

Recent Applications of Nickel and Nickel-based Bimetallic Catalysts for Hydrodeoxygenation of Biomass-derived Oxygenates to Fuels

Journal:	Catalysis Science & Technology
Manuscript ID	CY-ART-07-2022-001179.R2
Article Type:	Paper
Date Submitted by the Author:	13-Oct-2022
Complete List of Authors:	Yu, Xinbin; University of South Carolina, Williams, Christopher; University of South Carolina, Chemical Engineering

SCHOLARONE[™] Manuscripts

1	Recent Applications of Nickel and Nickel-based Bimetallic Catalysts for
2	Hydrodeoxygenation of Biomass-derived Oxygenates to Fuels
3	Xinbin Yu ¹ and Christopher T. Williams ¹ *
4	¹ Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 USA
5	*Correspondence: willia84@cec.sc.edu
6	Abstract
7	The hydrodeoxygenation (HDO) of biomass-derived oxygenates to fuels is an effective way to reduce the negative environmental impact
8	resulting from dependence on fossil energy. However, the complexity in the feedstock compositions (e.g. acids, phenols, esters) and the
9	presence of large amount of water, present significant challenges to the design of HDO catalysts. Nickel and nickel-based bimetallic
10	catalysts have been extensively investigated for HDO due to their high activity and low price over the past years. Lots of valuable
11	information about the structure of catalysts (e.g. active sites, synergy among various sites) and HDO reactions (e.g. reaction routes, kinetics)
12	has been found. In this mini-review, we first summarize the preparation methods of nickel and nickel based bimetallic catalysts and the
13	strategies to improve the HDO performance. The mechanisms and kinetics on HDO of typical oxygenates (aromatic oxygenates, furanic
14	compounds, carboxylic acids and esters) over different catalysts are compared to reveal how the synergistic effects among different
15	functionalities enhance the HDO performance. Solvent effects, the mutual influence among oxygenates and HDO of raw feedstocks over
16	nickel and nickel-based bimetallic catalysts are discussed as well. Finally, we recommend several directions for further research in nickel
17	and nickel-based bimetallic catalysts for HDO reactions.

46

47 Figure 1. Structure of lignocellulose components (A) cellulose, (B) hemicellulose and (C) lignin; structure of bio-diesel component (D)

48 FAME (alkyl= $C_{17}H_{35}$).

50 Figure 2. Chemical composition of bio-oil from wood biomass and its most abundant molecules. (Reproduced from ref. 22 with permission

51 from American Chemical Society. Copyright 2006.)

52

53

Table 1. Physical properties of wood fast pyrolysis bio-oils and heavy fuel oil.^{23,24}

Typical bio-oil	Heavy fuel oil
15-30	0.1
2-3	-
1.10-1.30	0.99-0.995
54-58	85
5.5-7.0	11
35-40	1.0
0-0.2	0.3
below 0.05	1.0 (max)
0.01-0.1	0.08 (max)
16-19	40
40-100	180
0.2-1	1
up to 50	1
40–110	65 (min)
-9–36	15 (max)
Unstable	_
	Typical bio-oil 15-30 2-3 1.10–1.30 54-58 5.5-7.0 35-40 0-0.2 below 0.05 0.01–0.1 16-19 40-100 0.2-1 up to 50 40–110 -9–36 Unstable

54 Supported metal catalysts are usually employed to catalyze hydrodeoxygenation reactions. To take advantage of the existing 55 hydroprocessing facilities, conventional hydrotreating catalysts, such as sulphided CoMo/Al₂O₃ and NiMo/Al₂O₃, are extensively studied. 56 However, sulfided catalysts have problems, including requiring addition of sulfur in the process and subsequent leaching of sulfur into the 57 products, low resistance to water, and coke deposition.²⁵ Noble metal catalysts (*e.g.* Pt, Pd, Ru, Rh) are also frequently employed for

58	hydrodeoxygenation, but their high cost and limited reserves significantly restricts the wide applications. Among all the supported non-
59	noble metal catalysts, Ni-based catalysts have been extensively investigated due to their high activity and low price. ^{26,27,28}
60	
61	Nickel catalysts are widely used in hydrogenation-related processes as Ni has exceptional capability of dissociating and chemisorbing
62	H ₂ . ^{29,30,31} However, nickel catalysts are also very active for undesired reactions in HDO, such as C-C hydrogenolysis, ring saturation and
63	methanation, which lowers the selectivity to target products and increases the consumption of H_2 in many cases. Hence, different strategies
64	have been proposed to tune the properties of nickel catalysts, such as the incorporation of various elements (e.g. metals, phosphorous) and
65	employing different supports. Moreover, the preparation methods of supported nickel-based catalysts often influence their performance in
66	the hydrodeoxygenation reaction.
67	
68	Several excellent reviews on the hydrodeoxygenation of biomass derived oxygenates with different emphasis have been published. ^{10,22,32}
69	For example, Furimsky and Elliott discussed the detailed mechanisms and kinetics of HDO mainly over hydroprocessing catalysts and
70	noble metal catalysts. ^{33,34} Wang <i>et al.</i> reviewed HDO of bio-oils and the individual model compounds over noble metal catalysts. ³⁵ Kim <i>et</i>
71	al. summarized the active sites requirements for HDO catalysts (mainly noble metal catalysts) and recent advances in electrochemical
72	HDO processes. ³⁶ The scope of this mini-review focuses on the preparation of supported nickel and nickel-based bimetallic catalysts and
73	their applications in the hydrodeoxygenation of typical biomass derived oxygenates to fuels.
74	
75 76	2 Proparation of nickal and nickal-based himetallic catalysts
77	2. 1 reparation of mexer and mexer based bimetanic catalysis
78	Table 2. Literature survey of Ni and Ni-based bimetallic catalysts for HDO of biomass derived oxygenates
79	
	Performance (Conversion and selectivity to major products over catalysts at given conditions; Catalysts Preparation methods Reactants Reactor Ref. yield is declared separately)

10 wt% Ni/Silicalite-1	in situ encapsulation	Phenol	Flow reactor	71.2% (X_{phenol}), 99.2% (benzene) over Ni@Silicalite-1, 400 °C, 0.25 MPa H ₂ , $m_{cata} = 1.0$ g, phenol flowrate: 0.1 mL/min, H ₂ flow rate: 300 mL/min.	37
5 wt% Ni/SiO2	Precipitation- deposition; incipient wetness impregnation	m-Cresol	Flow reactor	95.6 % (X _{m-Cresol}), 67.6% (toluene), 11.6% (benzene) over 5wt%Ni/SiO ₂ (1.8 nm), 300 °C, 0.1 MPa H ₂ , W/F = 6 h, 0.5 h reaction.	38
6.4 wt% Mo-46.6 wt% Ni/SiO ₂ - Al ₂ O ₃	Hydrothermal	Phenol	Flow reactor	96% (X _{phenol}), ~ 90% (O-free products yield) over 6.4wt%Mo46.6wt%Ni/SiO ₂ -Al ₂ O ₃ , 310 °C, 3.0 MPa H ₂ , WHSV= 107.5 h ⁻¹ , TOS= 4 h.	39
12 wt%Ni-10 wt%Mo/SiO ₂	Two-step incipient wetness impregnation	Phenol	Flow reactor	99.30 % (X _{phenol}), 99.27% (benzene), 410 °C, 0.1 MPa H ₂ , WHSV = 1.5 h ⁻¹ , H ₂ /substrate (mol/mol) = 5, 1 h reaction.	40
5 wt % Ni/SiO ₂ modified with 9 wt % Fe, 16 wt % Mo, 30 wt % W	Incipient wetness impregnation	p-Cresol	Batch reactor	~96% (X _{p-Cresol}), ~52% (methylcyclohexane), ~27% (toluene), ~19% (4-methylcyclohexanol) over 5wt%Ni16wt%Mo/SiO ₂ , 60 mL of n-hexadecane 0.18 g of p-cresol, 0.2 g of a passivated catalyst, 250 °C, 1 MPa H ₂ , 2h reaction.	41
5 wt% NiNi/Hierarchical mesoporous ZSM- 5	Incipient wetness	Anisole	Batch reactor	98 % (X _{anisole}), 84.2 % (cyclohexne), 15.4 % (methoxycyclo-hexane) over Ni/HSZ-c, 200 °C, 6.8 MPa H ₂ , 0.30 g of catalyst, 4.5 wt% anisole-n-decane (50 mL), 140 min reaction.	42
37 wt% Ni/Al ₂ O ₃	Calcination and reduction of NiAl layered double hydroxide precursors	Anisole	Flow reactor	100 % (X _{anisole}), ~78% (cyclohexyl methyl ether), ~19% (cyclohexane) over Ni/Al ₂ O ₃ (Ni/Al molar ratio = 1). 240 °C, 2 MPa H ₂ , H ₂ /oil (volume ratio) = 300, W/F = 0.45 min.	43
Ni-based hydrotreating catalyst	Commercially available	Anisole	Flow reactor	$100 \ \% \ (X_{anisole}), \sim 22 \ wt\% \ (benzene) \ \sim 10 \ wt\% \ (toluene), \ \sim 25 \ wt\% \ (phenol), \ \sim 22 \ wt\% \ (cresol)$ over Ni-based catalyst A. 350 °C, 0.17 MPa H ₂ , WHSV = 1.9 h ⁻¹ .	44
85 wt%Ni-5 wt%Cu/SiO ₂	Decomposition and impregnation	Anisole	Batch reactor	100 %(X _{anisole}),~85%(methoxycyclohexane), ~12% (cyclohexane) over 85wt%Ni5wt%Cu/SiO ₂ , 280 °C, 6 MPa H ₂ , 1 g of catalyst, 6 wt% anisole-hexadecane (50 ml), 13 min reaction.	45
4 wt%Ni-10 wt%Mo/SBA-15	Wet impregnation	Anisole	Flow reactor	$62\% (X_{anisole}), ~~47\% (methoxycyclohexane), ~~17\% (cyclohexne), ~~14\% (benzene) over NiMo/SBA-15, 250 °C, 1.5 MPa H_2, 250 mg of catalyst, H_2 flowrate = 100 ml/min.$	46
10 wt%Ni-4 wt%Ga/SiO ₂	Impregnation	Anisole	Flow reactor	71.8 % (X _{anisole}), 86.4% (benzene) over Ni ₃ Ga/SiO ₂ . 300 °C, 0.1 MPa H ₂ , WHSV = 1 h ⁻¹ , H ₂ /anisole molar ratio =25.	47
16 wt% Ni/Al- SBA-15	Incipient wetness impregnation	Eugenol	Batch reactor	100% (X _{eugenol}), ~78% (propyl cyclohexane), ~20% (gas products) over 16 wt%Ni/Al-SBA-15- E, 240 °C, 2 MPa H ₂ , 0.05 g of catalyst, 770 μL guaiacol, 40 mL dodecane, 680 rpm, 2h reaction.	48
0.56 wt% Ni/N- doped carbon molecular sieve	Thermal ionic- exchange	Vanillin	Batch reactor	58% (X _{vanillin}), ~100% (2-methoxy-4-methyl-phenol) over HD-Ni/NCMS (Ni: 0.56 wt%), 130 °C, 2 MPa H ₂ , reactant to catalyst molar ratio = 300, 1 h reaction.	49
40 wt% Ni/Red mud	Wet impregnation	Guaiacol	Batch reactor	83.2 % (X _{guniacol}), 34.8% (cyclohexane), 23.1% (benzene), 16.6 % (toluene), 9.5% (phenol) over 40 wt%Ni/RM, 350 °C, 6.21 MPa H ₂ , 4.5 g of catalyst, 30 g of guaiacol, 30 min reaction.	50
18.1 wt% Ni/SiO ₂	Ammonia evaporation method	Guaiacol	Batch reactor	100 % (X _{guniacol}), ~95% (2-methoxycyclohexanol), ~4% (cyclo-hexanol) over 18.1 wt% Ni/SiO ₂ - AEH, 140 °C, 3 MPa H ₂ , 0.05 g of catalyst, 0.10 g guaiacol, 20 mL decalin, 5 h.	51

