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Abstract

Catalyst discovery is paramount to support access to energy and key chemical feedstocks
in a post fossil fuel era. Exhaustive computational searches of large material design spaces
using ab-initio methods like density functional theory (DFT) are infeasible. We seek to explore
large design spaces at relatively low computational cost by leveraging large, generalized, graph-
based machine learning (ML) models, which are pretrained and therefore require no upfront
data collection or training. We present catlas, a framework that distributes and automates the
generation of adsorbate-surface configurations and ML inference of DFT energies to achieve
this goal. Catlas is open source, making ML assisted catalyst screenings easy and available
to all. To demonstrate its efficacy, we use catlas to explore catalyst candidates for the direct
conversion of syngas to multi-carbon oxygenates. For this case study, we explore 947 stable/
metastable binary, transition metal intermetallics as possible catalyst candidates. On this
subset of materials, we are able to predict the adsorption energy of key descriptors, *CO and
*OH, with good accuracy (0.16, 0.14 eV MAE, respectively). Using the projected selectivity
towards C2+ oxygenates from an existing microkinetic model, we identified 144 candidate
materials. For 10 promising candidates, DF'T calculations reveal a good correlation with our
assessment using ML. Among the top elemental combinations were Pt-Ti, Pd-V, Ni-Nb, and
Ti-Zn, all of which appear unexplored experimentally.
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As we look to recast our energy infrastructure,
we need to discover novel catalysts to support
our new vision. Catalysts will allow access to
key chemical feedstocks we have come to rely
on today, but from renewable resources. One
method of accessing carbon feedstocks is con-
version of synthesis gas (syngas). Synthesis gas
is a mixture of carbon monoxide and hydrogen.
It may be accessed from renewable biomass

feedstocks™ or through electrochemical reduc-
tion of carbon dioxide and water.? The conver-
sion of syngas may be done directly, which could
prove to be an attractive approach due to its
relative simplicity. Still, controlling the prod-
uct distribution and selectivity is an important
outstanding challenge. There is particular in-
terest in selectively accessing multi-carbon oxy-
genates because of their utility and high market
value.®

Development of catalysts for the direct con-
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version of syngas to multi-carbon oxygenates
has primarily been focused on 4 classes of ma-
terials: Rh-based, Mo-based, modified Fischer-
Tropsch, and modified methanol synthesis cata-
lysts.2¥ Despite being the subject of investiga-
tion for nearly a century, no economically vi-
able catalysts have been identified to pursue
commercial implementation.t The only elemen-
tal catalyst that has shown some selectivity to-
wards multi-carbon oxygenates is Rh.12% Ex-
perimental and theoretical studies had shown
that under-coordinated surfaces have low selec-
tivity towards C2+ oxygenates® and that less
active terrace sites have some selectivity to-
wards the desired products.” A more recent
work has shown that the previous treatment of
adsorbate-adsorbate interactions on Rh (111)
surfaces was inadequate and arrived at the op-
posite conclusion for Rh,® so the understand-
ing of this chemistry is still evolving. To form
multi-carbon oxygenates, the catalyst must be
simultaneously good at disassociating *CO to
form *CH, intermediates on the surface and
able to maintain *CO such that it may be in-
serted into the *CH,_ intermediates. Y Strik-
ing a balance between these two competing re-
actions makes finding a catalyst for this chem-
istry difficult. Copper cobalt binary inter-
metallics have been studied. Cobalt based cat-
alysts are industrially used for Fischer-Tropsch
(FT) synthesis.” They efficiently form *CH,
intermediates and facilitate C-C coupling to
form hydrocarbon products. It has been sug-
gested that CuCo materials work synergistically
to make multi-carbon oxygenates.” Cobalt sites
disassociate *CO, while copper sites maintain
*CO, thereby allowing it to be inserted into the
*CH, intermediates. We are interested in bi-
nary intermetallics because they have not been
thoroughly explored for this chemistry.

