spectroscopic and Density Functional Theory Investigation. The Journal of Physical
- 592 *Chemistry* C2022, 126 (27), 11111-11128.
- 593 21. Block B.P., Bailar J.C. JR., The Reaction of Gold(III) with Some Bidentate Coordinating
- 594 Groups. *Gold(III) with Some Bidentate Coordinating Group* **1951**, 73, 4722-4725.
- 595 22. Sean R. Noble, S. E. B., Ritubarna Banerjee a, Jeff Miller, John R. Regalbuto Supported
- 596 nanoparticle synthesis with Au bis-Ethylenediamine: The mechanism of adsorption onto oxides
- 597 and carbons. *Journal of Catalysis* 2021, 393, 344–356.
- 598 23. O'Connell, K.; Regalbuto, J. R., High Sensitivity Silicon Slit Detectors for 1 nm Powder XRD
- 599 Size Detection Limit. *Catalysis Letters* **2015**, 145 (3), 777-783.

600	24. Banerjee, R.; Regalbuto, J. R., Rectifying the chemisorption – XRD discrepancy of carbon
601	supported Pd: Residual chloride and/or carbon decoration. Applied Catalysis A: General 2020, 595
602	(117504), 1-10.

603 25. Rakočević, L.; Srejić, I.; Maksić, A.; Golubović, J.; Štrbac, S., Hydrogen Evolution on

Reduced Graphene Oxide-Supported PdAu Nanoparticles. *Catalysts* **2021**, 11 (481), 1-12.

- 605 26. Riahi G., Guillemot D. Polisset-Thfoin M., Khodadadi A.A, Fraissard J., Preparation,
- characterization and catalytic activity of gold-based nanoparticles on HY zeolites. *Catalysis Today*2002, 72, 115–121.
- 608 27. Lipp. J, Banerjee, R., Patwary M.D.F., Patra N., Dong A., Girgsdies, F., Bare S., Regalbuto J.,
- 609 The Extension of Rietveld Refinement for Benchtop Powder XRD Analysis of Ultra-small
- 610 Supported Nanoparticles. *Chemistry of Materials* 2022, in press.
- 611 28. Miller, J. T.; Kropf, A. J.; Zha, Y.; Regalbuto, J. R.; Delannoy, L.; Louis, C.; Bus, E.; van
- Bokhoven, J. A., The effect of gold particle size on AuAu bond length and reactivity toward
- 613 oxygen in supported catalysts. *Journal of Catalysis* **2006**, 240 (2), 222-234.
- 614 29. Denton, A. R.; Ashcroft, N. W., Vegard's law. *Physical Review A* **1991**, *43*(6), 3161-3164.

- 615 30. Leppert, L.; Albuquerque, R. Q.; Kümmel, S., Gold-platinum alloys and Vegard's law on the
- 616 nanoscale. *Physical Review B* **2012**, *86* (241403), 241403-1 241403-5.
- 617 31. Qian, K.; Luo, L.; Jiang, Z.; Huang, W., Alloying Au surface with Pd reduces the intrinsic
- 618 activity in catalyzing CO oxidation. *Catalysis Today* **2017**, 280, 253-258.
- 619 32. Hartog, R., Van Hardeveld, A. F., The Statistics of Surface Atoms and Surface Sites on Metal
- 620 Crystals. *Surface Science* **1969**, 15, 189-230.
- 621 33. C.-W. Yi, K. L., T. Wei, and D. W. Goodman, The Composition and Structure of Pd-Au
- 622 Surfaces. *The Journal of Physical Chemistry B* 2005, 109, 18535-18540.
- 623 34. Tiruvalam, R. C.; Pritchard, J. C.; Dimitratos, N.; Lopez-Sanchez, J. A.; Edwards, J. K.;
- 624 Carley, A. F.; Hutchings, G. J.; Kiely, C. J., Aberration corrected analytical electron microscopy
- studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol
- 626 oxidation and hydrogen peroxide production. *Faraday Discuss* **2011**, 152, 63-86.
- 627 35. Gallo, I. B. C.; Carbonio, E. A.; Villullas, H. M., What Determines Electrochemical Surface
- Processes on Carbon-Supported PdAu Nanoparticles? *ACS Catalysis* **2018**, 8 (3), 1818-1827.

