

A biomimetic all-inorganic photocatalyst for the artificial photosynthesis of hydrogen peroxide

Journal:	Catalysis Science & Technology	
Manuscript ID	CY-ART-06-2022-001089.R1	
Article Type:	Paper	
Date Submitted by the Author:	18-Aug-2022	
Complete List of Authors:	Teranishi, Miwako; Kindai University Naya, Shin-ichi; Kindai University Yan, Yaozong; Kindai University, Molecular Engineering Institute Soejima, Tetsuro; Kindai University, Department of Applied Chemistry Kobayashi, Hisayoshi; Kyoto Institute of Technology, Tada, Hiroaki; Kindai University, Molecular Engineering Institute	

SCHOLARONE[™] Manuscripts

Catalysis Science & Technology

A biomimetic all-inorganic photocatalyst for the artificial photosynthesis of hydrogen peroxide

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Miwako Teranishi,^a Shin-ichi Naya,^a Yaozong Yan,^b Tetsuro Soejima,^b Hisayoshi Kobayashi,^c and Hiroaki Tada*b

The artificial photosynthesis of H_2O_2 from water and O_2 presents a sustainable route for the production. Remarkable progress in the rate of reaction has recently been achieved mainly by using semiconducting organic polymer photocatalysts. In view of the use under harsh oxidative conditions, the development of robust inorganic photocatalysts is highly desired. Here we present a photocatalyst with the unit consisting of a single Au particle and an interconnected cluster of SnO₂ nanocrystals with the surface modified by SbCl₃ (Au@SnO₂-Sb(III)). Under visible-light irradiation (λ_{ex} = 420 nm), Au@SnO₂-Sb(III) stably produces H₂O₂ with a rate of 6.1 mM g⁻¹ h⁻¹ and an external quantum yield of 1.1%. This striking photocatalytic activity of Au@SnO2-Sb(III) originates from the action of SnO2-Sb(III) as a "light antenna" and "electron transporter", the electrocatalytic activity of Au NPs for two electron-oxygen reduction reaction, the visible-light induced activity of SnO2-Sb(III) for oxygen evolution reaction, the weak adsorptivity for H₂O₂, and the robustness.

Introduction

Hydrogen peroxide (H₂O₂) is not only a very useful clean oxidant for organic synthesis¹ and water purification² but also a hopeful fuel for fuel cells.³⁻⁶ Presently, most H₂O₂ is industrially produced by the energy-consuming anthraquinone autoxidation via the multi-steps. As the alternatives, various chemical and physical methods for H₂O₂ production have recently been intensively studied.⁷Among them, the solar-to-H₂O₂ conversion from earth-abundant water and O₂ can be a promising artificial photosynthesis to be challenged in chemistry (Eq. 1).8,9

 $H_2O + 1/O_2 \rightarrow H_2O_2 \quad \Delta_r G^0 = +115.8 \text{ kJ mol}^{-1}$ (1) where $\Delta_{\rm r} G^0$ is the standard Gibbs energy of reaction.

The photocatalyst for efficient H₂O₂ synthesis should possess the following features: (1) visible-light responsiveness, (2) efficient charge separation, catalytic activities for (3) oxygen evolution reaction (OER) and (4) two electron-oxygen reduction reaction (2e⁻-ORR), (5) weak adsorptivity for H₂O₂, and (6) high stability. Recently, various semiconducting polymer photocatalysts with high conversion efficiency have been developed.^{10,11} However, these materials can undergo degradation because the photocatalytic synthesis of H2O2 is accompanied by the

† Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. DOI: 10.1039/x0xx00000x

generation of activated oxygen species damaging the organic structures.¹² For the use under the harsh oxidative conditions, robust inorganic metal oxide-based photocatalysts are more favourable.13 The metal oxide-based visible-light photocatalysts

for the H₂O₂ production from water and O₂ reported so far are only limited to the systems including Au/TiO214, Au/WO315,16, Au/BiVO417, graphene oxide17, N-doped Cu2O@Cu18, Pt-PtO_x/WO₃¹⁹, and Pd/Mo:BiVO₄/CoO_x.²⁰ However, photocatalyst satisfying all the requirements has been developed to date, and in most of the systems, the rate of H₂O₂ production remains lower than $\sim 2 \text{ mM g}^{-1} \text{ h}^{-1}$ (Table S1[†]).