6.5 wt% Ni/BEA	Ion-exchange- deposition- precipitation	Guaiacol	Flow reactor	~11% (X _{guaiacol}), ~53% (cyclohexane), ~47% (other products) over 6.5 wt% Ni/BEA-IDP, 230 °C, 4 MPa H ₂ , 0.05 g of catalyst, guaiacol (0.156 g/min), H ₂ (120 mL/min), 40 min reaction,	52
5 wt% Ni-15 wt% Co/γ-Al ₂ O ₃	Impregnation	Guaiacol	Batch reactor	$100 \ \% \ (X_{guaiacol}), ~58 \ \% \ (cyclohexanol), ~13 \ \% \ (1-methyl-1,2-cyclohexanediol, trans-), ~23 \ \% \ (1-methyl-1,2-cyclohexanediol, cis-) \ over 5 \ wt\%Ni15 \ wt\%Co/\gamma-Al_2O_3, 200 \ ^\circC, 5 \ MPa \ H_2, 5 \ g \ of guaiacol, 45 \ g \ of water, 1.02 \ g \ of catalyst, 8 \ h \ reaction.$	53
10 wt% Ni-20 wt% Mo/Al ₂ O ₃ TiO ₂	Sol–gel process and spray pyrolysis method	Guaiacol	Flow reactor	$100 \ \% \ (X_{guaiacol}), \ \sim 86 \ \% \ (cyclohexane), \ \sim 12 \ \% \ (met-cyclohexane) \ over$ $10wt\%Ni20wt\%Mo/Al_2O_3-TiO_2, \ 300 \ ^{\circ}C, \ 2 \ MPa \ H_2, \ H_2 \ flowrate = 60 \ ml/min, \ WHSV = 57 \ h^{-1}, \ 2 \ h \ reaction.$	54
36.5 wt%Ni-2.3 wt% Cu/ZrO ₂ - SiO ₂ -La ₂ O ₃	Sol–gel	Guaiacol	Batch reactor	 75 % (X_{guniacol}), ~39% (cyclohexane), ~30% (1-methylcyclohexane-1,2-diol), 13%(cyclohexanone) over 36.5wt%Ni2.3wt%Cu/ZrO₂-SiO₂-La₂O₃, 320 °C,17 MPa H₂, 1 g of catalyst, 30 ml of guaiacol, 1h reaction. 	55
10 wt % Cu-10 wt % Ni/CeO ₂ - SiO ₂	Deposition-	Vanillin	Batch reactor	96% (X _{vanilin}), ~85% (2-methoxy-4-methyl-phenol) over 10 wt %Cu10 wt %Ni/CeO ₂ -SiO ₂ , 150 °C, 2.5 Mpa H ₂ , 0.02 g of catalyst, 0.228 g of vanillin, 10 mL of water, 1000 rpm, 12h reaction.	56
40 wt% Ni/ZSM-5	Solid phase grinding	HMF	Batch reactor	90% (X _{HMF}), ~95% (DMF) over 40%Ni/ZSM-5, 180 °C, 0.25 MPa H ₂ , m_{cata} = 0.05 g, 1mmol HMF, 10 mL tetrahydrofuran (THF), 7 h reaction,	57
18.2 wt% Ni/ZrP	Ion exchange	HMF	Batch reactor	100% (X _{HMF}), ~70% (DMF) over Ni/ZrP, 240 °C, 5 MPa H ₂ , 0.1 g of catalyst, 0.25 g of HMF, 40 mL of THF, 500 rpm, 5h reaction.	58
5 wt% Ni/Hβ	Incipient wetness impregnation	BBM	Flow reactor	90% (yield of diesel alkanes) over 5 wt% Ni/H β , 230 °C, 6 MPa H ₂ , 1.8 g of catalyst, WHSV = 1.3 h ⁻¹ , H ₂ flow rate: 120 mL/min,	59
2.4 wt% Ni/Co ₃ O ₄	Hydrothermal method	HMF	Batch reactor	100% (X _{HMF}), 76% (DMF) over Ni/Co ₃ O ₄ , 130 °C, 1 MPa H ₂ , 0.1 g of catalyst, 0.25 g of HMF, 10 ml of THF, 24 h reaction.	60
36.1 wt% NiSi- phyllosilicate	Ammonia evaporation	HMF	Batch reactor	$100\% (X_{HMF}), 64.1\% (DMF), 26.1\% (DMTHF) over 36.1 wt\% NiSi-phyllosilicate, 150 \ ^\circ C, 1.5$ MPa H ₂ , 0.08 g of catalyst, 1.5g of HMF, 38 mL of 1,4-dioxane, 3 h reaction.	61
4.8 wt% Ni-5.2 wt% Cu/C	Solvothermal synthesis followed by dispersion	HMF	Flow reactor	100% (X _{HMF}), ~90% (DMF) over 4.8 wt% Ni-5.2 wt% Cu/C, 180 °C, 3.3 MPa H ₂ , HMF flowrate/ $m_{cata} = 1 \text{ g*min/mL}$,	62
5.1 wt% Ni-4.9 wt% Fe/C	Incipient-wetness impregnation	Furfural	Flow reactor	$100\% (X_{furfural}), 65.4\% (MF) \text{ over } 10wt\% \text{ NiFe/C (Fe/Ni molar ratio = 1)}, 180 \text{ °C}, 0.1 \text{ MPa H}_2,$ $m_{cata'}(fufural + H_2) \text{ flowrate = } 20 \text{ min*g/g}, H_2/furfural = 100.$	63
5 wt%Cu-3wt%Ni /TiO ₂	Impregnation	Furfural	Batch reactor	100% (X _{furfural}), ~60% (MF), ~33% (MTHF) over 5 wt%Cu3wt%Ni/TiO ₂ , 200 °C, 3.5 MPa H ₂ , 0.3 g of catalyst, 1 g of furfural, 25 mL of 1,4-dioxane, 8h reaction.	64
1.4 wt%Ni-15 wt%Co/C	Impregnation	HMF	Batch reactor	99.0% (X _{HMF}), 96% (DMF) over 15wt%Co1.4wt%Ni/C, 130 °C, 1 MPa H ₂ , 0.2 g of catalyst, 0.252 g of HMF, 10.0 mL of THF, 24 h reaction,	65
4.0 wt% Ni/Al ₂ O ₃	Atomic layer deposition (ALD)	Oleic acid	Flow reactor	$100\% (X_{Oleic acid}), ~72\% (C16-C18 alkanes), ~20\% (C9-C15 alkanes) over 4.0 wt\% Ni (ALD)/Al_2O_3, 340 °C, 3.0 MPa H_2, 2.0 g of catalyst, H_2/oil = 500, WHSV = 2.4 h^{-1}$	66
5.5 wt% Ni/KIT-5	Impregnation	Palmitic acid	Batch reactor	95% (X _{Palmitic acid}), 60% (n-pentadecane), 38% (1-hexadecanol) over 5.5 wt% Ni/KIT-5, 280 °C, 5.2 MPa H ₂ , 0.1 g of catalyst, 39 mM of PA, 40 mL of n-dodecane, 6 h reaction.	18
10 wt% Ni/SiO ₂ - ZrO ₂	Wet impregnation	Stearic Acid	Batch reactor	100% (X _{Stearic Acid}), ~63% (C18), ~37% (C17) over 10 wt% Ni/37(mol%)SiO ₂ -ZrO ₂ , 260 °C, 4 MPa H ₂ , 0.05 g of catalyst, 0.5 g of stearic acid, 100 mL of dodecane, 600 rpm, 24 h reaction,	67

	5.6 wt% Ni-4.2		Stearic		100% (X _{stearic acid}), 98% (n-heptadecane) over 5.6 wt% Ni-4.2 wt% Cu/ZrO ₂ , 350 °C, 4 MPa H ₂ ,
	wt% Cu/ZrO ₂	Impregnation	acid	Batch reactor	0.5 g of stearic acid, 0.2 g of catalyst, 100 mL of n-dodecane, 600 rpm, 4h reaction.
80	Note: HMF: 5-hydroxy-	methyl-furfural, DMF: di	methylfurfural, BB	BM: 5,5'-(butane-	1,1-diyl)bis(2-methylfuran)
81					
82	In classic catalysi	is theories, surface	sites (e.g., te	rrace, step,	corner, and kink) with different abilities for adsorption and cleavage/formation
83	of bonds account	for the catalytic ac	ctivity. ^{69,70} Su	pports are c	ommonly employed to disperse metallic species and increase the concentration
84	of these active s	ites. Functionaliti	es of suppor	ts (acid/bas	e sites, oxygen vacancies, etc.) may participate in the HDO reaction. The
85	introduction of su	apport also induces	s the interacti	on between	supports and metal species in many cases, which provides new active sites for
86	reactions.				
87					
88	Many methods as	re proposed to fab	ricate suppor	ted nickel c	atalysts as shown in Table 2 . Impregnation is the simplest and most popular
89	method to disper-	se active species o	nto solid sup	ports. A typ	vical process of impregnation involves dissolving metal salts in a solvent (e.g.
90	water) and then	mixing the solutio	on with suppo	ort followed	by evaporating the solvent to deposit the active species onto support. This
91	method is widely	employed in the s	ynthesis of ni	ickel and nic	kel-based bimetallic catalysts for the hydrodeoxygenation of oxygenates from
92	b10-01l. ^{40,71} Incipi	ient wetness impre	egnation is wi	idely used in	h which the amount of solution is equal to the volume of solvent that supports
93	can adsorb. ^{72,73} E	webs impregnation	n is also appli	on of motal	in cases. ¹⁴ In this method, the solid phase is obtained by filtration of the mixture
94	loading amount of	of metals on the si	upport via in	cinient wetr	tess impregnation than excess impregnation while the dispersion of metals is
95	usually higher or	ver catalusts prepar	red by excess	impregnati	on
97	usuany mgner 00	er eatarysts prepar	ica by creess	mprognati	
۰ <i>۲</i>	Undrodoomoor	tion reactions in-	ualua tha -1	awaac of t	C.C. hands and C.O. hands, which whilits structure constitute in more
30	riyuroueoxygena	R 79 TH CI L	voive the cle	eavage of (-c bonds and C-O bonds, which exhibits structure sensitivity in many
99	cases. 37,00,73,70,77,78	"," Thus, the dispe	ersion of meta	al on the su	pport is one of the important parameters of HDO catalysts. A high dispersion

100	of nickel species is usually found beneficial to the catalytic activity and/or selectivity. ^{38,80,81,82} However, typical supported Ni catalysts (<i>e.g.</i>
101	Ni/Al_2O_3 , Ni/SiO_2) prepared by impregnation method usually have particles with large sizes and broad size distribution. Various strategies
102	have been taken to overcome this problem. It is found that properties of supports (e.g. specific surface area, pore size, surface functional
103	group, etc.) often influence the dispersion of nickel on the catalysts. ^{83,84,85,86} The incorporation of ZrO ₂ into CeO ₂ formed ZrO ₂ -CeO ₂ solid
104	solutions and increased the pore volume (0.06 to 0.12-0.17 m^3/g) and surface area (18 to 31-51 m^2/g) of CeO ₂ , which facilitated the Ni
105	dispersion. ⁸⁷ The crystallite size of Ni was 11.0 nm on Ni/ZrO ₂ -CeO ₂ (2:1) whereas it was 17.0 nm on Ni/CeO ₂ . The surface functional
106	groups also have effects on the dispersion of metallic species. Due to the strong anchoring effect of surface N groups on porous nitrogen-
107	doped carbon black (NCB), high dispersion of Ni species was obtained on Ni/NCB catalysts.88 The relative atomic percentage of metallic
108	Ni species increased from 3.8% to 15.6% as the surface nitrogen content increased from 0 to 4.38 % on the support. A relatively low
109	dispersion of NiO on MCM-41 was due to the low interaction between NiO and the hydrophobic surface of the MCM-41 support. The
110	introduction of coordinated Ti species into the hexagonal channel of MCM-41 enhanced the dispersion of NiO species although the specific
111	surface area of Ti-MCM-41 (705 m ² /g) is much lower than that of MCM-41 (983 m ² /g). ⁸⁴
112	
113	A secondary metal species (e.g. Fe, Co, Mo, W) has frequently been reported to promote the dispersion of supported nickel species,
114	although the mechanisms are not clear yet. ^{39,79,89,90,91,92} Possible reasons are the dilution effect of the second metal on Ni in a certain loading
115	range and/or the interaction between different metal species. By keeping the loading amount of Ni at 5 wt% and increasing the loading
116	amount of Mo from 0 to 4.6 wt%, the Ni particle sizes measured by XRD decreased from 23 nm to 8 nm.91 Similarly, the increase in
117	loading amount of Fe (from 0 to 8wt%) caused a decrease in the average particle size (from 7 to 4 nm) over FeNi/SiO ₂ catalysts with 8
118	wt% Ni. ⁹³

120	To compare the effectiveness of different preparation methods, 5 wt% Ni/H β catalysts were prepared by four methods that included
121	impregnation, deposition-precipitation (DP), ion exchange/precipitation, and Ni nanoparticle deposition. ⁸² The deposition-precipitation
122	method could load Ni species onto H β with the smallest particle size (2.5 nm) and the tightest particle size distribution (standard deviation:
123	0.7 nm) (Figure 3) as OH ⁻ for the deposition of Ni ²⁺ was generated slowly and homogeneously by the decomposition of urea in the solution.
124	The dramatic decrease in micropore volumes (by 0.06 cm ³ /g) of the sample prepared by DP suggested that certain amount of Ni species
125	was deposited in the micropores of HBEA. Catalysts prepared by deposition-precipitation (DP), ion exchange/precipitation, and Ni
126	nanoparticle deposition showed much stronger interaction between Ni species and support than the sample prepared by impregnation
127	according to H2-TPR results. As Ni could form complex with NH3, ammonia evaporation hydrothermal method (AEH) was developed.
128	Compared to Ni/SiO ₂ catalysts (15.1 nm) prepared by impregnation (IMP), Ni nanoparticles on catalysts prepared by AEH were trapped
129	tightly in a fibrous nickel phyllosilicate box which yielded highly dispersed Ni nanoparticles (4.8 nm) on the support after reduction. ⁵¹
130	Moreover, the density of Lewis acid sites induced by coordinatively unsaturated (Ni ²⁺) cations was as high as 108.6 µmol/g on Ni/SiO ₂
131	prepared by AEH, whereas it could not be detected on samples synthesized by impregnation.

133 Figure 3. TEM images of reduced Ni/HBEA samples prepared by different methods; the respective insets are the histograms of Ni particle

134 size distribution (after counting 300 particles). (Reproduced from ref. 82 with permission from Wiley-VCH Verlag GmbH & Co. KGaA,

¹³⁵ Weinheim. Copyright 2013.)

137	Calcination and reduction of Ni-containing layered double hydroxide (LDH) is a strategy that can yield catalysts with a good dispersion,
138	uniform distribution of particle size and strong metal-support interaction. LDH structures can be synthesized by coprecipitation of several
139	metal cations. With calcination and reduction at high temperature, the lamellar structure of LDH can undergo an <i>in-situ</i> topological structure
140	transformation. Zhang et. al. prepared high loading (22 wt%-63wt%) Ni/Al ₂ O ₃ catalyst by calcination and subsequent reduction of layered
141	double hydroxide (LDH) precursors and found nickel species were homogeneously distributed on Al ₂ O ₃ . ⁴³ The particle sizes measured by
142	CO chemisorption ranged from 6.4 nm to 13.4 nm and the catalysts exhibited a mesoporous structure. The $Ni_{0.5}Zn_{1.5}Al_1$ -LDH precursor
143	showed a flower-like morphology with a 1-2 µm of flower-like structure.94 Ni supported on mixed metal oxides (MMO) catalysts were
144	obtained after calcination and reduction of NiZnAl-LDH precursors and the flower-like morphology was maintained. N2 adsorption-
145	desorption isotherms of the precursor and catalyst showed that they had meso/macropores. The BET surface area and pore diameters of
146	$Ni_{0.5}Zn_{1.5}Al_1$ sample increased from 86 to 114 m ² /g and 12 and 18 nm after calcination and reduction, respectively. It was attributed to the
147	collapse of LDH structure and loss of H ₂ O trapped in the LDH during the high temperature treatment.
147 148	collapse of LDH structure and loss of H ₂ O trapped in the LDH during the high temperature treatment.
147 148 149	collapse of LDH structure and loss of H ₂ O trapped in the LDH during the high temperature treatment. Other preparation methods have also been explored to prepare supported nickel catalysts aiming to increase the dispersion of nickel
147 148 149 150	collapse of LDH structure and loss of H ₂ O trapped in the LDH during the high temperature treatment. Other preparation methods have also been explored to prepare supported nickel catalysts aiming to increase the dispersion of nickel species. ^{95,96} 10.6 wt % Ni@Silicalite-1 was prepared by hydrothermal encapsulation method. Ni nanoparticle sizes on the catalyst were
147 148 149 150 151	collapse of LDH structure and loss of H ₂ O trapped in the LDH during the high temperature treatment. Other preparation methods have also been explored to prepare supported nickel catalysts aiming to increase the dispersion of nickel species. ^{95,96} 10.6 wt % Ni@Silicalite-1 was prepared by hydrothermal encapsulation method. Ni nanoparticle sizes on the catalyst were 3–5 nm with a narrow distribution. ³⁷ The significant drop (451.2 m ² /g to 272.2 m ² /g) in surface area of micropores of bare support suggested
147 148 149 150 151 152	collapse of LDH structure and loss of H ₂ O trapped in the LDH during the high temperature treatment. Other preparation methods have also been explored to prepare supported nickel catalysts aiming to increase the dispersion of nickel species. ^{95,96} 10.6 wt % Ni@Silicalite-1 was prepared by hydrothermal encapsulation method. Ni nanoparticle sizes on the catalyst were 3–5 nm with a narrow distribution. ³⁷ The significant drop (451.2 m ² /g to 272.2 m ² /g) in surface area of micropores of bare support suggested that encapsulation of Ni nanoparticles in the pores of Silicalite-1. As carbon support has very high specific surface area and rich surface
147 148 149 150 151 152 153	collapse of LDH structure and loss of H ₂ O trapped in the LDH during the high temperature treatment. Other preparation methods have also been explored to prepare supported nickel catalysts aiming to increase the dispersion of nickel species. ^{95,96} 10.6 wt % Ni@Silicalite-1 was prepared by hydrothermal encapsulation method. Ni nanoparticle sizes on the catalyst were 3–5 nm with a narrow distribution. ³⁷ The significant drop (451.2 m ² /g to 272.2 m ² /g) in surface area of micropores of bare support suggested that encapsulation of Ni nanoparticles in the pores of Silicalite-1. As carbon support has very high specific surface area and rich surface functional groups, it can facilitate the dispersion of metal species. Ni@C catalysts were prepared by the pyrolysis of Ni-MOF. ⁹⁷ The catalyst
147 148 149 150 151 152 153 154	collapse of LDH structure and loss of H ₂ O trapped in the LDH during the high temperature treatment. Other preparation methods have also been explored to prepare supported nickel catalysts aiming to increase the dispersion of nickel species. ^{95,96} 10.6 wt % Ni@Silicalite-1 was prepared by hydrothermal encapsulation method. Ni nanoparticle sizes on the catalyst were 3–5 nm with a narrow distribution. ³⁷ The significant drop (451.2 m ² /g to 272.2 m ² /g) in surface area of micropores of bare support suggested that encapsulation of Ni nanoparticles in the pores of Silicalite-1. As carbon support has very high specific surface area and rich surface functional groups, it can facilitate the dispersion of metal species. Ni@C catalysts were prepared by the pyrolysis of Ni-MOF. ⁹⁷ The catalyst still maintained the spherical structure of MOF after high temperature (650 °C) treatment but the surface became rough. EDX results
147 148 149 150 151 152 153 154 155	collapse of LDH structure and loss of H ₂ O trapped in the LDH during the high temperature treatment. Other preparation methods have also been explored to prepare supported nickel catalysts aiming to increase the dispersion of nickel species. ^{95,96} 10.6 wt % Ni@Silicalite-1 was prepared by hydrothermal encapsulation method. Ni nanoparticle sizes on the catalyst were 3–5 nm with a narrow distribution. ³⁷ The significant drop (451.2 m ² /g to 272.2 m ² /g) in surface area of micropores of bare support suggested that encapsulation of Ni nanoparticles in the pores of Silicalite-1. As carbon support has very high specific surface area and rich surface functional groups, it can facilitate the dispersion of metal species. Ni@C catalysts were prepared by the pyrolysis of Ni-MOF. ⁹⁷ The catalyst still maintained the spherical structure of MOF after high temperature (650 °C) treatment but the surface became rough. EDX results showed that the Ni species were uniformly dispersed on C. The high Ni loading induced rich medium acidic sites (46.87 mmol/g) on