629	36. Kaden,	W. E.,	Electronic	structure	control	s reactivity	of size	-selected	Pd clusters	adsorbe	d on

- 630 TiO2 surfaces. *Science* **2009**, 326 (5954), 826-829.
- 631 37. Nishimura, S.; Yakita, Y.; Katayama, M.; Higashimine, K.; and Ebitani, K.; The role of
- negatively charged Au states in the aerobic oxidation of alcohols over hydrotalcite supported AuPd
- 633 nanoclusters, *Catalysis Science and Technology* **2013**, 3, 351-359.
- 634 38. Li, J.; Xu, Y.; Wang, S.; and Zhang, H., Ultrafine AuPd nanoclusters on layered double

635 hydroxides by the capt-capped AuPd cluster precursor method: synergistic effect for highly

- efficient aerobic oxidation of alcohols, *The Journal of Physical Chemistry* C2019, 123, 15483-94.
- 637 39. Chang, J.B.; Liu, C.H.; Liu, J.; Zhou, Y.-Y.; Gao, X.; and Wang, S.D., Green-chemistry
- 638 compatible approach to TiO2-supported PdAu bimetallic nanoparticles for solvent-free 1-
- 639 Phenylethanol oxidation under mild conditions, *Nano-Micro Letters*, **2015**, 7(3) 307-315.
- 40. Griselda, C.; Cabilla, A.; Albama, A., Characterization by CO/FTIR spectroscopy of Pd/silica
- 641 catalysts and its correlation with syn-gas conversion. *Catalysis Letters 1998*, 55, 147–156.

- 642 41. Tereshchenko, A.; Guda, A.; Polyakov, V.; Rusalev, Y.; Butova, V.; Soldatov, A., Pd
- nanoparticle growth monitored by DRIFT spectroscopy of adsorbed CO. *Analyst* 2020, 145 (23),
 7534-7540.
- 42. Luneau, M.; Shirman, T.; Filie, A.; Timoshenko, J.; Chen, W.; Trimpalis, A.; Flytzani-
- 646 Stephanopoulos, M.; Kaxiras, E.; Frenkel, A. I.; Aizenberg, J.; Friend, C. M.; Madix, R. J.,
- 647 Dilute Pd/Au Alloy Nanoparticles Embedded in Colloid-Templated Porous SiO2: Stable Au-
- Based Oxidation Catalysts. *Chemistry of Materials* **2019**, 31 (15), 5759-5768.
- 43. Shan, J.; Giannakakis, G.; Liu, J.; Cao, S.; Ouyang, M.; Li, M.; Lee, S.; Flytzani-
- 650 Stephanopoulos, M., PdCu Single Atom Alloys for the Selective Oxidation of Methanol to Methyl
- Formate at Low Temperatures. *Topics in Catalysis* **2020**, 63 (7-8), 618-627.
- 44. Rebelli, J.; Detwiler, M.; Ma, S.; Williams, C. T.; Monnier, J. R., Synthesis and
- 653 characterization of Au–Pd/SiO₂ bimetallic catalysts prepared by electroless deposition. *Journal of*
- 654 *Catalysis* **2010**, *270*(2), 224-233.
- 45. Duplan J., Praliaud H., Infrared determination of the accessible metallic surface of supported
- palladium containing ceria. *Applied Catalysis A: General* **1991**, (67), 325-335.

- 46. Palazov A., Kakinow G. Bonew Ch., Shopov D., Estimation of the number of CO molecules
- adsorbed in various modes on different crystal planes of alumina supported polycrystalline
- 659 palladium. *Surface Science* **1987**, (188) 505-518.
- 660 47. Blyholder B., Molecular Orbital View of Chemisorbed Carbon Monoxide. The Journal of
- 661 *Physical Chemistry* **1964**, 68 (10), 2772-2777.
- 48. Junling Lu, B. F., Coking- and Sintering-Resistant Palladium Catalysts Achieved Through
- 663 Atomic Layer Deposition. *Science* **2012**, 335 (6073), 1205-1208.
- 49. Giorgi, J. B., FTIR-Study of CO adsorption on crystalline-silica-supported palladium partiles.
- 665 *Surface Science* **2002**, 498 (1-2), L71-L77.
- 50. Ouyang, M.; Papanikolaou, K. G.; Boubnov, A.; Hoffman, A. S.; Giannakakis, G.; Bare, S.
- 667 R.; Stamatakis, M.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H., Directing reaction pathways
- via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nature
- 669 *communications* **2021**, *12*(1), 1549-1559.