To run a screening, a clear objective is nec-
essary (i.e. to achieve high selectivity and/or
activity). The computational approach to cat-
alyst discovery necessitates the observation of
many different sites, on many different surfaces,
for every material in order to understand how
it might behave as a catalyst and therefore as-
sess it against the objective. One binary ma-
terial would require hundreds of DFT calcula-
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Figure 1: The acetaldehyde selectivity as a
function of *CO and *OH adsorption energies
as solved by Schumann et al.” which also con-
sidered methanol, methane, and ethanol as al-
ternate products. (bottom) Reproduced with
permission from ref. 7 Copyright 2018, ACS

tions to fully uncover its behavior as a cata-
lyst. Observation of adsorbed intermediate and
transition state energies allow an understand-
ing of the overall rate and overall selectivity
to be developed through microkinetic model-
ing. Microkinetic models (MKMs) are well es-
tablished for determining trends.*! This is done
in practice,X44 but is very costly to scale to
high-throughput approaches.

So the objective of screening becomes devel-
oping approaches to reduce the number of cal-
culations necessary or the cost of those cal-
culations, while maximizing the diversity of
what is explored. Because dense exploration
of larger design spaces with DFT is not feasi-
ble, ML has been of interest to accelerate this
process. When considering many materials, it
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is tractable to use descriptor-based objectives
where just a few intermediate adsorption ener-
gies are assigned target values.t2% Which de-
scriptors are used may be hand selected, or se-
lected by data-driven approaches. ™ The tar-
get values may be extracted from activity and
selectivity heat maps which exploit chemisorp-
tion scaling relations to project the activity
and selectivity as a continuous function of the
descriptors.™ There are underlying limitations
with extrapolating these results outside of the
domain considered to develop the model (spe-
cific material class, specific surface, and specific
site type). Without further cost savings, screen-
ings focus on specific classes of materials such a
single atom catalysts,™® dual-atom catalysts,™
or 2D materials®’ where the design space can
be more well-bounded and brute force is more
feasible. Using ML to further reduce costs,
larger design spaces may be explored, small de-
sign spaces can be explored in greater detail,
and higher fidelity approaches can be imple-
mented.* 2! Machine learning models may be
designed to directly predict catalyst properties
or to surrogate DF'T at a fraction of the compu-
tational cost.*®22 ML approaches have been im-
plemented to facilitate high-throughput screen-
ings.%#0 Studies have required the generation
of domain specific datasets and bespoke ML
models, rather than universal models.”” The
data curation and training process is compu-
tationally expensive, making screenings costly
even with ML.

Here, we used off-the-shelf pretrained graph
neural network models, which required no up-
front DFT data collection or model training,
to explore 947 binary intermetallics as catalyst
candidates. These models were trained on the
Open Catalyst 2020 (OC20)4® dataset, which
contains 460k revised Perdew—Burke-Ernzerhof
(RBPE) DFT relaxations of adsorbates on sur-
faces. Looking at facets with miller indices not
exceeding 1, we considered 16k surfaces, which
yield 1 million adsorbate-surface configurations.
To facilitate this process we developed and in-
troduce a software package, catlas, which auto-
mates the process of generating slabs from bulk
structures, placing adsorbates on the slabs, and
performing inference on the adsorbate-surface
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configurations. Catlas orchestrates the distri-
bution of these trivially parallelizable tasks so
that many GPUs and/or CPUs may be used
to accelerate the process. We then used an ex-
isting microkinetic model to project the selec-
tivity as a function of two descriptor adsorp-
tion energies. The intermediate and transition
state energies were correlated with the energies
of *CO and *OH on the (111) surfaces of Face-
centered cubic (FCC) pure metals to project
the selectivity across a complex reaction net-
work. All calculations performed by the au-
thors employed Bayesian error estimation func-
tional with van der Waals correlation (BEEF-
vdW). The resulting selectivity heatmap (Fig-
ure|l]), reveals that materials which adsorb *OH
with adsorption energies in the range of 0: -
0.75 eV and adsorb *CO with energies in the
range of -1.25: -1.75 eV may show selectivity
towards multi-carbon oxygenates. We use this
conclusion for the (111) surface of pure metals
and extrapolate to (111)-like surfaces of binary
intermetallics. ML models were used to pre-
dict the adsorption energies of *OH and *CO
for 947 binary intermetallics from the Materi-
als Project® with an energy above hull not ex-
ceeding 0.1 eV /atom. The predicted adsorption
energies were used to classify whether the ma-
terials could be interesting as potential catalyst
candidates. We found 144 promising materials
which have been ranked in our analysis.