157	by carbon matrix. 7.2 wt%WO ₃ -5 wt%Ni/C bimetallic catalysts were prepared by atomic layer deposition (ALD) of 5 wt%Ni/C. ⁷² The size 10^{-10} C size
158	of most Ni particles was in the range of 5-8 nm. Moreover, it was observed that WOx species preferentially deposited on Ni particles rather
159	than on the surface of C support, which facilitated the interaction between Ni and WO _x species.
160	
161	However, small particle sizes sometimes induce too strong interactions between metallic sites and other species as well as between metallic
162	sites and support, which subsequently decreases the catalytic activity. ^{78,98,99,100} Much attention should also be paid to the utilization of other
163	functionalities (e.g. acidity) to achieve the synergy among different sites as HDO involves many parallel and sequential reactions, such as
164	dehydration, cracking and hydrogenolysis.
165 166	
167 168	3. HDO of Biomass-derived Oxygenates
169	The raw feedstocks (bio-oils and bio-diesels) contain different amounts of various oxygenates depending on process parameters and source
170	of biomass. Typical oxygenates are furans, phenols, guaiacols, carboxylic acids and esters, and carbohydrates. Their oxygen-containing
171	functional groups exhibit differences in reactivity, which pose difficulties in the elucidation of mechanisms using crude bio-oil.
172	Hydrodeoxygenation of individual model compound is usually conducted to simplify the problem and obtain essential information about
173	the reaction routes. Both the properties of catalysts and reaction conditions significantly influence the specific pathways.
174	
175	3.1 HDO of Aromatic Oxygenates
176	Phenol and phenolic derivatives are abundant in bio-oil, representing the cellulose and lignin part in the lignocellulosic biomass. However,
177	the p-II conjugated interaction between aromatic ring and O atom elevates C-O bond strength (468 kJ/mol) and makes phenol and phenolic
178	derivatives (e.g. phenol, anisole, guaiacol) among the most persistent oxygen-containing compound in bio-oil.

180 As the simple phenolic compounds, phenol and cresol are usually employed as model compounds for hydrodeoxygenation of bio-oil. The

181 reaction routes are proposed to depend on the adsorption mode of phenol (*i.e.* co-planar and non-planar) on the surface.^{89,101,102,103,104} The

182 hydrogenation of phenol on nickel and nickel-based bimetallic catalysts at mild temperature (< 300 °C) primarily produces ring-

183 hydrogenated products *via* several sequential reactions as shown in Scheme 1.^{80,89,105,106,107}

184		Phenol	Cyclohexanol	Cyclohexane
185	Scheme 1. Reaction scheme of HDO	of phenol under mild	conditions. Solid arrows	indicate main pathways, while the dotted arrows
186	indicate the steps of the kinetic model.	(Reproduced ref. 80 w	vith permission from Elsev	vier. Copyright 2016.)
187		(F	
188	The support materials significantly infl	uence the catalytic per	formance of nickel catalys	sts in the HDO of phenol. A variety of Ni catalysts
189	with different supports (ZrO ₂ , SiO ₂ , Al	$_{2}O_{3}$ and C) for phenol	hydrodeoxygenation were	e compared in a batch reactor. ¹⁰⁶ The overall order
190	of HDO activity followed Ni/ZrO ₂ > Ni-	$-V_2O_5/ZrO_2 > Ni-V_2O_5$;/SiO ₂ > Ni/Al ₂ O ₃ > Ni/SiC	$D_2 >> Ni/C. Ni/ZrO_2$ exhibited the best performance
191	(full conversion of phenol and 80% yie	eld of cyclohexane at 2	275 °C, 10 MPa of H ₂ , 1 g	of catalyst in 50 g of phenol and 5 h reaction) due
192	to the balanced reaction rates of hydro	ogenation and deoxyg	enation (Figure 4). Ni/C	was active for HDO of cyclohexanol rather than
193	phenol. The oxygen vacancies on the ox	xide support might play	y an important role in the a	activation and hydrogenation of phenol and Ni sites
194	were responsible for the deoxygenation	reaction. The rate det	ermining step of phenol hy	ydrodeoxygenation on Ni/ZrO2 was dehydration of
195	cyclohexanol because of the lack of aci	dity of ZrO ₂ . Higher a	cid site concentration (fror	n 0 to 0.77 mmol/g) on Ni/HZSM-5 could increase
196	the initial turnover frequency (from 12	7 to 769 h^{-1}) of pheno?	l hydrodeoxygenation. ¹⁰³ 2	Zhao et al. found that the individual reaction steps
197	on Ni/HZSM-5 and Ni/Al ₂ O ₃ -HZSM	1-5 followed the rate	e order r_1 (phenol hydrog	genation) < r_2 (cyclohexanone hydrogenation) <
198	r_3 (cyclohexanol dehydration) << r_4 (cyc	lohexene hydrogenatio	on). ¹⁰⁵ The incorporation o	of Al ₂ O ₃ to Ni/HZSM-5 promoted the dispersion of

- 199 Ni from 2.5% to 8% which led to a significant increase in the catalytic activity for hydrogenation of phenol, cyclohexanone and cyclohexene
- 200 over that of Ni/HZSM-5 (Table 3). Besides, the Lewis acidity induced by Al₂O₃ could stabilize ketone species. Higher content of Brønsted
- 201 acidic sites and the synergy between acid sites and metal sites benefitted the dehydration of cyclohexanol and subsequent hydrogenation
- of cyclohexene.

- 204 Figure 4. Proposed reaction mechanism for HDO of phenol over an oxide-supported nickel catalyst (here Ni/ZrO₂). Gray spheres represent
- 205 nickel atoms. (Reproduced from ref. 106 with permission from American Chemical Society. Copyright 2013.)
- 206

208

207 Table 3. TOF and E_a data for aqueous-phase phenol hydrodeoxygenation reaction network at 200 °C on Ni catalysts. (Reproduced from

Reaction	Ni/HZSM-5	Ni/Al ₂ O ₃ -HZSM-5
Step 1: Phenol hydrogenation		
$r_1 (\text{mmol g}^{-1} \text{h}^{-1})$	14	61
$TOF_1 \pmod{mol mol_{Surf,Ni}^{-1} h^{-1}}$	398	553
E_{a1} (kJ mol ⁻¹)	48	56
Step 2: Cyclohexanone hydrogen	ation	
$r_2 (\text{mmol g}^{-1} \text{h}^{-1})$	108	159
TOF_2 (mol mol ⁻¹ _{surf Ni} h ⁻¹)	2443	1233
E_{a2} (kJ mol ⁻¹)	142	129
Step 3: Cyclohexanol dehydration	1	
$r_3 (\text{mmol g}^{-1} \text{h}^{-1})$	528	354
TOF_3 (mol mol _{BAS} ⁻¹ h ⁻¹)	7428	8333
E_{a3} (kJ mol ⁻¹)	112	114
Step 4: Cyclohexene hydrogenati	on	
$r_4 (\text{mmol g}^{-1} \text{h}^{-1})$	1813	2156
$TOF_4 \pmod{mol mol_{surf,Ni}^{-1} h^{-1}}$	55,136	20,287
E_{a4} (kJ mol ⁻¹)	35	25

ref. 105 with permission from Elsevier. Copyright 2012.)

209

210 Although carbon support was not recommended for the HDO of phenol on nickel catalyst, Ni/mesoporous carbon spheres (MCS) catalysts

211 were very active for HDO of phenol.⁸⁹ The hydrogenolysis of cyclohexanol to cyclohexane was the rate determining step. The performance

212 could be further improved by incorporation of Fe onto Ni/MCS due to the formation of Ni-Fe alloy identified by X-ray powder diffraction

(XRD) and Mössbauer spectroscopy techniques, which provided more sites for the adsorption of cyclohexanol via oxygen and facilitated

214	the hydrogenolysis of cyclohexanol. By varying the Ni/Fe ratio while keeping the total metal loading the same, the specific surface area,
215	pores volume and pore size of catalysts were similar. XRD results revealed that increasing the loading amount of Fe could decrease the
216	crystallite size. The amount of H_2 uptake also decreased as increasing the amount of Fe. The optimal Ni/Fe ratio was 3/1 and the synergy
217	between metallic Ni sites and NiFe alloy sites were crucial for activation of H_2 and cleavage of C-O bond. Phenol conversion of 99.8%,
218	cyclohexanol selectivity of 49.1%, and cyclohexane selectivity of 49.9% was obtained over 10Ni ₃ -Fe ₁ /MCSs. ^{89,106}
219	
220	Interest is growing in retaining the aromatic character of the upgraded oils as it can not only minimize the hydrogen consumption in the
221	process but also increase the octane value of the fuel. ³⁴ Thus, direct hydrogenolysis of the C_{Ar} -O bond is a preferred route and is also
222	thermodynamically preferred over ring saturation. ^{$81,108$} However, hydrogenolysis of C _{Ar} -O bond is kinetically less favorable than
223	hydrogenation of aromatic ring because of much weaker adsorption of hydroxyl compared to the strong adsorption of aromatic ring upon
224	Ni catalysts. Achieving high selectivity to aromatic products usually requires high temperature to suppress the adsorption of aromatic
225	ring. ¹⁰⁹ Shi et al. prepared Ni@Silicate-1 catalyst via in situ encapsulation method and then applied it to the HDO of phenol. ³⁷ Ni species
226	were trapped within the channel of Silicate-1 to promote the adsorption of phenol via end-up mode (Figure 5), resulting in much higher
227	selectivity (68%) to products from phenol hydrogenolysis than the counterparts (42% and 19%) on impregnated Ni/Silicate-1 and Ni/SiO ₂
228	at low temperature (250 °C).

Figure 5. *In situ* FT-IR spectra analysis of phenol adsorption on Ni@ Silicalite-1 catalyst at different desorption temperatures. (Reproduced
 from ref. 37 with permission from American Chemical Society. Copyright 2019.)

232

- Figure 6. (a) Effect of Mo/Ni molar ratio on the intrinsic reaction rate of m-cresol conversion and Tol formation at 350 °C. (b) Arrhenius
 plots of m-cresol deoxygenation to Tol over NiMo catalysts with different Mo/Ni molar ratios at a temperature range of 300–350 °C.
 Number near the line shows the activation energy with units of kJ/mol. Reaction conditions: H₂/m-cresol = 60, P = 1 atm, TOS = 30 min.
 W/F was adjusted to achieve m-cresol conversion < 10%. NiMo11: Ni/Mo molar ratio=1:1, NiMo12: Ni/Mo molar ratio=1:2, NiMo21:
 Ni/Mo molar ratio=2:1. (Reproduced from ref. 91 with permission from American Chemical Society. Copyright 2019.)
- 253
- 254

Figure 7. Conversion of *p*-cresol and yields of toluene, 4-methylcyclohexanone (Mcone), 4-methylcyclohexanol (Mcol), and
methylcyclohexane (Mcane) as a function of time through tested catalysts at 250 °C, 1 MPa H₂ pressure, 60 mL of a solvent (n-hexadecane),
0.18 g of a reactant (p-cresol), and 0.2 g of a passivated catalyst in a 300 mL stirred batch autoclave. NiFe: 5 wt % Ni-9 wt % Fe/SiO₂,
NiMo: 5 wt % Ni-16 wt % Mo/SiO₂, NiW: 5 wt % Ni-30 wt % W/SiO₂. (Reproduced from ref. 41 with permission from American Chemical
Society. Copyright 2018.)

261

262 Anisole is used as a model compound for HDO because it represents the methoxy-rich aromatic molecules from the lignin in bio-oil. The

263 primary reactions happening during the hydrodeoxygenation of anisole are the direct deoxygenation (hydrogenolysis of C_{Ar}-O bond),

transalkylation (hydrogenolysis of C_{Methyl}-O bond), hydrogenation of aromatic ring and dehydration.^{46,44,85} A typical reaction network is

shown in Scheme 2.

- Scheme 2. Possible routes for anisole hydrodeoxygenation. (Reproduced from ref. 99 with permission from Elsevier. Copyright 2014.)
 268
- 269 The conversion routes of anisole hydrodeoxygenation depends on the reaction conditions (e.g., temperature, H₂ pressure). Jin *et al.* found
- 270 that Ni catalysts (activated carbon, SiO₂, SBA-15, and γ -Al₂O₃ as support) exhibited high activity for the saturation of aromatic ring at the
- 271 relatively low temperature (180-210 °C) and moderate hydrogen pressure (0.5-3.0 MPa).⁸⁶ The selectivity to benzene via direct cleavage
- 272 of C_{Ar}-O bond increased at lower H₂ pressure (*e.g.* atmospheric pressure, **Figure 8**).

274 Figure 8. Pressure dependence of conversion and selectivity toward main products in HDO of anisole. Reaction condition: 8 wt% anisole

275 (1.2 g, 0.0108 mol) dissolved in 20 mL n-decane, 0.1 g reduced catalysts (Ni/SiO₂), 210 °C, 700 rpm stirring speed. (Reproduced from ref.

276 86 with permission from Elsevier. Copyright 2014.)