- 51. Bradshaw, A., Hoffman F.M., The chemisorption of carbon monoxide on palladium single
 crystal surfaces: IR spectroscopic evidence for localised site adsorption. *Surface Science 1978, 72 (3), 513-535.*
- 52. Filie, A.; Shirman, T.; Aizenberg, M.; Aizenberg, J.; Friend, C. M.; Madix, R. J., The
- dynamic behavior of dilute metallic alloy Pd_xAu_{1-x}/SiO_2 raspberry colloid templated catalysts
- 675 under CO oxidation. *Catalysis Science & Technology* **2021**, *11* (12), 4072-4082.
- 53. Ricciardulli, T.; Gorthy, S.; Adams, J. S.; Thompson, C.; Karim, A. M.; Neurock, M.;

Flaherty, D. W., Effect of Pd Coordination and Isolation on the Catalytic Reduction of O2 to H2O2

- over PdAu Bimetallic Nanoparticles. *Journal of the American Chemical Society* 2021, *143* (14),
 5445-5464.
- 680 54. Davis, S. E.; Ide, M. S.; Davis, R. J., Selective oxidation of alcohols and aldehydes over
- supported metal nanoparticles. *Green Chemistry* **2013**, *15*(1), 17-45.
- 55. Enache, D.L.; Edwards, J.K.; Landon, P.; Solsana-Espriu, B.; Carley, A.F.; Herzing, A.A.;
- 683 Watanabe, M.; Kiely, C.J.' Knight, D.W.; and Hutchings, G.J., Solvent-free oxidtion of primary
- alcohols to aldehydes using Au-Pd/TiO₂ catalysts, *Science* **2006**, 311, 362-365.

685	56. Villa, A.; Dimitratos, N.; Chan-Thaw, C.E.; Hammond, C.; Prati, L.; and Hutchings, G.J.,
686	Glyceraol Oxidation using gold-containing catalysts, Accounts of Chemical Research 2014, 48
687	(5), 1403-1412.

- 688 57. Giannakakis, G.; Trimpalis, A.; Shan, J.; Qi, Z.; Cao, S.; Liu, J.; Ye, J.; Biener, J.; Flytzani-
- 689 Stephanopoulos, M., NiAu Single Atom Alloys for the Non-oxidative Dehydrogenation of Ethanol
- to Acetaldehyde and Hydrogen. *Topics in Catalysis* **2018**, *61* (5-6), 475-486.
- 691 58. Wang, D.; Villa, A.; Porta, F.; Prati, L.; and Su, D., Bimetallic gold/palladium catalysts:
- 692 correlation between nanostructure and synergistic effects, The Journal of Physical Chemistry C
- **693 2008**, 112, 8617-8622.
- 59. Villa, A.; Campione, C.; and Prati, L., Bimetallic gold/palladium catalysts for the selective
- 695 liquid phase oxidiion of glycerol, *Catalysis Letters* **2007**, 115, 133-136.
- 696 60. Li, H.; Chai, W.; Henkelman, G., Selectivity for ethanol partial oxidation: the unique
- 697 chemistry of single-atom alloy catalysts on Au, Ag, and Cu(111). *Journal of Materials Chemistry*
- 698 *A* **2019**, *7*(41), 23868-23877.

- 699 61. Mitsutaka Okumura, Y. K., Masatake Haruta, Kizashi Yamaguchi, DFT studies of interaction
- between O_2 and Au clusters. The role of anionic surface Au atoms on Au clusters for catalyzed
- 701 oxygenation. *Chemical Physics Letters* **2001**, *346 (2001) 163-168*.