Methods

Model Selection

All models considered were graph neural net-
works (GNNs) trained on the OC20 dataset.®
Graph neural networks are well-suited for learn-
ing chemical properties because they capture
connectivity of atoms within their architec-
ture without the need for specially engineered
features.®? Atoms are represented as nodes in
the graphs and edges represent interactions
between atoms. The OC20 dataset contains
unary, binary, and ternary materials made up
of 55 different elements. The dataset contains
many transition metal systems, but it also con-
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Figure 2: The architecture of catlas: an open source framework for adsorbate-surface configuration
generation and ML inference. Details show the options for distributing work, the workflow for
enumerating adsorbate-surface configurations and performing inference, run outputs, and how user
specified configurations interact with the architecture.
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tains non-metals, metalloids, post-transition,
alkali, and alkali earth metals. It covers 82 dif-
ferent adsorbates comprised of C, H, O, and
N, with 1-12 atoms. All calculations in the
OC20 dataset were performed using the re-
vised Perdew—Burke-Ernzerhof (RPBE) func-
tional under the assumption of low coverage.
CO, H,, H,O, and N, were used for gas
phase referencing. The models trained on this
dataset and predictions made from these mod-
els will therefore not account for lateral in-
teractions and will be subject to the incon-
sistencies between RPBE DFT calculated en-
ergies and observed behaviours. The OC20
dataset was not catered to materials discov-
ery for the direct conversion of syngas. *CO
does not even appear in the training set, so
the models have not even seen an example of
*CO on a surface. There is opportunity to ap-
ply this method to broader classes of materi-
als and other chemistries using the same mod-
els. Of the graph neural network architectures
that have been trained on the OC20 dataset,
we considered GemNet®! models because they
are currently state-of-the-art amongst models
with pretrained weights publicly available ac-
cording to the Open Catalyst Project leader-
board. GemNet leverages directed edge em-
beddings and edge-based message passing to
achieve predictions which are invariant to trans-
lation and equivariant to rotation as atomic
forces and energies should be.

Model selection comes with a trade-off: lower
mean absolute error (MAE) between model pre-
dicted values and DFT calculated values often
requires higher computational cost. Inference
where the adsorption energy is directly pre-
dicted from the initial structure (initial struc-
ture to relaxed energy - IS2RE - direct) is sub-
stantially cheaper than using ML to iteratively
optimize the structure and predict the energy
from the relaxed structure (structure to en-
ergy and forces - S2EF). These two schemes are
shown in Figure [3] *OH has been included in
the training data, and binary, transition metal
(TM) intermetallics make up a large portion of
the training data. For these reasons, direct ap-
proaches give reasonable performance for *OH
for this use case. The best performing model is
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a GemNet-dT model that was initially trained
to perform iterative relaxation steps, and was
finetuned to directly predict the relaxed en-
ergy®? (GemNet-dT FT). This data was used as
an initial filtering step. For any surface where
the ML predicted *OH adsorption energy fell
in the range [-1.2,-0.5] eV, the *OH ML infer-
ence was repeated using lower error relaxation
model (GemNet-dT).®! This domain comfort-
ably bounds the domain of interest from the
selectivity heatmap. Inference was also per-
formed on this subset of surfaces for *CO us-
ing the exact same GemNet-dT®! pretrained
model. For *CO, 65 relaxation steps was se-
lected because it minimized the MAE with re-
spect to DFT validation data. For the relaxed
*OH inference, 136 steps was similarly selected.