278	Moreover, the dispersion of nickel species and the synergy between metallic sites and acid sites are key to the hydrogenation of anisole on
279	supported nickel catalysts. ^{86,115} Anisole HDO over Ni supported on different supports (SBA-15, Al-SBA-15, γ-Al ₂ O ₃ , microporous carbon,
280	TiO ₂ and CeO ₂) was conducted in a flow reactor at relatively low hydrogen pressure (0.3 Mpa) and moderate temperature (290–310 °C). ⁹⁵
281	The low H ₂ pressure, relatively high temperature and low space velocity favored the formation of aromatic products. In addition, the
282	product distribution was regulated by the acidity and metal dispersion. Properties of supports influenced the dispersion of active phases.
283	The weak acidity of C promoted the adsorption of Ni cations on the support. Besides, the incorporation of Ni generated additional acidity
284	on the catalysts. Both weak and strong acidity sites were observed over Ni/C catalyst by NH ₃ -TPD. The yield of aromatic products could

be further increased to 65% (310 °C, 0.3 MPa, WHSV= 20.4 h⁻¹) over Ni/C catalyst due to the high dispersion of Ni and acidity of catalyst.

286	Tu et al. fabricated Ni/IM-5 catalyst by hydrothermal synthesis. ¹¹⁶ The microporous and mesoporous channels of the support promoted the
287	dispersion of Ni species and enhanced the interaction between NiO and the IM-5 zeolite. Both TEM and CO-FTIR results confirmed the
288	high dispersion of Ni species on IM-5 support. The introduction of nickel species caused the formation of new medium-acid sites and
289	increased the amount of weak acid compared with the support according to NH3-TPD profiles. Compared to the catalyst prepared by
290	hydrothermal method, both the acid amount and acid strength decreased on catalyst prepared by metal infiltration, possibly due to the
291	blockage of acid sites in the micropores by Ni particles. The catalyst prepared by impregnation method showed more microporous area
292	(233 m ² /g) than the sample synthesized by hydrothermal method (208 m ² /g), indicating that hydrothermal method could load Ni particles
293	into the microporous channels more efficiently. The high activity and selectivity to cyclohexane was attributed to the high dispersion of
294	nickel species and the synergy between metallic sites and acid sites on the catalyst prepared by hydrothermal method that promoted the
295	hydrogenation-dehydration route.
296	
297	Incorporation of other elements (e.g. Cu, Ga, Ce) to tune the properties of Ni species has also been employed for the hydrodeoxygenation
298	of anisole. ⁴⁵ Yang et al. studied the effect of Ce/Si molar ratio on the hydrodeoxygenation of anisole on Ni/Ce-SBA-15 at 270-290 °C and
299	H ₂ pressure of 0.7 MPa in a flow reactor. ¹⁰⁹ Increasing Ce/Si ratio could slightly enlarge the pore diameters of SBA-15 and samples with
300	Ce/Si ratio of 0.001–0.03 had higher specific surface area and total pore volume than bare support. Moreover, the Ni particle sizes gradually
301	decreased (from 8 nm to 3 nm) as adding Ce species to SBA-15, indicating the increase in Ni dispersion. The catalyst with Ce/Si = 0.03
302	exhibited the highest turnover frequency (TOF) for HDO of anisole to benzene at 290 °C and it was ascribed to high dispersion of the
303	metallic phase and the formation of specific active sites at the Ni ⁰ -cerium oxide interface (Table 4). The introduction of Ga to Ni/SiO ₂

304 generated Ni-Ga alloy and an intermetallic compound.⁴⁷ Ga not only diluted Ni ensembles into smaller ones (geometric effect), but also

transferred electron to Ni (electronic effect), which resulted in the enhancement in the hydrogenolysis route and suppression in both

306 methanation and hydrogenation of aromatic ring.

307

309

305

308 Table 4. Anisole hydrodeoxygenation over 5% Ni/Ce-SBA-15 catalysts. (Reproduced from ref.109 with permission from Elsevier.

Copyright 2016.)					
Catalysts	Ce/Si molar ratio	Rate(µr	nol/s g _{Cat.})	$TOF^{a}(s^{-1})$	× 10 ³
		270°C	290 °C	270°C	290 °C
Ni/CeSi-001	0.001	0.22	0.50	1.3	5.8
Ni/CeSi-01	0.01	0.23	0.60	1.2	5.9
Ni/CeSi-03	0.03	0.54	0.97	2.4	7.9
Ni/CeSi-08	0.08	0.80	1.11	2.8	7.3

310 311 ^a For benzene production estimated from Ni dispersion.

312 Guaiacols (guaiacol, vanillin, etc.) are selected as model compounds because they contain both hydroxyl (-OH) and methoxy (-OCH₃)

313 groups representative of lignin derived phenolic compounds. They therefore offer a useful compromise between analytical simplicity and

314 model representativeness.¹¹⁷ The strength of C–O bonds of guaiacol molecule follows the order: $C_{Ar}O-CH_3(247 \text{ kJ/mol}) < C_{Ar}-OCH_3(356 \text{ model}) < C_{Ar}O-CH_3(247 \text{ kJ/mol}) < C_{Ar}O-CH_3(247 \text{ kJ/mol}) < C_{Ar}O-CH_3(356 \text{ model}) < C_{Ar}O-CH_3(356 \text{$

kJ/mol $< C_{Ar}$ -OH (414 kJ/mol).¹¹⁸ Due to the presence of the aromatic ring and two oxygen-containing groups with three positions where

the cleavage of C-O can happen, the reaction network of hydrodeoxygenation of guaiacol is very complicated. A typical one is shown in

317 Scheme 3.

- 318
- 319 Scheme 3. Guaiacol conversion pathways over Ni-based catalysts. (Reproduced from ref. 55 with permission from Elsevier. Copyright
 320 2012.)

322	Like the hydrodeoxygenation of phenol and anisole, low H ₂ pressure and high reaction temperature can preserve the aromatic ring via
323	direct hydrogenolysis route for guaiacol over nickel-based catalysts. ^{103,119} In contrast, high H ₂ pressure and relatively low reaction
324	temperature promote the saturation of aromatic ring as the first reaction step.
325	
326	Supports with more surface acidity are beneficial for the HDO ability of the catalyst, but coke formation originating from the acidity is a
327	disadvantage. ^{52,117,120,121,122} The formation rate of cyclohexane is positively correlated with the total number of acid sites (mainly Brønsted
328	acid) on Ni/HBEA catalysts, implying that Brønsted acid sites are active for demethoxylation and dehydration reactions.98 Ni/hierarchical
329	ZSM-5 and Ni/microporous ZSM-5 with roughly the same dispersion of Ni were applied for the HDO of guaiacol. ¹²³ Higher activity was
330	achieved over catalysts with more acidity on the surface. Barton et al. confirmed the role of acid sites by comparing Ni/HZSM-5 with
331	Ni/SiO2 (inert support), finding that incomplete deoxygenation of guaiacol occurred over the latter because of the low activity for
332	dehydration of cyclohexanol. ¹²⁴ High selectivity to cyclic alcohol also is obtained over other Ni/support (ZrO ₂ , CeO ₂ , ZrO ₂ -CeO ₂ , MgO,
333	Nb ₂ O ₅ and carbon) catalysts. ^{51,71,87,125,126}
334	
335	Metal-support interaction also influences the HDO of guaiacol. Zhang et al. observed that the strong interaction between Ni and the anatase
336	TiO_2 caused the cross migration between TiO_2 and Ni species even at mild temperatures (300°C). ¹²⁷ The migration of anatase TiO_2 onto
337	Ni particles formed an amorphous TiO ₂ overlayer and subsequently deactivated the Ni sites for activation of H ₂ (Figure 9). However, the
338	migration of Ni (< 1.5 wt %) onto anatase TiO ₂ generated a new type of catalytic site that was highly dispersed and strongly interacted
339	with the TiO_2 support. These sites were too small to be detected by high-resolution TEM (< 2 nm) and they were attributed to the high
340	selectivity obtained in hydrodeoxygenation of guaiacol to phenol.

Figure 9. HRTEM images of SE-Ni 400/2 h. (Reproduced from ref. 127 with permission from American Chemical Society. Copyright
 2019.)

A second metal (*e.g.* Fe, Mo, Cu, Co) is often incorporated onto nickel catalysts in the HDO of guaiacols.^{40,128,129,130} The promotional effect

of oxophilic metals (e.g. Fe, Mo) is interpreted as the facile activation of C-O bonds over the oxophilic sites.^{79,131} Mo⁶⁺, Mo⁵⁺, Mo⁴⁺ and

346 Mo⁰ species co-existed on the reduced NiMo/Al₂O₃-TiO₂ catalysts.⁵⁴ The observation that higher reduction temperature could increase

both the relative amount of Mo^0 (from 9% to 22%) and HDO activity (from 39% to 100%) led to the conclusion that Ni^0 and Mo^0 were

348 active sites for guaiacol HDO. Guaiacol conversion of 98% and 100% selectivity to hydrocarbon (85% cyclohexane, 13%

349 methylcyclohexane and 2% toluene) was achieved on NiMo/Al₂O₃-TiO₂ catalyst with 10 wt% Ni and 20 wt% Mo at 300 °C, 2 MPa in a

350 flow reactor. The introduction of Co to nickel catalysts favors the formation of cyclic alcohol rather than hydrocarbons in the HDO of

guaiacols.^{53,132} The formation of NiCo alloy and oxygen vacancies on CoO_x was proposed to account for the high selectivity to alcohol.

352 Positive roles of other species (e.g. Cu, Ga, La, Sm, Ce, W) have also been reported.^{84,117,133,134}

353

Solvents are frequently used to dissolve reactants and they have a dramatic effect on guaiacol conversion and product distribution.¹³⁰ Some solvents (*e.g.* isopropanol) may decompose on the catalysts (*e.g.* CoNi/Al₂O₃) and provide H species to promote HDO reactions.¹³² The solvent effect is complicated, and little research effort has been dedicated to this topic. Water was a better solvent than methanol and ethanol in the hydrodeoxygenation of guaiacol over NiCo/ γ -Al₂O₃ catalysts (**Table 5**).⁵³ Possible reasons were that methanol would react with intermediates during guaiacol HDO or methanol/ethanol would competitively adsorb on the active sites. Solvent effects also depend

359	on the choice of catalysts for the hydrodeoxygenation reaction because of the difference in chemical and physical properties of solvents
360	and catalysts. In the HDO of eugenol, a conversion of 96.2% and a selectivity to hydrocarbons of 44.3% were achieved over Ni.AC in
361	water. ¹³⁵ At the same reaction conditions, the conversion decreased to 67% and selectivity to hydrocarbons decreased to 7.4% over Ni/AC
362	in n-hexane. In contrast, the conversion increased from 63.9% to 100% and selectivity to hydrocarbons increased from 70.7% to 90% over
363	Ni/HZSM-5 when replacing water with n-hexane as solvent. The dramatically different performance profiles were ascribed to the
364	discrepancies of catalyst dispersion and reactant solubility in different solvents.
365	

Table 5. Effect of Solvent on Guaiacol Conversion and Product Distribution^a. (Reproduced from ref. 53 with permission from American
 Chemical Society. Copyright 2017.)

				se	lectivity	
entry	catalysts	guaiacol con (%)	COL	COE	t- MCOL	c- MCOL
1	water	96.0	70.9	0.36	12.9	8.1
2	methanol	40.1	31.9	2.2	29.4	23.9
3	ethanol	48.1	32.6	1.1	32.8	22.4

369 a COL: cyclohexanol. COE: cyclohexane. t-MCOL: 1-methyl-1,2- cyclohexanediol, trans. c-MCOL: 1-methyl-1,2-cyclohexanediol, cis.

370

368

371 3.2 HDO of Furanic Compounds

372

Furan-derived compounds (*e.g.* furfural, hydroxymethylfurfural, benzofuran, *etc.*) are also found in bio-oils.^{22,36,136,137} The -CHO group in

374 furfural and hydroxymethylfurfural can cause instability in bio-oils. Moreover, the hydrodeoxygenation of hydroxymethylfurfural (HMF)

to dimethylfurfural (DMF) has received much attention since Dumesic's group proposed the production of HMF by selective dehydration

of fructose.¹³⁸ DMF is regarded as a promising liquid fuel because it has high boiling point, high energy density, and low solubility in

377 water. A typical conversion route is shown in Scheme 4.¹³⁹

380
381Scheme 4. Reaction pathway of HMF hydrodeoxygenation. (Reproduced from ref. 139 with permission from Elsevier. Copyright 2020.)381Hydrodeoxygenation of HMF over nickel catalysts is highly influenced by process parameters (*e.g.* reaction temperature, H₂ pressure).383Typical temperature and pressure are 150 - 220 °C and 0.25 MPa - 5MPa. Too high temperature (*e.g.* 250 °C) causes ring hydrogenation,384ring cracking, coke formation and other side reactions.^{57,140,141} The conversion routes are proposed to depend on the adsorption mode of385furan-derived compounds on the surface of catalysts.¹⁴² That decarbonylation of HMF proceeds through $\eta^1(C)$ -acyl species (Scheme 5a),386resulting in the formation of furfuryl alcohol and CO.^{143,144} 2,5-Bis(hydroxymethyl)furan (BHMF) is produced from hydrogenation of C=O387bond *via* $\eta^2(C, O)$ -aldehyde species (Scheme 5b) or $\eta^1(O)$ -aldehyde species (Scheme 5c).^{145,146} 5-methylfurfural (5-MF) could be formed

388 *via* furoxy species (Scheme 5d) by abstracting hydrogen from -OH of HMF followed by C-O bond cleavage of the furoxy species.^{142,145}

Scheme 5. Proposed oxygenate intermediates species for the conversion of HMF on transition metal surfaces. (Reproduced from ref. 142
 with permission from American Chemical Society. Copyright 2016.)

392

389

379

Kinetic studies of HMF HDO have been performed to reveal the rate determining steps related to the C-O and C=O bonds. The hydrogenation of HMF to BHMF was the rate-determining step over Ni/C catalysts at 150-190°C, 10 Mpa.¹⁴⁷ Typical side reactions (the formation of 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF) and 2,5-dimethyltetrahydrofuran (DMTHF)) were kinetically blocked,

which explained the high selectivity to DMF. Duarte et al. suggested that hydrogenation of the HMF carbonyl group was faster than

398 found that the reaction route of HMF HDO over CuNi/biochar catalyst was controlled by temperature.¹⁴¹ At low temperature (around

399 100 °C), the HDO of HMF first underwent the hydrogenation of C=O group. When the temperature was high enough, the hydrogenolysis

400 of -OH of HMF would be the first step (Figure 10).

401

402

403Figure 10. Profiles of Arrhenius plots of different intermediates in the HDO of HMF over 5% Cu-15% Ni/BC: black line HMF as substrate,404red line DHMF as substrate, blue line MFF as substrate, and purple line MFA as substrate. Reaction conditions: $M_{substrate} = 1.98 \times 10^{-3}$ 405mol, $m_{5\%Cu-15\%Ni/BC} = 100$ mg, $V_{THF} = 40$ mL. (Reproduced from ref.141 with permission from American Chemical Society. Copyright4062019.)

407

408 Unlike the hydrodeoxygenation of aromatic oxygenates, in which the hydrogenation of aromatic ring is preferential, the furan ring is

409 usually preserved in HDO of furanic compounds at low temperature (e.g. 200 °C). The -OH group in HMF, 2, 5-bishydroxymethylfuran

410 (BHMF) and 5-methyl-furfurylalcohol (MFA) is removed by direct hydrogenolysis due to the presence of the furan ring. Thus, most of the

411 attention on the design of nickel catalysts for HMF HDO focuses on the dispersion of metallic site, Lewis acidity and the interaction

412 between metallic sites and support instead of the Brønsted acidity.^{139,148,149}

413

414 Kong et al. prepared NiSi-phyllosilicate catalyst via ammonia evaporation method and then applied it to the HDO of HMF in a batch

415 reactor.⁶¹ Both highly dispersed Ni⁰ sites and coordinatively unsaturated Ni²⁺ sites at nickel phyllosilicate were closely present on the

416 reduced catalyst (Figure 11). Compared to impregnated catalyst with a similar loading amount of Ni, NiSi-phyllosilicate catalyst had much

417	smaller particle size and much higher/larger surface properties (e.g. specific surface area, pore volume, pore size, specific surface area of
418	Ni and acid density). The catalyst showed much higher intrinsic activity (1404 h^{-1}) and hydrogenolysis rate (1487 h^{-1}) for HDO of HMF
419	than impregnated Ni/SiO ₂ catalyst (703 h^{-1} and 479 h^{-1} , respectively) at low temperature. Full conversion of HMF and 72.9% DMF
420	selectivity were obtained at 130 °C, H ₂ pressure of 1.5 Mpa, 0.15 g of NiSi-phyllosilicate catalyst, 1.5 g of HMF in 38 ml of 1,4-dioxane
421	and 3h reaction time. The superior performance was attributed to the synergy between highly dispersed Ni ⁰ sites and coordinatively
422	unsaturated Ni^{2+} sites in proximity. Ni^{0} sites were proposed to dissociate H_{2} and hydrogenate the C=O bond while coordinatively
423	unsaturated Ni ²⁺ sites activated the C–O bond. Similar effects were also observed over Ni/ZrP catalysts. ⁵⁸ Siddiqui <i>et al.</i> studied the HDO
424	of HMF over Ni/WO ₃ at 100–200 °C in a batch reactor. ¹⁵⁰ Full conversion of HMF and 95% DMF selectivity was achieved at pressure
425	180 °C and 1 MPa of H_2 over 6h of reaction, with DHMF and MFOL as the main intermediates. The enhanced activity was ascribed to the
426	presence of highly dispersed Ni NPs on the WO ₃ .

428 Figure 11. Characterizations of surface acidity. (a) Schematic representation of reduced impregnated Ni/SiO₂ catalysts, NiSi-PS and origin 429 of surface acidity. (b) NH₃-TPD results of reduced catalysts, (c) FT-IR and NH₃-TPD results of calcined and reduced NiSi-PS catalysts, 430 and (d) Py-IR spectra of calcined and reduced NiSi-PS catalysts. (Reproduced from ref. 61 with permission from American Chemical 431 Society. Copyright 2015.)

432

433 Copper is often incorporated to nickel catalysts for HDO of furan-derived compounds.¹⁵¹ The synergistic effect between Cu and Ni in

435 synergistic effect between CuNi alloy and Lewis acid sites on NiO_x species over CuNi/biochar catalyst (Scheme 6).¹⁴¹ The bimetallic

⁴³⁴ terms of geometric effect and electronic effect has been observed by many researchers.^{77,152} The HDO of HMF was facilitated by a

- 436 catalyst (5% Cu-15% Ni/BC) had a much higher TOF(DMF, 128.1 h⁻¹) than monometallic Ni catalyst (22.4 h⁻¹) although 15% Ni/BC had
- 437 a higher dispersion of Ni (3.2% for monometallic catalyst and 1.9% for bimetallic catalyst). NiO_x species adsorbed and activated the C=O
- 438 bond *via* the O atom. The electron transfer from Cu to Ni promoted the β-hydride elimination and C–O hydrogenolysis of HMF. Besides,
- 439 a proper ratio of Lewis acid/metal active sites (2.49) significantly influenced the HDO of HMF to DMF. Tang *et al.* found that alloying Ni
- 440 with Cu could downshift the *d*-band center of Ni.¹⁵³ It not only improved the catalytic activity by promoting the desorption of H species
- 441 from Ni surface but also tailored selectivity by transforming the adsorption orientation of furfural.

442	"The pink represents NiOx, and the green represents Cu-Ni alloy.
443	Scheme 6. Plausible Reaction Mechanism for the HDO of HMF to DMF over the Cu-Ni/BC Catalyst ^a . (Reproduced from ref.141 with
444	permission from American Chemical Society. Copyright 2019.)
445	
446	Supports have effects on the interaction between Ni and Cu and surface distribution of each metal, which subsequently influence the
447	catalytic properties. Generally, Cu segregates on the NiCu bimetallic surface because Cu has a lower surface energy than Ni in vacuum
448	However, the introduction of support usually causes interaction between support and metals and provide additional changes in their surface
449	distribution. The TiO ₂ of CuNi/TiO ₂ catalyst caused Ni species to be enriched at the TiO ₂ interface. The formation of the Cu-shell and Ni-
450	core structures contributed to the enhanced HDO activity and high selectivity to methylated furans (Figure 12). ¹⁵⁴ When employing Al ₂ O ₂
451	as support, Ni accumulated into continuous domains which had minimal interaction with Cu on the surface, leading to the hydrogenation
452	of furan ring. ⁶⁴ However, a NiCu ₃ phase was found on NiCu/C catalyst consisting of a Cu-rich core and a 1:1 molar Ni: Cu shell. ⁶² Wang

453 et al. observed the formation of NiCu alloy on the NiCu/Nb₂O₅ catalyst.¹⁵⁵ The bimetallic catalyst exhibited more active sites for the

454 activation of H₂ than Ni/Nb₂O₅, resulting in high catalytic activity of NiCu/Nb₂O₅ in the HDO of 4-(2-furanyl)-3-butene-2-one.

- 455
- 456
- 457

458

459 Figure 12. Schematic diagram of the proposed operating states of Cu–Ni bimetallic catalysts on Al₂O₃ and TiO₂. For Cu–Ni/Al₂O₃,
 460 significant exposure of extended Ni domains drives efficient ring hydrogenation to form THFOL, whereas the segregated structure of

- 461 Cu-Ni on TiO₂ facilitates MF formation. E_{INT} : Energy of interaction between metal (either Ni or Cu) and support (Al₂O₃ and TiO₂).
- 462 (Reproduced from ref.154 with permission from American Chemical Society. Copyright 2020.)
- 463

464 Other metals have also been found beneficial when added to nickel catalysts for the HDO of HMF. The introduction of Zn to Ni/Al₂O₃

465 catalyst generated β1-NiZn alloy species on the surface.¹⁵⁶ Ni atoms were not only geometrically isolated but also electron-enriched by Zn

- 466 atoms, which led to a significant increase in the ratio of C-O hydrogenolysis rate over C-C cracking rate on NiZn/Al₂O₃ catalyst compared
- 467 with Ni/Al₂O₃ (Figure 13). The oxyophilic Fe sites in NiFe alloy could stabilize the η^2 -(C,O) adsorption of furfural and thus suppressed
- the undesired decarbonylation of furfural to furan and over-hydrogenation of furan ring over NiFe/C catalyst.^{63,157,158}
- 469

471	Figure 13. (A) Structure evolution of the NiZnAl catalyst and (B) comparisons of rate for C-O conversion to C-C conversion under
472	similar conversions. (Reproduced from ref. 156 with permission from American Chemical Society. Copyright 2017.)
473	
474	Typical solvents used in the hydrodeoxygenation of furan-derived compounds are THF, water, 1-propanol, 1,4-dioxane, etc. Common
475	concerns regarding choosing a solvent involve the solubility of reactants and intermediates, the reactivity of solvent with substrates and
476	the stability of solvent at the reaction condition. Gyngazova et al. studied effect of 7 solvents on the performance of HDO of HMF over
477	Ni/C catalysts. ¹⁴⁷ They found that the reaction with tetrahydrofuran (THF) and 2-methyl-THF as solvent could have high conversion of

478 HMF, high selectivity to DMF and solvent stability. It was found that 2-methyl-THF was a better solvent than THF, because water was

479 formed during the HDO and 2-methyl-THF had a lower water miscibility. Water was the best solvent among water, ethanol, isopropanol,

480 THF and hexane for HDO of HMF over Ni/WO₃ (Table 6).¹⁵⁰ When hydrodeoxygenation of furfural was performed, isopropanol was a

481 better H₂ donor and solvent than methanol to achieve high yield to 2-methylfuran due to a lower reduction potential of isopropanol.¹⁵⁹

482

Table 6. Effect of different solvents on the HMF hydrogenation. (Reproduced from ref.150 with permission from the Royal Society of
 Chemistry. Copyright 2018.)

			Produc	t select	ivity (%)	
S. No.	Solvent	Con. (%)	BHMF	MFA	DMF	Others
1	Water	99	2.1	1.9	95	0
2	Ethanol	47	65	2.8	24.6	7.6
3	Isopropanol	49	64.6	1.4	29	3.6
4	THF	13	12.8	34.6	40.8	11.8
5	Hexane	9.8	48.7	1.3	17.7	32.3

485 486

487 3.3 HDO of Carboxylic Acids and Esters

488

489 A typical conversion route for hydrodeoxygenation of carboxylic acids and esters over nickel catalysts is shown in Scheme 7.⁶⁷ The

490 dispersion of metallic sites, the properties of support (acid/base sites) and the synergy among different functionalities often govern the

491 catalytic activity and product distributions at a given reaction condition.^{82,160,161,162,163} Ni⁰ sites favor H₂ dissociation, decarbonylation /

492 decarboxylation, hydrogenolysis of C-O bond and hydrogenation reactions, while Brønsted acid sites catalyze the dehydration of alcohol.¹⁶²

- 493 Cracking and isomerization of the carbon chain also occur depending on the type and strength of acid sites.^{164,165,166} It is also found that
- 494 lower H₂ pressures promote decarbonylation/decarboxylation while higher H₂ pressures facilitate the HDO route. Increasing reaction
- 495 temperature could promote the conversion but too high temperature usually causes the cracking of alkanes.

497 Scheme 7. Proposed reaction network for the hydrodeoxygenation of stearic acid, showing the decarbonylation route towards n498 heptadecane (C17), dehydration/hydrogenation to n-octadecane (C18), and reversible esterification towards stearyl stearate. (Reproduced
499 from ref. 67 with permission from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright 2017.)

500

- 501 Alkanes with one less carbon atom are usually obtained in the deoxygenation of carboxylic acids and carboxylic acid esters over nickel
- 502 catalysts, such as Ni/ZrO₂, via the decarbonylation/decarboxylation route.^{160,161,167} Ni sites alone could hydrogenate stearic acid to aldehyde
- 503 over Ni/ZrO₂ catalysts.¹⁶⁸ The oxygen vacancy of ZrO₂ could facilitate the adsorption of stearic acid *via* carboxylic group and generate
- 504 carboxylate species, which was subsequently converted to a ketene intermediate by abstracting an α -hydrogen atom. Ni sites were then
- 505 involved to transform ketene into aldehydes and then decarbonylate aldehydes to C17 alkane (Figure 14).

506

- 507 Figure 14. Proposed reaction mechanism for deoxygenation of stearic acid to C17 n-heptadecane via synergistic catalysis over Ni/ZrO₂.
- 508 (Reproduced from ref.168 with permission from American Chemical Society. Copyright 2012.)

516 hydrodeoxygenation route to produce 1-octadecene (Figure 15).

517

Figure 15. Rate constant for the dehydration of 1-octadecanol (square) and esterification of stearic acid and 1-octadecanol (cross)
 normalized to catalyst weight as a function of concentration of BAS on Ni/SiO₂–ZrO₂ catalyst. Reaction conditions: stearic acid (0.5 g),
 Ni/SiO₂–ZrO₂ catalyst (10 wt% Ni, 0.05 g), dodecane (100 mL), 260 °C, p(H₂)=40 bar, stirring at 600 rpm, 2 h. (Reproduced from ref. 67
 with permission from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright 2017.)

Figure 16. Decarbonylation reaction rate constant on Ni_xCu_{1-x}/ZrO_2 (x = 1, 0.79, 0.59, 0.29, 0) and physical mixtures of Ni/ZrO_2 and Cu/ZrO₂ (empty symbols) as a function of Ni content. Reaction conditions: stearic acid (0.5 g), Ni_xCu_{1-x}/ZrO_2 or x Ni/ZrO_2 1– xCu/ZrO_2 (x = 1, 0.79, 0.59, 0.29, 0; 0.2 g) n-dodecane (100 mL), 260 °C, p(H₂) = 4 MPa, 600 rpm. (Reproduced from ref.68 with permission from the Royal Society of Chemistry. Copyright 2019.)

561

562 Incorporating oxophilic metal (Fe, Mo, etc.) to nickel catalysts can significantly promote the hydrodeoxygenation route.^{78,167,93,180} As Mo

563 species have multiple valences and are very hard to be well reduced, the reduction temperature is a key governing factor in how Mo species

interact with Ni. Mo^{6+} and Mo^{4+} species were found on the surface of NiMo/Al₂O₃ catalyst reduced at 400 °C for 2.5 h in H₂ and were

565	related to promote the HDO pathway in the hydrodeoxygenation of sunflower oil. ¹⁸¹ Chen <i>et al.</i> studied hydrodeoxygenation of methyl
566	laurate over NiMoO _{3-x} /SAPO-11 reduced at different temperatures. ¹⁸² These samples exhibited similar specific surface area, pore volume
567	and pore diameters. NH ₃ -TPD results showed the generation of new acid sites at 550 °C on samples reduced at 400, 450 or 500 °C apart
568	from original acid sites at 260 °C and 350 °C. Loading NiMo species onto the support significantly increased the number of acid sites, but
569	increasing the reduction temperature could gradually decrease the amount of acid sites. This led to the highest isomerization selectivity
570	over catalyst reduced at 400 °C due to the highest acid concentration induced by Mo ⁵⁺ sites. The particle sizes and dispersion of metal
571	species were not significantly influenced by reduction temperature in terms of TEM and NO chemisorption results. NiO could be easily
572	reduced to metallic Ni species while Mo species with different valences (Mo ⁶⁺ , Mo ⁵⁺ and Mo ⁴⁺) existed after reduction at 400-550 °C.
573	Higher reduction temperature (from 450 to 550 °C) increased the amount of Mo ⁴⁺ species (from 37.5% to 51.4%), which adsorbed C=O
574	bond and -OH bond and thus accounted for the high selectivity to C12 alkanes via hydrodeoxygenation routes (Scheme 9).

over the same catalyst. This was explained by the adsorption of guaiacols (guaiacol, eugenol, and vanillin) on the mixture on the Lewis