Candidate Classification

Catlas was used to enumerate adsorbate-surface
configurations for all surfaces with miller in-
dices not exceeding one. Any relaxations with
adsorbate desorption, adsorbate dissociation,
or surface reconstruction were discarded. For
each of the enumerated surfaces, once dense
inference had been performed, the minimum
binding energies for each descriptor (*CO and
*OH) were computed and taken to be the rep-
resentative energy for that surface. Analysis
was performed on a per surface basis. No sur-
face energy calculations were performed so it is
unknown whether surfaces with good descrip-
tor energies will appear experimentally or that
their properties will dominate observed behav-
ior. Because the MKM was developed for face-
centered cubic (FCC) (111) surfaces, surfaces
were discarded if they were not (111)-like (close
packed). The selectivity information was deter-
mined by resolving the microkinetic model pre-
sented by Schumann et al. There were small
differences in the selectivity map solved for this
work, but the overall domain of interest was
the same. The potential candidacy of binary
transition metal combinations was considered
using two criteria: (1) the minimum distance
of any surface to the maximum observed se-
lectivity towards acetaldehyde. The distance
from the maximum selectivity was calculated
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for all surfaces. For each elemental combina-
tion, the minimum distance across all surfaces
was calculated and was taken to represent the
composition. Distance was used, rather than
the projected selectivity, because it is less ex-
clusionary given the non-linear relationship be-
tween descriptor energies and selectivity. (2)
We counted the number of surfaces which lie in
a descriptor space containing a projected selec-
tivity greater than or equal to 0.1. If any part
of the descriptor space bounded by an ellipse
with radii equal to twice the mean absolute er-
ror (MAE) of the ML models has a selectivity
greater than 0.1, then that surface was consid-
ered to be a candidate. This cutoff was cho-
sen because in the originally solved microkinetic
model, Rhodium is projected to have a selectiv-
ity of around 0.1, and we would like to find a
catalyst that would perform as well or better
than Rh. This is repeated for all surfaces and
the number of candidates for each metal combi-
nation was calculated. These approaches pro-
vide different views of the results. Approach 1
should reveal materials with higher selectivity
and approach 2 should reveal materials with a
higher likelihood of success because of the larger
number of surfaces displaying favorable proper-
ties. MAE was used as a proxy for uncertainty
because uncertainty information is not available
from the models used. Uncertainty estimation
in GNNs has been demonstrated for molecules
using ensembles of models.®? It has also been
demonstrated catalytic systems using confor-
mal prediction and latent space distances.”* Ex-
tracting uncertainty information from GNNs is
still under investigation, but will be included
when more mature.

Catlas

The architecture of catlas is summarized in Fig-
ure The workflow starts by filtering which
bulk materials and adsorbates should be con-
sidered. Adsorbates are simply filtered by their
SMILES strings. Bulks may be filtered by
many criteria: Pourbaix stability, elemental
composition, number of unique elements, ma-
terial identifier, energy above hull, band gap,
and bulk size. Certain elements may be spec-
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ified as required to, for example, look at ni-
trides. Additionally, the paradigm of active-
host materials may be selected for. From the
materials of interest, slabs are enumerated us-
ing pymatgen.®® The slabs may be filtered by
their size and a maximum miller index if de-
sired. Next, adsorbate-surface configurations
are enumerated using CatKit.®® Both slab and
adsorbate-slab enumerations rely on the data
generation infrastructure that was created for
the OC20 dataset*® and therefore create OC20-
like adsorbate-surface configurations which may
aptly be used with ML models trained on the
dataset. Finally, ML inference is performed on
each of the adsorbate-surface configurations.