588	acidic sites on Ni/γ -Al ₂ O ₃ , which produced catechol and its derivatives as intermediates. These were then polymerized to the precursor of
589	coke. As guaiacols and carboxylic acids were present in bio-oils, the hydrodeoxygenation of guaiacol and propionic acid mixture was
590	studied over Ni/hierarchical ZSM-5, Ni/ SBA-15 and Ni/Al-SBA-15 catalysts. ¹⁸⁵ The presence of propionic acid decreased the conversion
591	of guaiacol to different extent depending on the support of catalysts. Propionic acid could form esters with alcohols, such as methanol from
592	demethoxylation of guaiacol. Ni/hierarchical-ZSM-5 catalyst exhibited the highest HDO activity, possibly due to the highest acidity of the
593	support.
E0/	
594	
595	3.5 HDO of Raw Feedstocks
596	Nickel and nickel-based bimetallic catalysts are also tested in the hydrodeoxygenation of raw feedstocks (e.g. bio-oils, waste cooking oil,
597	algae oil). ^{186,187,188} Guo et al. studied the hydrodeoxygenation of algae oil on Ni-Cu/ZrO ₂ catalysts. A maximum HDO efficiency of 82%
598	with the yield to liquid product of 90% was reached on a Ni-Cu/ZrO ₂ catalyst under the condition of 350 °C, H ₂ pressure of 2 MPa; LHSV
599	of 3.5 h^{-1} , H ₂ /oil (volume ratio) of 450 N m ³ /m ³ . Both the HDO efficiency and stability of the Ni–Cu/ZrO ₂ catalyst surpassed the results
600	obtained on NiMoS/Al ₂ O ₃ catalyst. ¹⁸⁹ Loe et al. applied 20% Ni/Al ₂ O ₃ and 20% Ni–5% Cu/Al ₂ O ₃ catalysts for the deoxygenation of algal
601	lipids in a flow reactor. The content of diesel range hydrocarbons increased from \sim 7% to 78% over Ni/Al ₂ O ₃ and 83% over NiCu/Al ₂ O ₃
602	at time-on-stream (TOS) = 1 h. ¹⁷⁶ However, the content of diesel range hydrocarbons decreased to 42% on Ni/Al ₂ O ₃ and 45% on
603	$NiCu/Al_2O_3$ at TOS = 4 h. As the feedstock contained a high amount of unsaturated fatty acid and compounds like phytols, these compounds
604	could strongly adsorb on the active sites. Moreover, the unsaturated fatty acid could easily form coke on the active sites. The results
605	highlight the importance of feedstock pretreatment and design of more robust catalysts. Hydrodeoxygenation of waste cooking oil was
606	investigated over Ni/mesoporous HY catalyst with a C8-C16 yield of 40.5% and jet range aromatic hydrocarbons yield of 11.3% obtained
607	at 400°C. The main conversion route is decarbonylation followed by cracking of long chain alkanes into C8–C16 hydrocarbons. ¹⁹⁰

609	One problem of bio-oil hydrodeoxygenation over Ni-based catalysts is the high yield of gas products, which originates from the types of
610	feedstocks, the choice of catalysts and reaction conditions. ^{191,192,193,194,195} Jahromi <i>et al.</i> studied the hydrodeoxygenation of pinyon-juniper
611	(PJ) catalytic pyrolysis oil using Ni/red mud catalysts in a batch reactor. ¹⁹² Organic liquid yield of 68.6% and gas (CH ₄ , CO, CO ₂ and C ₂ H ₄
612	etc.) yield of 16.4% were obtained using 40%Ni/red mud (RM) under the condition of 400 °C and H ₂ pressure of 6.2 MPa. The oxygen
613	content of pyrolysis oil decreased from 24.88 wt.% to 1.35 wt.% and heating value increased from 28.41 MJ/kg to 45.77 MJ/kg. Zhao et
614	<i>al.</i> studied the hydrodeoxygenation of n-hexane-extracted crude pyrolysis oil over 20 wt% Ni/HZSM-5(Si/Al = 45) catalyst. ¹⁹⁶ The bio-oil
615	was almost quantitatively converted to 15% of pentanes, 85% of C6–C9 cyclohexanes and trace amount of CO ₂ in a semi-batch reactor at
616	250 °C, H_2 pressure of 5 MPa and stirring speed of 680 rpm for 4h reaction.
617	
618	Coke formation is one of the major problems in the hydrodeoxygenation of raw feedstocks over supported Ni catalysts. ^{191,195,197,198,199} It
619	originates from the Brønsted acidity of the catalysts, which is introduced to facilitate the dehydration step. Li et al. found that the types of
620	coke formed on the Ni/HZSM-5 catalyst in the HDO of bio-oil depended on reaction temperature. ¹⁹⁷ Polyaromatics were produced by
621	aromatization, dehydrogenation, and hydrogen transfer reactions at higher temperatures (>280 °C) and coke of aliphatic compounds were
622	formed by aromatization and rearrangement reactions at lower temperatures. The coupling of oxygenates and protons on Brønsted acid
623	sites of HZSM-5 produced carbocations, which were precursors of graphite carbon. The incorporation of Cu to catalysts could significantly
624	decrease the amount of coke formed on the catalyst (e.g. 19% to 9%), although the detailed mechanisms are not clear yet. ^{176,198}
625	
626	Trace elements from bio-oil (e.g. sulfur, chlorine, phosphorus and alkali metals) can also cause the deactivation of Ni-based catalysts in
627	the long-term hydrodeoxygenation reaction. ^{200,201} Unlike coke that can be removed by regeneration, the inorganic species are persistent on
628	the surface. However, relevant research is scarce in literature. As sulfur could react with Ni to form stable nickel sulfide, it deactivated the
629	catalysts quickly (12 h). ²⁰² The amount of sulfur which could completely deactivate Ni/ZrO_2 was roughly equivalent to the amount of

630	$available Ni(1.1\ mol_{s}/mol_{Ni}).\ Similarly, Ni_{3}S_{2}\ was\ detected\ on\ the\ surface\ of\ sulfur-deactivated\ NiCu/Al_{2}O_{3}\ catalyst.^{201}\ A\ steady\ decrease$
631	in catalytic activity of Ni/ZrO_2 was observed when introducing 0.05 wt% Cl into reactor over 40 h and the extent was similar to sulfur-
632	induced one. However, the catalytic activity could be resumed when the feeding of Cl was stopped, indicating that the Cl-induced
633	deactivation was not permeant. K ⁺ did not significantly influence the hydrogenation activity of Ni/ZrO ₂ , but markedly decreased its
634	deoxygenation activity (from 90% to 20%), which was attributed the blocking of low-coordination sites by K ⁺ . However, it was also
635	proposed that K, Mg, Ca species mainly deposited on the support. ²⁰¹
636 637 638	4. Summary and Perspectives
639	The hydrodeoxygenation of biomass derived oxygenates to fuels is a potential way to alleviate the dependence on fossil fuels.
640	Comprehensive design of the process, including the production and pretreatment of feedstocks (e.g. bio-oils and bio-diesels),
641	hydrodeoxygenation reactions, and improved reactors, is required to improve the process efficiency. The development of HDO catalysts
642	is one of the most important and difficult challenges due to the complexity in the compositions of feedstocks, the presence of large amount
643	of water and process characteristics. Nickel has exceptional ability for H ₂ decomposition, but it is also very active for many undesired
644	reactions (e.g. cracking, methanation) in hydrodeoxygenation. Thus, tailoring the properties of nickel is the core topic in the design of
645	nickel based HDO catalysts. Introducing different functionalities can improve the performance of nickel catalysts in the
646	hydrodeoxygenation reactions, but there are still many problems in practice, such as sintering, and coke induced deactivation and high
647	yield of gas products.
648	
649	To cope with these difficulties, materials (supports and active species) discovery and more strategies about combining different
650	functionalities should be highlighted. Compared with the extensive research activities on HDO reactions, much less efforts are spent on

651 the innovations in catalyst synthesis. The common method for the preparation of nickel and nickel based bimetallic catalysts is

impregnation with traditional support (e.g. SiO₂, Al₂O₃). It is the simplest method, but it suffers from problems such as the low dispersion

653	of active species. Catalysts prepared by other methods, such as deposition-precipitation and ion-exchange method, have higher dispersion
654	of active species and usually exhibit higher catalytic activity in HDO reactions. Moreover, the distribution of active species and extent of
655	interactions among active species and supports are influenced by catalyst preparation method. Excellent supports usually introduce
656	necessary functionalities into the catalytic systems to achieve a synergistic effect. The use of supports with more Brønsted acidity has been
657	demonstrated to be beneficial to HDO reaction compared with inert supports.
658	
659	More mechanistic insights into the HDO reactions and structural evolution of nickel and nickel based bimetallic catalysts in reactions are
660	necessary to facilitate the target reactions and suppress the side reactions. Good HDO catalysts usually achieve the synergy between
661	metallic sites and acid sites and a suitable interaction between Ni and the other metal species. However, the detailed mechanisms of the
662	synergy and interactions that determine the catalytic activity and selectivity have not been sufficiently elucidated. Moreover, understanding
663	the adsorption modes of oxygenates on the catalysts is critical to understand the mechanisms. Thus, in situ characterization of catalysts
664	and operando experiments are recommended for future research. In addition, detailed kinetics studies on individual steps can provide a
665	much clearer picture about reactions as HDO involves many parallel and sequential reactions.
666	
667	Coke formation and sintering usually account for the deactivation of nickel and nickel-based bimetallic catalysts, but the mechanisms are
668	not well understood yet. One of the advantages of bimetallic catalysts over nickel catalysts, is that bimetallic catalysts are more resistant
669	to coke formation and sintering. Elucidation of the inherent mechanisms could help design catalysts with improved stability, and preventing
670	catalyst deactivation should considered at the early stage of catalyst design and preparation. More studies on deactivation of catalysts
671	induced by other poisons (e.g. S, Cl, P) are also necessary for the development of Ni-based HDO catalysts with good stability.

672

673	Using individual model compounds for HDO can allow necessary information about the catalysts and reactions to be obtained. However,		
674	considering the complex compositions of feedstocks (e.g. bio-oil and bio-diesel), the mutual influence among different oxygenates in HDC		
675	reactions cannot be neglected. Thus, more investigations using two or more oxygenates or raw feedstocks as substrate are critical to advance		
676	the development of new Ni-based catalysts that will have practical application for HDO.		
677			
678	Acknow	vledgement	
679	This work was supported by National Science Foundation of United States (# CBET-1510157) and National Science Foundation of United		
680	States - Industry/University Cooperative Research Center for Rational Catalyst Synthesis (# IIP-1464630).		
681	Referer	nce	
682			
683	1.	S. Z. Naji, C. T. Tye and A. A. Abd, Process Biochemistry, 2021, 109, 148-168.	
684	2.	R. A. Sheldon, Green Chemistry, 2014, 16, 950-963.	
685	3.	D. M. Alonso, J. Q. Bond and J. A. Dumesic, Green Chemistry, 2010, 12, 1493-1513.	
686	4.	T. Kan, V. Strezov and T. J. Evans, Renewable and Sustainable Energy Reviews, 2016, 57, 1126-1140.	
687	5.	A. Demirbas and G. Arin, <i>Energy Sources</i> , 2002, 24 , 471-482.	
688	6.	W. N. R. W. Isahak, M. W. Hisham, M. A. Yarmo and T.Y. Y. Hin, Renewable and Sustainable Energy	
689		<i>Reviews</i> , 2012, 16 , 5910-5923.	
690	7.	P. C. Badger and P. Fransham, <i>Biomass and Bioenergy</i> , 2006, 30 , 321-325.	
691	8.	K. Raffelt, E. Henrich, A. Koegel, R. Stahl, J. Steinhardt and F. Weirich, In Twenty-Seventh Symposium on	
692		Biotechnology for Fuels and Chemicals; McMillan J. D., Adney W. S., Mielenz J. R., Klasson K. T., Eds.;	
693		Humana Press: Totowa, United States, 2006, pp 153.	
694	9.	D. Mohan, C. U. Pittman Jr and P. H. Steele, <i>Energy & Fuels</i> , 2006, 20 , 848-889.	
695	10.	M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C. Gates and M. R. Rahimpour, <i>Energy</i>	
696		& Environmental Science, 2014, 7, 103-129.	
697	11.	D. Y. Leung, X. Wu and M. Leung, <i>Applied Energy</i> , 2010, 8 7, 1083-1095.	
698	12.	F. Ma and M. A. Hanna, <i>Bioresource Technology</i> , 1999, 70, 1-15.	
699	13.	L. Chen, J. Fu, L. Yang, Z. Chen, Z. Yuan and P. Lv, <i>ChemCatChem</i> , 2014, 6 , 3482-3492.	
700	14.	G. Li, F. Zhang, L. Chen, C. Zhang, H. Huang and X. Li, <i>ChemCatChem</i> , 2015, 7, 2646-2653.	
701	15.	J. Wu, J. Shi, J. Fu, J. A. Leidi, Z. Hou and X. Lu, Scientific Reports, 2016, 6 , 1-8.	
702	10.	L. Chen, H. Li, J. Fu, C. Miao, P. Lv and Z. Yuan, <i>Catalysis Today</i> , 2016, 259 , 266-276.	
703	1/.	G. LI, L. CHEH, K. Fan, D. LIU, S. CHEH, A. LI and K. H. Chung, Catalysis Science & Technology, 2019, 9,	
704	19	213-222. D. Valencia C. Zenteno, P. Morales Gil, I. Díaz Caraía, D. Cómora Harrara, E. Balacias Caraílas and I.	
705	10.	D. valencia, C. Zenteno, I. morales-Oli, L. Diaz-Oarcia, D. Oomora-nenera, E. Palacios-Oonzalez and J.	