Three important outputs are generated in
a catlas run: a summary of results (pandas
dataframe), Sankey diagram, and parity plots.
The summary dataframe memorializes all of the
key information from the run: the bulk, the ad-
sorbate, the information that uniquely defines
each surface (miller indices, shift, top of the slab
or bottom), which model was used, the inferred
energies, etcetera. The Sankey diagram sum-
marizes the enumeration and inference process
by showing what survives filtering steps and
how many objects are created at enumeration
steps. The parity plots inform model perfor-
mance on a per adsorbate basis for the types of
material considered.

Catlas uses dask®’ to distribute its infer-
ence workflow. Dask-distributed has backends
for parallelization on local machines, standard
HPC clusters, and kubernetes clusters, as well
as support for GPU workloads. In this work,
we successfully scaled CPU workloads across
20 nodes with 600 cores and GPU workloads
to 2 Nodes with 8 GPUs, but this is not a
limit. A run of calculations commences simply
by specifying the design space to be explored
in an input yaml file and executing the repos-
itory’s main file. By default, the adsorbates
and materials that may be considered are those
contained within the OC20 dataset,*® but this
is configurable if additional bulk database and
adsorbate database files are added. The OC20
dataset sampled a subset of materials from the
Materials Project* which contain 3 or fewer
unique elements (unary, binary, ternary) and
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only contain a specific set of elements. The
time required to complete calculations is depen-
dent on the materials. For our case study, using
GemNet-dT to relax adsorbate-surface systems,
approximately 50 surfaces (1,200 adsorbate-
surface configurations) may be considered per
hour using 1 GPU. Using GemNet-dT FT to di-
rectly predict the adsorption energies, approxi-
mately 10 surfaces (200 adsorbate-surface con-
figurations) may be considered per hour using
one 4-core worker. This means that at scale,
it took just 10 hours to complete direct calcu-
lations on 16k surfaces (500k calculations) and
16 hours to calculate 6k surfaces (150k calcula-
tions).

Results and Discussion

Parity plots comparing the GemNet ML pre-
dicted energies and DF'T energies are shown in
Figure [3l The domain specific MAE for *OH
using the direct GemNet-dT FT model was 0.21
eV. The domain specific MAE for *CO and
*OH using the GemNet-dT model were 0.16 eV
and 0.14 eV, respectively. There is good cov-
erage of binary intermetallic benchmark data
over the range of adsorption energies considered
for the MKM (-2.45: 0.25 eV for *CO and -
0.75: 1.50 eV for *OH). The annotation of twice
the MAE reveals its utility in our candidate
classification approach. The majority (roughly
90%) of data lies within these bounds. Fig-
ure [3h-c only considers the difference between
the GemNet model and corresponding (RPBE)
DFT calculations.

There are still two important sources of error
to consider: (1) differences between the actual
intermediate and transition state energies and
those propagated via scaling relations implic-
itly in the MKM and (2) differences between
the DFT approach employed in the data used
to train the GemNet models and the approach
used to collect data for the MKM. Differences
between the actual intermediate and transition
state energies and those propagated via scal-
ing relations implicitly in the MKM are relevant
here because we are extrapolating the MKM to
binary intermetallics with similar facets despite

it being developed for unary surfaces. Although
this approach will not perfectly treat all pos-
sibilities, it should treat the majority of cases
well, and therefore is a useful tool for broad ex-
ploration.