706		Aburto, New Journal of Chemistry, 2020, 44, 2435-2441.
707	19.	A. Srifa, N. Viriya-empikul, S. Assabumrungrat and K. Faungnawakij, Catalysis Science & Technology,
708		2015, 5 , 3693-3705.
709	20.	S. Chen, G. Zhou, H. Xie, Z. Jiao and X. Zhang, Applied Catalysis A: General, 2019, 569, 35-44.
710	21.	P. Kumar, S. R. Yenumala, S. K. Maity and D. Shee, Applied Catalysis A: General, 2014, 471, 28-38.
711	22.	G. W. Huber, S. Iborra and A. Corma, Chemical Reviews, 2006, 106, 4044-4098.
712	23.	S. Czernik and A. Bridgwater, Energy & Fuels, 2004, 18, 590-598.
713	24.	J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö and D. Chiaramonti, Applied Energy, 2014, 116, 178-190.
714	25.	N. Yan, Y. Yuan, R. Dykeman, Y. Kou and P. J. Dyson, Angewandte Chemie International Edition, 2010,
715		122 , 5681-5685.
716	26.	H. Ohta, H. Kobayashi, K. Hara and A. Fukuoka, Chemical Communications, 2011, 47, 12209-12211.
717	27.	X. Zhu, L. L. Lobban, R. G. Mallinson and D. E. Resasco, Journal of Catalysis, 2011, 281, 21-29.
718	28.	C. R. Lee, J. S. Yoon, Y. W. Suh, J. W. Choi, J. M. Ha, D. J. Suh and Y. K. Park, Catalysis Communications,
719		2012, 17, 54-58.
720	29.	P. Lee and J. Schwarz, Journal of Catalysis, 1982, 73, 272-287.
721	30.	C. Bartholomew and R. Pannell, Journal of Catalysis, 1980, 65, 390-401.
722	31.	A. Renouprez, P. Fouilloux, G. Coudurier, D. Tocchetti and R. Stockmeyer, Journal of the Chemical Society,
723		Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1977, 73, 1-10.
724	32.	A. M. Robinson, J. E. Hensley and J. W. Medlin, ACS catalysis, 2016, 6, 5026-5043.
725	33.	E. Furimsky, Applied Catalysis A: General, 2000, 199, 147-190.
726	34.	D. C. Elliott, Energy & Fuels, 2007, 21, 1792-1815.
727	35.	H. Wang, J. Male and Y. Wang, ACS Catalysis, 2013, 3, 1047-1070.
728	36.	S. Kim, E. E. Kwon, Y. T. Kim, S. Jung, H. J. Kim, G. W. Huber and J. Lee, Green Chemistry, 2019, 21,
729		3715-3743.
730	37.	Y. Shi, E. Xing, J. Zhang, Y. Xie, H. Zhao, Y. Sheng and H. Cao, ACS Sustainable Chemistry & Engineering,
731		2019, 7, 9464-9473.
732	38.	F. Yang, D. Liu, Y. Zhao, H. Wang, J. Han, Q. Ge and X. Zhu, ACS catalysis, 2018, 8, 1672-1682.
733	39.	E. Kordouli, B. Pawelec, C. Kordulis, A. Lycourghiotis and J. Fierro, Applied Catalysis B: Environmental,
734		2018, 238 , 147-160.
735	40.	T. He, X. Liu, Y. Ge, D. Han, J. Li, Z. Wang and J. Wu, Catalysis Communications, 2017, 102, 127-130.
736	41.	PJ. Hsu, JW. Jiang and YC. Lin, ACS Sustainable Chemistry & Engineering, 2018, 6, 660-667.
737	42.	W. Li, F. Li, H. Wang, M. Liao, P. Li, J. Zheng, C. Tu and R. Li, Molecular Catalysis, 2020, 480, 110642.
738	43.	X. Zhang, X. Chen, S. Jin, Z. Peng and C. Liang, ChemistrySelect, 2016, 1, 577-584.
739	44.	J. E. Peters, J. R. Carpenter and D. C. Dayton, Energy & Fuels, 2015, 29, 909-916.
740	45.	S. A. Khromova, A. A. Smirnov, O. A. Bulavchenko, A. A. Saraev, V. V. Kaichev, S. I. Reshetnikov and V.
741		A. Yakovlev, Applied Catalysis A: General, 2014, 470, 261-270.
742	46.	T. L. Hewer, A. G. Souza, K. T. Roseno, P. F. Moreira, R. Bonfim, R. M. Alves and M. Schmal, Renewable
743		<i>Energy</i> , 2018, 119 , 615-624.
744	47.	Y. Zheng, N. Zhao and J. Chen, Applied Catalysis B: Environmental, 2019, 250, 280-291.
745	48.	X. Li, J. Zhang, B. Liu, J. Liu, C. Wang and G. Chen, Fuel, 2019, 243, 314-321.
746	49.	R. Fan, Z. Hu, C. Chen, X. Zhu, H. Zhang, Y. Zhang, H. Zhao and G. Wang, Chemical Communications,

747		2020, 56 , 6696-6699.
748	50.	H. Jahromi and F. A. Agblevor, Applied Catalysis A: General, 2018, 558, 109-121.
749	51.	X. Wang, S. Zhu, S. Wang, J. Wang, W. Fan and Y. Lv, Applied Catalysis A: General, 2018, 568, 231-241.
750	52.	P. Yan, J. Mensah, A. Adesina, E. Kennedy and M. Stockenhuber, Applied Catalysis B: Environmental, 2020,
751		267 , 118690.
752	53.	M. Zhou, J. Ye, P. Liu, J. Xu and J. Jiang, ACS Sustainable Chemistry & Engineering, 2017, 5, 8824-8835.
753	54.	DP. Phan, T. K. Vo, J. Kim and E. Y. Lee, Journal of Industrial and Engineering Chemistry, 2020, 83, 351-
754		358.
755	55.	M. Bykova, D. Y. Ermakov, V. Kaichev, O. Bulavchenko, A. Saraev, M. Y. Lebedev and V. Yakovlev,
756		Applied Catalysis B: Environmental, 2012, 113, 296-307.
757	56.	D. Mukherjee, R. Singuru, P. Venkataswamy, D. Damma and B. M. Reddy, ACS Omega, 2019, 4, 4770-
758		4778.
759	57.	D. Guo, X. Liu, F. Cheng, W. Zhao, S. Wen, Y. Xiang, Q. Xu, N. Yu and D. Yin, Fuel, 2020, 274, 117853.
760	58.	C. Zhu, Q. Liu, D. Li, H. Wang, C. Zhang, C. Cui, L. Chen, C. Cai and L. Ma, ACS Omega, 2018, 3, 7407-
761		7417.
762	59.	G. Li, N. Li, J. Yang, L. Li, A. Wang, X. Wang, Y. Cong and T. Zhang, Green Chemistry, 2014, 16, 594-
763		599.
764	60.	P. Yang, Q. Cui, Y. Zu, X. Liu, G. Lu and Y. Wang, Catalysis Communications, 2015, 66, 55-59.
765	61.	X. Kong, Y. Zhu, H. Zheng, X. Li, Y. Zhu and YW. Li, ACS Catalysis, 2015, 5, 5914-5920.
766	62.	J. Luo, M. Monai, C. Wang, J. D. Lee, T. Duchoň, F. Dvořák, V. Matolín, C. B. Murray, P. Fornasiero and
767		R. J. Gorte, Catalysis Science & Technology, 2017, 7, 1735-1743.
768	63.	C. Wang, J. Luo, V. Liao, J. D. Lee, T. M. Onn, C. B. Murray and R. J. Gorte, <i>Catalysis Today</i> , 2018, 302,
769		73-79.
770	64.	B. Seemala, C. M. Cai, R. Kumar, C. E. Wyman and P. Christopher, ACS Sustainable Chemistry &
771		<i>Engineering</i> , 2018, 6 , 2152-2161.
772	65.	P. Yang, Q. Xia, X. Liu and Y. Wang, Journal of Energy Chemistry, 2016, 25, 1015-1020.
773	66.	F. Feng, Z. Shang, L. Wang, X. Zhang, X. Liang and Q. Wang, Catalysis Communications, 2020, 134,
774		105842.
775	67.	S. Foraita, Y. Liu, G. L. Haller, E. Baráth, C. Zhao and J. A. Lercher, <i>ChemCatChem</i> , 2017, 9, 195-203.
776	68.	C. Denk, S. Foraita, L. Kovarik, K. Stoerzinger, Y. Liu, E. Baráth and J. A. Lercher, <i>Catalysis Science</i> &
777		Technology, 2019, 9 , 2620-2629.
778	69.	J. C. Vedrine, Applied Catalysis A: General, 2014, 474, 40-50.
779	70.	G. Somorjai, in Advances in Catalysis, Elsevier, 1977, vol. 26, pp. 1-68.
780	71.	A. Dongil, B. Bachiller-Baeza, I. Rodriguez-Ramos, J. Fierro and N. Escalona, RSC Advances, 2016, 6,
781		
782	72.	T. Chen, O. Kwon, R. Huang, C. Lin and J. M. Vohs, <i>Journal of Catalysis</i> , 2021, 400 , 294-300.
783	73.	C. W. Lee, P. Y. Lin, B. H. Chen, R. G. Kukushkin and V. A. Yakovlev, <i>Catalysis Today</i> , 2021, 379 , 124-
784	74	
/85	/4.	J. Chen, Y. Zhu, W. Li, F. Luo, S. Li, X. Li, Y. Huang, A. Zhang, Z. Xiao and D. Wang, <i>Biomass and</i>
786		Bioenergy, 2021, 149 , 106081.
/87	75.	M. Boudart and G. Djega-Mariadassou, in Kinetics of Heterogeneous Catalytic Reactions, Princeton

788		University Press, 2014.
789	76.	B. Gates, <i>Chemical Reviews</i> , 1995, 95 , 511-522.
790	77.	J. Wu, G. Gao, J. Li, P. Sun, X. Long and F. Li, Applied Catalysis B: Environmental, 2017, 203, 227-236.
791	78.	H. Imai, M. Abe, K. Terasaka, T. Suzuki, X. Li and T. Yokoi, Fuel Processing Technology, 2018, 180, 166-
792		172.
793	79.	H. Fang, J. Zheng, X. Luo, J. Du, A. Roldan, S. Leoni and Y. Yuan, Applied Catalysis A: General, 2017,
794		529 , 20-31.
795	80.	P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen and A. D. Jensen, Catalysis Today, 2016, 259, 277-284.
796	81.	E. J. Shin and M. A. Keane, Industrial & Engineering Chemistry Research, 2000, 39, 883-892.
797	82.	W. Song, C. Zhao and J. A. Lercher, Chemistry-A European Journal, 2013, 19, 9833-9842.
798	83.	X. Li, L. Chen, G. Chen, J. Zhang and J. Liu, Renewable Energy, 2020, 149, 609-616.
799	84.	M. M. Ambursa, P. Sudarsanam, L. H. Voon, S. B. Abd Hamid and S. K. Bhargava, Fuel Processing
800		Technology, 2017, 162 , 87-97.
801	85.	D. P. Gamliel, B. P. Baillie, E. Augustine, J. Hall, G. M. Bollas and J. A. Valla, Microporous and Mesoporous
802		Materials, 2018, 261 , 18-28.
803	86.	S. Jin, Z. Xiao, C. Li, X. Chen, L. Wang, J. Xing, W. Li and C. Liang, <i>Catalysis Today</i> , 2014, 234, 125-132.
804	87.	M. Lu, Y. Jiang, Y. Sun, P. Zhang, J. Zhu, M. Li, Y. Shan, J. Shen and C. Song, Energy & Fuels, 2020, 34,
805		4685-4692.
806	88.	R. Nie, H. Yang, H. Zhang, X. Yu, X. Lu, D. Zhou and Q. Xia, <i>Green Chemistry</i> , 2017, 19 , 3126-3134.
807	89.	Q. Han, M. U. Rehman, J. Wang, A. Rykov, O. Y. Gutiérrez, Y. Zhao, S. Wang, X. Ma and J. A. Lercher,
808		Applied Catalysis B: Environmental, 2019, 253, 348-358.
809	90.	T. M. Huynh, U. Armbruster, M. M. Pohl, M. Schneider, J. Radnik, D. L. Hoang, B. M. Q. Phan, D. A.
810		Nguyen and A. Martin, <i>ChemCatChem</i> , 2014, 6 , 1940-1951.
811	91.	F. Yang, N. J. Libretto, M. R. Komarneni, W. Zhou, J. T. Miller, X. Zhu and D. E. Resasco, ACS Catalysis,
812		2019, 9 , 7791-7800.
813	92.	S. Xing, Y. Liu, X. Liu, M. Li, J. Fu, P. Liu, P. Lv and Z. Wang, Applied Catalysis B: Environmental, 2020,
814		269 , 118718.
815	93.	X. Yu, J. Chen and T. Ren, <i>RSC Advances</i> , 2014, 4 , 46427-46436.
816	94.	X. Yue, L. Zhang, L. Sun, S. Gao, W. Gao, X. Cheng, N. Shang, Y. Gao and C. Wang, <i>Applied Catalysis B:</i>
817		Environmental, 2021, 293 , 120243.
818	95.	Q. Chen, C. Cai, X. Zhang, Q. Zhang, L. Chen, Y. Li, C. Wang and L. Ma, ACS Sustainable Chemistry &
819		<i>Engineering</i> , 2020, 8 , 9335-9345.
820	96.	J. Xu, P. Zhu, I. H. El Azab, B. B. Xu, Z. Guo, A. Y. Elnaggar, G. A. Mersal, X. Liu, Y. Zhi and Z. Lin,
821		Chinese Journal of Chemical Engineering, 2022.
822	97.	H. Li, M. Liu, W. Zou, Y. Lv, Y. Liu and L. Chen, ACS Sustainable Chemistry & Engineering, 2022, 10,
823		5430-5440.
824	98.	P. Yan, M. M. J. Li, E. Kennedy, A. Adesina, G. Zhao, A. Setiawan and M. Stockenhuber, <i>Catalysis Science</i>
825		& Technology, 2020, 10 , 810-825.
826	99.	Y. Yang, C. Ochoa-Hernández, A. Víctor, P. Pizarro, J. M. Coronado and D. P. Serrano, <i>Applied Catalysis</i>
827	100	<i>B: Environmental</i> , 2014, 145 , 91-100.
828	100.	J. Van de Loosdrecht, A. Van Der Kraan, A. Van Dillen and J. Geus, <i>Journal of Catalysis</i> , 1997, 170, 217-

829		226.
830	101.	G. Neri, A. Visco, A. Donato, C. Milone, M. Malentacchi and G. Gubitosa, Applied Catalysis A: General,
831		1994, 110 , 49-59.
832	102.	S. Velu, M. Kapoor, S. Inagaki and K. Suzuki, Applied Catalysis A: General, 2003, 245, 317-331.
833	103.	W. Song, Y. Liu, E. Baráth, C. Zhao and J. A. Lercher, Green Chemistry, 2015, 17, 1204-1218.
834	104.	Y. Chen, C. Liaw and L. Lee, Applied Catalysis A: General, 1999, 177, 1-8.
835	105.	C. Zhao, S. Kasakov, J. He and J. A. Lercher, Journal of Catalysis, 2012, 296, 12-23.
836	106.	P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen and A. D. Jensen, ACS Catalysis, 2013, 3, 1774-1785.
837	107.	Y. Yang, G. Lv, L. Deng, B. Lu, J. Li, J. Zhang, J. Shi and S. Du, Microporous and Mesoporous Materials,
838		2017, 250 , 47-54.
839	108.	R. Shu, R. Li, B. Lin, C. Wang, Z. Cheng and Y. Chen, Biomass and bioenergy, 2020, 132, 105432.
840	109.	Y. Yang, C. Ochoa-Hernández, P. Pizarro, A. Víctor, J. M. Coronado and D. P. Serrano, Applied Catalysis
841		<i>B: Environmental</i> , 2016, 197 , 206-213.
842	110.	P. M. de Souza, R. C. Rabelo-Neto, L. E. Borges, G. Jacobs, B. H. Davis, T. Sooknoi, D. E. Resasco and F.
843		B. Noronha, ACS Catalysis, 2015, 5, 1318-1329.
844	111.	V. O. Gonçalves, C. Ciotonea, S. Arrii-Clacens, N. Guignard, C. Roudaut, J. Rousseau, J. M. Clacens, S.
845		Royer and F. Richard, Applied Catalysis B: Environmental, 2017, 214, 57-66.
846	112.	F. Yang, D. Liu, H. Wang, X. Liu, J. Han, Q. Ge and X. Zhu, Journal of Catalysis, 2017, 349, 84-97.
847	113.	A. Robinson, G. A. Ferguson, J. R. Gallagher, S. Cheah, G. T. Beckham, J. A. Schaidle, J. E. Hensley and J.
848		W. Medlin, ACS Catalysis, 2016, 6, 4356-4368.
849	114.	K. A. Resende, A. H. Braga, F. B. Noronha and C. E. Hori, Applied Catalysis B: Environmental, 2019, 245,
850		100-113.
851	115.	T. M. Sankaranarayanan, A. Berenguer, C. Ochoa-Hernández, I. Moreno, P. Jana, J. M. Coronado, D. P.
852		Serrano and P. Pizarro, Catalysis Today, 2015, 243, 163-172.
853	116.	C. Tu, J. Chen, W. Li, H. Wang, K. Deng, V. A. Vinokurov and W. Huang, Sustainable Energy & Fuels,
854		2019, 3 , 3462-3472.
855	117.	F. Broglia, L. Rimoldi, D. Meroni, S. De Vecchi, M. Morbidelli and S. Ardizzone, Fuel, 2019, 243, 501-508.
856	118.	D. Laurenti, P. Afanasiev and C. Geantet, Applied Catalysis B: Environmental, 2011, 101, 239-245.
857	119.	M. Lu, Y. Sun, P. Zhang, J. Zhu, M. Li, Y. Shan, J. Shen and C. Song, Industrial & Engineering Chemistry
858		Research, 2019, 58 , 1513-1524.
859	120.	F. Bouxin, X. Zhang, I. Kings, A. Lee, M. Simmons, K. Wilson and S. Jackson, Applied Catalysis A: General,
860		2017, 539 , 29-37.
861	121.	J. Zhang, C. Li, X. Chen, W. Guan and C. Liang, Catalysis Today, 2019, 319, 155-163.
862	122.	N. T. Tran, Y. Uemura, S. Chowdhury and A. Ramli, Applied Catalysis A: General, 2016, 512, 93-100.
863	123.	W. Li, H. Wang, X. Wu, L. E. Betancourt, C. Tu, M. Liao, X. Cui, F. Li, J. Zheng and R. Li, Fuel, 2020, 274,
864		117859.
865	124.	R. Barton, M. Carrier, C. Segura, J. G. Fierro, S. Park, H. Lamb, N. Escalona and S. Peretti, Applied Catalysis
866		A: General, 2018, 562, 294-309.
867	125.	W. Schutyser, S. Van den Bosch, J. Dijkmans, S. Turner, M. Meledina, G. Van Tendeloo, D. P. Debecker
868		and B. F. Sels, ChemSusChem, 2015, 8, 1805-1818.
869	126.	W. Song, Y. He, S. Lai, W. Lai, X. Yi, W. Yang and X. Jiang, Green Chemistry, 2020, 22, 1662-1670.