Figure [3d-e provides some insight into differ-
ences caused by the difference in functionals
employed. OC20 data was calculated using the
RPBE functional, while the MKM data used
BEEF-vdW. These two functionals have been
shown to have similar performance for short
range chemisorption energy interactions®® like
those considered in this work. Overall, there
is good agreement between the OC20 trained,
GemNet-dT predicted energies and the MKM
DFT data (Fig[3). The GemNet-dT predicted
energies in Figure Bd-e are the minimum en-
ergies per surface, where many heuristically
placed sites were considered per surface. For
the MKM DFT data, specific sites were con-
sidered. All calculations were performed on
bridge sites for *OH and most calculations were
performed at hollow sites for *CO. Figure
compares the minimum energy per surface pre-
dicted by GemNet-dT and the minimum energy
per surface calculated by BEEF-vdW DFT for
this work. There is good agreement for *CO.
There is also a good correlation for *OH, but
there is an offset of about 0.2 eV, which was not
observed in Fig. [Be. We suspect this offset was
not observed in Figure [3d because of a cancel-
lation of errors. Likely, this is primarily caused
by the *OH BEEF-vdW DF'T values being sys-
tematically lower than the RPBE DFT values,
but the MKM considers higher energy bridge
sites. Because there is good agreement between
the unary MKM data and the GemNet-dT pre-
dicted energies, we did not perform any correc-
tions to our inferred energies. Still, we consid-
ered the implications of systematic biases in our
data by applying an offset and observing differ-
ences in the outcome of our analysis (Table [1).
If we had applied a correction of -0.2 €V to the
*OH values, 81% of our classifications would be
retained and we would have missed just 16 can-
didate surfaces (88% would have been found by
our approach). In general, our analysis is rela-
tively insensitive to biases in *OH energies, and
relatively sensitive to biases in *CO energies.
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Figure 4: (left) The expansion and contraction of information through enumeration and filtering in
this work. (right) Grid summarizing element combinations of interest or the direct conversion of
syngas to Co+ oxygenates. The lower wedge shows the number of surfaces per combination that
were classified as hits by proximity to a selectivity greater than 0.1 (approach 2) and the upper
wedge shows the minimum distance to the maximum selectivity for each combination (approach 1).

The results of assessing candidates by the
minimum distance to the maximum selectivity
and the number of surfaces near high selectiv-
ity are summarized in Figure [l Enumeration
yields 1 million unique structures to be consid-
ered to elucidate possible catalysts among bi-
nary TMs. By filtering on (111)-likeness, just
7% of the surfaces remain. Just 1% of the orig-
inal pool is near the domain of interest and
(111)-like. The 10 closest element combina-
tions to the maximum selectivity projected by
the MKM have been noted with stars in Fig-
ure[d Similarly, elemental combinations with 4
or more surfaces that were classified as hits are
noted with stars. White stars have been used
where combinations satisfied both of these cri-
teria, while grey stars have been used where one
was satisfied. The ten combinations with min-

imum descriptor energies closest to the maxi-
mum (Re-Pd, Pt-Ti, Pt-Mn, Pt-Mo, Ti-Zn, Pt-
Hf, Pd-V, Nb-Ni, Re-Pt, Pt-Zr) are previously
unexplored as potential catalyst candidates re-
ported in literature.

It is difficult to make comparisons between
the results here and the best known materi-
als because materials reported are highly mod-
ified. ™39 For example, top Rh-based catalysts
are promoted with Mn, Li, and Fe. The in-
tricacy of engineered supports and modifica-
tions are beyond the scope of what may be
captured here. Mo-based catalysts are cova-
lent materials (Mo-S, Mo-C, Mo-O, or Mo-P),
which were outside of the scope of this screen-
ing as well. Modified methanol synthesis and
Fischer-Tropsch catalyst both use known cata-
lysts for those chemistries as a starting place,



Catalysis Science & Technology

Acetaldehyde Selectivity
Weak bindi OH 0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24
eak binding *
1.0 A
[P} Weak binding both
.-
0.5 € o
® .. -
° w ® . s
(J
[ Os . <
e co ‘!. - . »
£ "‘g“' e o
i )
0.0 . %&g o ." ®
[ H
[ J ‘e (o
¢ . AaSis
Ce
— e .'-8_ :
T I
e N
bt —0.5 ': J:'ér g
T o € aa g
5 |vt Wi
- gala v
.g : “'.;:‘Q e
© .y
m e“":-'!e :u.‘l ic
-1.04 e €Ce .
Ma LY .,@.,
v & ) Y i
K ) [ ]
[ " s : -024@
&
.
B €
_1 5 - —0.4 4
: el
.
(3
-0.6
@
~2.01 cos]
Strong binding *OH [l -10
:
_2.5 T T B - T T
-2.5 -2.0 -1.5 -1.0 -0.5 0.0

E.dsco [eV]

Page 10 of 16

Figure 5: The minimum binding *CO and *OH binding energies per (111)-like surface overlaid onto
the MKM acetaldehyde selectivity heatmap developed by Schumann et al.” and resolved for this
work. Surfaces are shown as pie charts which have proportions representing the bulk composition.
Elements have been colored according to whether they lie in the weak binding regime for both
descriptors (grey), weak binding for *OH only (purple), or strong binding for both (yellow). Inset
shows detailed location of the top surfaces per composition near the peak selectivity. The top 10

surfaces are pictured to the right.

but are highly modified from there.

simple modified-FT example (Cu-

T Even the
Co or Cu-

no CuCo or CulFe materials in the Materi

10

Fe) may not be compared because there are

als
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Table 1: Analysis sensitivity to biases in GemNet-dT predictions.

Applied error

Correctly classified

False negative False positive

N % N % N %o
*OH + 0.1 eV 151 100 0 0 0 0
*OH + 0.2 eV 151 100 0 0 0 0
*OH - 0.1 eV 133 88 11 8 18 12
*OH - 0.2 eV 123 81 16 12 28 19
*CO + 0.1 eV 150 99 55 27 1 1
*CO + 0.2 eV 146 97 92 39 5 3
*CO - 0.1 eV 103 68 6 6 48 32
*CO-0.2eV 71 47 10 12 80 23

Table 2: Summary of surface motifs for all enumerated slabs considered.

Nuclearitios All surfaces (111)-like (111)-like, candidate
N % N % N %

monomer, other 6,911 43.2 680 59.3 119 78.8

dimer, other 1,383 8.7 7 0.6 0 0.0

trimer, other 748 4.7 7 0.6 0 0.5

4+, other 1,007 6.3 1 0.1 0 0.5

infinite, 0 1,061 6.6 213 18.6 13 8.6

both semi-finite 3,348 20.9 203 17.7 17 11.3

non-finite (other) 1,622 10.1 41 3.6 2 1.3

all 15,981 100.0 1,147 100.0 151 100.0

Project database®? that meet the stability cri-
teria of less than 0.1 eV /atom above the convex
hull.

For a subset of ten of the 151 candidate sur-
faces, we performed DFT validation on all sites
enumerated by CatKit®® for each of the de-
scriptors to find the minimum binding energies
(about 300 calculations all together). The sur-
faces considered were Pd-V, Ir-Mn, Nb-Ni, Pd-
Re, Pt-Re, Pt-Ti, Nb-Pt, Rh-Zn, Re-Rh, Ni-Re
alloys. Agreeing with the sensitivity analysis
presented in Table [T} of the ten, eight are clas-
sified as candidates by our descriptor space ap-
proach (Approach 2) using the minimum bind-
ing site BEEF-vdW DFT energies rather than
ML predicted RPBE energies. Again, the off-
set observed in Figure [3d but not in Figure |3¢
seems to indicate that using the minimum en-
ergy site, rather than bridge site, may not be
appropriate and the apparent cancellation of
errors make our ML predicted RPBE energies
more applicable.