870	127.	X. Zhang, P. Yan, B. Zhao, K. Liu, M. C. Kung, H. H. Kung, S. Chen and Z. C. Zhang, ACS Catalysis, 2019,
871		9 , 3551-3563.
872	128.	M. Selvaraj, K. Shanthi, R. Maheswari and A. Ramanathan, Energy & Fuels, 2014, 28, 2598-2607.
873	129.	D. Raikwar, M. Munagala, S. Majumdar and D. Shee, Catalysis Today, 2019, 325, 117-130.
874	130.	H. Shafaghat, P. S. Rezaei and W. M. A. W. Daud, Journal of Industrial and Engineering Chemistry, 2016,
875		35 , 268-276.
876	131.	J. Sun, A. M. Karim, H. Zhang, L. Kovarik, X. S. Li, A. J. Hensley, J. S. McEwen and Y. Wang, Journal of
877		Catalysis, 2013, 306 , 47-57.
878	132.	M. Liu, J. Zhang, L. Zheng, G. Fan, L. Yang and F. Li, ACS Sustainable Chemistry & Engineering, 2020, 8,
879		6075-6089.
880	133.	C. M. Pichler, D. Gu, H. Joshi and F. Schüth, Journal of Catalysis, 2018, 365, 367-375.
881	134.	Y. Wu, X. Xu, Y. Sun, E. Jiang, X. Fan, R. Tu and J. Wang, <i>Renewable Energy</i> , 2020, 152, 1380-1390.
882	135.	J. Qi, X. Sun, S. F. Tang, Y. Sun, C. Xu, X. Li and X. Li, Applied Catalysis A: General, 2017, 535, 24-31.
883	136.	A. Y. Bunch, X. Wang and U. S. Ozkan, Journal of Molecular Catalysis A: Chemical, 2007, 270, 264-272.
884	137.	D. Shen and S. Gu, Bioresource technology, 2009, 100, 6496-6504.
885	138.	Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu and J. A. Dumesic, Nature, 2007, 447, 982-985.
886	139.	M. Przydacz, M. Jędrzejczyk, M. Brzezińska, J. Rogowski, N. Keller and A. M. Ruppert, The Journal of
887		Supercritical Fluids, 2020, 163, 104827.
888	140.	S. Sitthisa and D. E. Resasco, Catalysis Letters, 2011, 141, 784-791.
889	141.	C. Zhu, H. Wang, H. Li, B. Cai, W. Lv, C. Cai, C. Wang, L. Yan, Q. Liu and L. Ma, ACS Sustainable
890		Chemistry & Engineering, 2019, 7, 19556-19569.
891	142.	D. P. Duarte, R. Martínez and L. J. Hoyos, Industrial & Engineering Chemistry Research, 2016, 55, 54-63.
892	143.	J. Davis and M. Barteau, Journal of the American Chemical Society, 1989, 111, 1782-1792.
893	144.	R. Shekhar, M. A. Barteau, R. V. Plank and J. M. Vohs, The Journal of Physical Chemistry B, 1997, 101,
894		7939-7951.
895	145.	M. Mavrikakis and M. A. Barteau, Journal of Molecular Catalysis A: Chemical, 1998, 131, 135-147.
896	146.	M. A. Barteau, Catalysis Letters, 1991, 8, 175-183.
897	147.	M. S. Gyngazova, L. Negahdar, L. C. Blumenthal and R. Palkovits, Chemical Engineering Science, 2017,
898		173 , 455-464.
899	148.	M. Y. Chen, C. B. Chen, B. Zada and Y. Fu, Green Chemistry, 2016, 18, 3858-3866.
900	149.	C. P. Jiménez-Gómez, J. A. Cecilia, C. García-Sancho, R. N. Moreno-Tost and P. Maireles-Torres, ACS
901		Sustainable Chemistry & Engineering, 2019, 7, 7676-7685.
902	150.	N. Siddiqui, A. S. Roy, R. Goyal, R. Khatun, C. Pendem, A. N. Chokkapu, A. Bordoloi and R. Bal,
903		Sustainable Energy & Fuels, 2018, 2, 191-198.
904	151.	N. Viar, J. M. Requies, I. Agirre, A. Iriondo, M. Gil-Calvo and P. L. Arias, ACS Sustainable Chemistry &
905		Engineering, 2020, 8, 11183-11193.
906	152.	W. Li, G. Fan, L. Yang and F. Li, Green Chemistry, 2017, 19, 4353-4363.
907	153.	F. Tang, L. Wang, M. D. Walle, A. Mustapha and YN. Liu, Journal of Catalysis, 2020, 383, 172-180.
908	154.	B. Seemala, C. M. Cai, C. E. Wyman and P. Christopher, ACS Catalysis, 2017, 7, 4070-4082.
909	155.	P. Wang, Y. Jing, Y. Guo, Y. Cui, S. Dai, X. Liu and Y. Wang, Catalysis Science & Technology, 2020, 10,
910		4256-4263.

911 012	156.	X. Kong, Y. Zhu, H. Zheng, Y. Zhu and Z. Fang, ACS Sustainable Chemistry & Engineering, 2017, 5, 11280-
912	157	11207. S Sitthisa W An and D E Researce <i>Journal of Catalusis</i> 2011 284 90-101
913	157.	W Yu K Xiong N Ii M D Porosoff and I G Chen Journal of Catalysis 2014 317 253-262
915	150.	7 Thang 7 Pei H Chen K Chen 7 Hou X Lu P Ouvang and I Fu Industrial & Engineering Chemistry
916	157.	<i>E. Enang</i> , <i>E. Pel</i> , H. Chen, K. Chen, Z. Hou, A. Eu, F. Ouyang and J. Fu, <i>Industrial & Engineering Chemistry</i> <i>Research</i> 2018 57 4225-4230
917	160	K Jeništová I Hachemi P Mäki-Arvela N Kumar M Peurla I. Čanek I Wärnå and D Y Murzin
918	100.	Chemical Engineering Journal 2017 316 401-409
919	161	C Miao O Marin-Flores S D Davidson T Li T Dong D Gao Y Wang M Garcia-Pérez and S Chen
920	1011	<i>Fuel</i> 2016 166 302-308
921	162.	M. W. Schreiber, D. Rodriguez-Niño, O. Y. Gutiérrez and J. A. Lercher, <i>Catalysis Science & Technology</i> .
922		2016. 6 , 7976-7984.
923	163.	H. Zuo, O. Liu, T. Wang, L. Ma, O. Zhang and O. Zhang, <i>Energy & Fuels</i> , 2012, 26 , 3747-3755.
924	164.	F. Feng, L. Wang, X. Zhang and O. Wang, <i>Industrial & Engineering Chemistry Research</i> , 2019, 58 , 5432-
925		5444.
926	165.	F. Feng, X. Niu, L. Wang, X. Zhang and Q. Wang, Microporous and Mesoporous Materials, 2020, 291,
927		109705.
928	166.	S. Xing, P. Lv, J. Wang, J. Fu, P. Fan, L. Yang, G. Yang, Z. Yuan and Y. Chen, Physical Chemistry Chemical
929		<i>Physics</i> , 2017, 19 , 2961-2973.
930	167.	P. Kumar, S. K. Maity and D. Shee, ACS Omega, 2019, 4, 2833-2843.
931	168.	B. Peng, X. Yuan, C. Zhao and J. A. Lercher, Journal of the American Chemical Society, 2012, 134, 9400-
932		9405.
933	169.	K. B. Baharudin, M. Arumugam, J. Hunns, A. F. Lee, E. Mayes, Y. H. Taufiq-Yap, K. Wilson and D. Derawi,
934		Catalysis Science & Technology, 2019, 9, 6673-6680.
935	170.	I. Hachemi, K. Jeništová, P. Mäki-Arvela, N. Kumar, K. Eränen, J. Hemming and D. Y. Murzin, Catalysis
936		Science & Technology, 2016, 6, 1476-1487.
937	171.	B. Ma, H. Cui, D. Wang, P. Wu and C. Zhao, Nanoscale, 2017, 9, 5986-5995.
938	172.	B. Ma, X. Yi, L. Chen, A. Zheng and C. Zhao, Journal of Materials Chemistry A, 2016, 4, 11330-11341.
939	173.	R. Kukushkin, O. Bulavchenko, V. Kaichev and V. Yakovlev, Applied Catalysis B: Environmental, 2015,
940		163 , 531-538.
941	174.	A. Ramesh, P. Tamizhdurai, P. S. Krishnan, V. K. Ponnusamy, S. Sakthinathan and K. Shanthi, Fuel, 2020,
942		262 , 116494.
943	175.	E. W. Qian, N. Chen and S. Gong, Journal of Molecular Catalysis A: Chemical, 2014, 387, 76-85.
944	176.	R. Loe, E. Santillan-Jimenez, T. Morgan, L. Sewell, Y. Ji, S. Jones, M. A. Isaacs, A. F. Lee and M. Crocker,
945		Applied Catalysis B: Environmental, 2016, 191, 147-156.
946	177.	Z. Zhang, H. Chen, C. Wang, K. Chen, X. Lu, P. Ouyang and J. Fu, Fuel, 2018, 230, 211-217.
947	178.	Z. Zhang, Q. Yang, H. Chen, K. Chen, X. Lu, P. Ouyang, J. Fu and J. G. Chen, Green Chemistry, 2018, 20,
948		197-205.
949	179.	C. Miao, G. Zhou, S. Chen, H. Xie and X. Zhang, Renewable Energy, 2020, 153, 1439-1454.
950	180.	S. Leng, X. Wang, X. He, L. Liu, X. Zhong, G. Zhuang and Jg. Wang, Catalysis Communications, 2013,
951		41 , 34-37.

952	181.	E. Kordouli, B. Pawelec, K. Bourikas, C. Kordulis, J. L. G. Fierro and A. Lycourghiotis, <i>Applied Catalysis</i>
953		<i>B: Environmental</i> , 2018, 229 , 139-154.
954	182.	N. Chen, S. Gong and E. W. Qian, Applied Catalysis B: Environmental, 2015, 174, 253-263.
955	183.	X. Zhang, Q. Zhang, T. Wang, L. Ma, Y. Yu and L. Chen, <i>Bioresource technology</i> , 2013, 134, 73-80.
956	184.	X. Zhang, W. Tang, Q. Zhang, T. Wang and L. Ma, Applied Energy, 2018, 227, 73-79.
957	185.	T. Sankaranarayanan, M. Kreider, A. Berenguer, S. Gutiérrez-Rubio, I. Moreno, P. Pizarro, J. Coronado and
958		D. Serrano, Fuel, 2018, 214, 187-195.
959	186.	G. C. Silva, D. Qian, R. Pace, O. Heintz, G. Caboche, E. Santillan-Jimenez and M. Crocker, Catalysts, 2020,
960		10 , 91.
961	187.	E. Santillan-Jimenez, T. Morgan, R. Loe and M. Crocker, Catalysis Today, 2015, 258, 284-293.
962	188.	E. Santillan-Jimenez, R. Loe, M. Garrett, T. Morgan and M. Crocker, Catalysis Today, 2018, 302, 261-271.
963	189.	Q. Guo, M. Wu, K. Wang, L. Zhang and X. Xu, Industrial & Engineering Chemistry Research, 2015, 54,
964		890-899.
965	190.	T. Li, J. Cheng, R. Huang, J. Zhou and K. Cen, Bioresource Technology, 2015, 197, 289-294.
966	191.	S. Oh, H. S. Choi, IG. Choi and J. W. Choi, RSC Advances, 2017, 7, 15116-15126.
967	192.	H. Jahromi and F. A. Agblevor, Applied Catalysis B: Environmental, 2018, 236, 1-12.
968	193.	S. Cheng, L. Wei, J. Julson, K. Muthukumarappan and P. R. Kharel, Fuel Processing Technology, 2017, 167,
969		117-126.
970	194.	H. Jahromi and F. A. Agblevor, Industrial & Engineering Chemistry Research, 2018, 57, 13257-13268.
971	195.	S. Oh, J. H. Lee, IG. Choi and J. W. Choi, Renewable Energy, 2020, 149, 1-10.
972	196.	C. Zhao and J. A. Lercher, Angewandte Chemie International Edition, 2012, 51, 5935-5940.
973	197.	Y. Li, C. Zhang, Y. Liu, X. Hou, R. Zhang and X. Tang, Energy & Fuels, 2015, 29, 1722-1728.
974	198.	Y. Li, C. Zhang, Y. Liu, S. Tang, G. Chen, R. Zhang and X. Tang, Fuel, 2017, 189, 23-31.
975	199.	H. Lee, Y. M. Kim, K. B. Jung, J. Jae, S. C. Jung, J. K. Jeon and Y. K. Park, Journal of Cleaner Production,
976		2018, 174 , 763-770.
977	200.	P. Arora, H. Abdolahi, Y. W. Cheah, M. A. Salam, E. L. Grennfelt, H. Rådberg, D. Creaser and L. Olsson,
978		Catalysis Today, 2021, 367, 28-42.
979	201.	C. Boscagli, C. Yang, A. Welle, W. Wang, S. Behrens, K. Raffelt and J. D. Grunwaldt, Applied Catalysis A:
980		General, 2017, 544 , 161-172.
981	202.	P. M. Mortensen, D. Gardini, H. W. de Carvalho, C. D. Damsgaard, J. D. Grunwaldt, P. A. Jensen, J. B.
982		Wagner and A. D. Jensen, Catalysis Science & Technology, 2014, 4, 3672-3686.
983		