A descriptor-space view may be seen in Figure

11

bl The paradigm of strong and weak binding is
expressed by coloring elements by their binding
characteristics (grey - weak binding for both de-
scriptors, purple - strong binding for *CO and
weak binding for *OH, yellow - strong binding
both). The dotted lines show the bounds of
*OH values which were discarded in the ini-
tial course screening step using the less accu-
rate GemNet-dT FT model. Most of the best
surfaces are an elemental mixture of one pure
metal that weakly binds *OH and one that
strongly binds *OH, as would be expected by a
simple tie-line analysis. Of the ten surfaces clos-
est to the maximum, all except those that are
Re containing are a strong-weak binding mix-
ture. The minimum energies of 111-like surfaces
for the materials considered sparsely populate
the domain of interest where acetaldehyde se-
lectivity is projected to be high. Pure iron is
not shown here because its descriptor energies
are very strong binding (*OH: -2.4 eV | *CO:
-3.6 €V), but alloy surfaces containing it are ap-
propriately colored with very dark yellow.
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Figure 6: Categories of surface motifs identi-
fied, shown here on surfaces that have also been
categorized as (111)-like.

The proportions of slab surface motifs for the
16,000 surfaces considered here are shown in
Table 2l Examples of the nuclearity types mak-
ing up these motifs may be seen in Figure [0
Those with nuclearities of three or more may
have different surface connectivities (i.e. lin-
ear or triangular for three). The nuclearity
types were calculated using the graph based
algorithm developed by Sharma et al.®0 Sur-
faces where one element type has no neigh-
bors of the same element (monomers) are 43.2%
of those enumerated. Once filtered by 111-
likeness, monomers make up a majority of the
data (59.3%), and filtering by candidate classi-
fication makes this majority stronger (78.8%).
All of the ten surfaces closest to the maximum
show this nuclearity. Despite making up 20% of
the data, there were no dimer+ candidates. In-
finite nuclearity in one element and zero in an-
other indicates that the top layer only contains
a single unique element. Semi-finite is infinite in
one direction. These two nuclearities make up
essentially the rest of the candidate pool. Non-
finite (other) captures all other surfaces with
non-integer nuclearities for both elements.

This analysis allows us to focus on a subset of

12

materials which may show promise as catalysts.
Further investigation by detailed DFT studies
and/or experiment are necessary to understand
which materials are actually good candidates
in practice. These studies will overcome im-
perfections in the analysis presented here. Sur-
face stability and energy have not been consid-
ered so it is not clear whether the promising
surfaces would present themselves. It is also
possible that the area fraction of a beneficial
surface is small and the overall material behav-
ior is dominated by another, less-ideal surface.
They would also overcome our general assump-
tion that the MKM developed for pure FCC
(111) surfaces will hold for binary materials.
Still, this work serves as an important filter-
ing step to reduce the available design space so
experiment and/ or detailed calculations can be
performed tactfully.

Conclusion

Exploring large design spaces for novel catalysts
using DFT is infeasible. DFT surrogates have
historically required the construction of expen-
sive domain-specific DFT training data sets.
Here, we show that off-the-shelf models pre-
trained on the OC2028 dataset have achieved
good accuracy for a broad domain of materials
captured in the dataset. We present catlas, an
open source framework to parallelize and auto-
mate the process of evaluating materials as cat-
alysts based upon descriptors. We demonstrate
its efficacy by considering the direct conversion
of syngas to multi-carbon oxygenates. With the
well-posed objective for *OH and *CO descrip-
tor energies from Schumann et al., we were able
to screen 947 stable and meta-stable materials
and discover a subset which may be well posi-
tioned for this chemistry. With the design space
narrowed by our approach, candidates may be
prioritized and tractably assessed using more
detailed studies with DFT or by experimen-
tal investigation. The utility of catlas is un-
derscored by the evolving understanding of the
kinetics for the direct conversion of syngas to
multi-carbon oxygenates. When an improved
descriptor-based kinetic model is available, cat-

Page 12 of 16



Page 13 of 16

las may be used to assess potential catalyst can-
didates with ease. The generalized framework
of catlas, makes it extensible. With clear objec-
tive descriptors, catlas may be used to discover
catalysts for any arbitrary chemistry.
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