In this study, an all-inorganic hybrid photocatalyst mimicing the natural photosynthesis²¹ has been designed to enhance the photocatalytic activity. The photocatalyst with the unit structure consisting of a single Au NP (~50 nm) and an interconnected cluster $(> \sim 100 \text{ nm})$ of many antimony chloride-surface modified SnO₂ nanocrystals (NCs, ~30 nm) (Au@SnO₂-Sb(III)). Au@SnO₂-Sb(III) has been shown to fulfil the requirements (1)-(6), stably producing H₂O₂ from water and O₂ with a rate of 6.1 mM g⁻¹ h⁻¹ and an external quantum efficiency over 1% at $\lambda_{ex} = 420$ nm. To our knowledge, this is the first report on the H2O2 production from water and O2 by SnO2based photocatalysts.

Results and discussion

H⁺-coupled 2e⁻-ORR directly yields H₂O₂ in the reduction process of the photocatalytic H_2O_2 synthesis (Eq. 2), where E^0 denotes the standard redox potential with respect to the standard hydrogen electrode (SHE).²² Also, H₂O₂ can be produced via one electron-ORR (Eqs. 3-5), but the resulting O₂-• undergoes oxidation by the holes to generate singlet oxygen (1O2, Eq. 6).23

Reduction processes

$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	$E^0 = +0.695 \text{ V}$	(2)
$O_2 + e^- \rightarrow O_2^{-\bullet}$	$E^0 = -0.330 \text{ V}$	(3)
$O_2^{-\bullet} + H^+ \rightarrow HO_2^{\bullet}$		(4)
$\mathrm{HO}_{2}^{\bullet} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}\mathrm{O}_{2}$		(5)

Oxidation process

$$O_2^{-\bullet} + h^+ \rightarrow {}^1O_2 \tag{6}$$

^{a.} Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

^b. Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

^{c.} Emeritus Prof. Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$
 $E^0 = +1.229 V$ (7)

Thus, the conduction band (CB) edge potential of the metal oxide (MO) photocatalyst should be situated between -0.330 V and +0.695

Fig. 1. Band edge potentials of various metal oxides with respect to the redox potentials of water and O_2 (upper). Saturated adsorption amount of H_2O_2 on various metal oxides at 298 K (lower).

V to increase the selectivity for 2e-ORR by inhibiting one electron-ORR. Simultaneously, the VB edge potential of the MO semiconductor should be more positive than the potential for OER of +1.229 V (Eq. 7). Among various MOs, SnO₂, WO₃, and BiVO₄ satisfy these conditions (Fig. 1, upper). On the other hand, the oxidation of H_2O_2 ($E^0(O_2/H_2O_2) = +0.695$ V) more easily occur than OER ($E^0(O_2/H_2O) = +1.229$ V), while H_2O_2 adsorbed on MOs is apt to reductive decomposition during the photocatalytic process.²⁴ To break through this thermodynamically unsolvable problem, the adsorption of H₂O₂ on the photocatalyst must be suppressed. Then, the adsorption amount of H2O2 on various MOs were measured (Table S2[†]). The adsorption amount of H₂O₂ varies greatly depending on the type of MOs, and the adsorption capacity of SnO2 to H2O2 is particularly low (Fig. 1, lower). Additionally, SnO₂ has an extraordinary physicochemical stability, and then, it was selected as the base MO semiconductor for the photocatalyst in this study. On the other hand, Au NP14,25,26 and Au-Ag alloy NPs27 are promising electrocatalysts for 2e-ORR because of its excellent activity. However, Au NP is catalytically active also for the decomposition of H_2O_2 . In the design for the photocatalyst with Au NPs for H_2O_2 production, the use of large Au NPs with small surface area is crucial to minimize the loss of H_2O_2 .²⁵

SbCl₃ was adsorbed on SnO₂ NCs with particle size ~30 nm and specific surface area = 100 m² g⁻¹ (FUJIFILM Wako Pure Chemical Co.) from the methanol solutions with various concentrations (SnO₂-Sb(III)), and the amount of the adsorbed Sb ions were quantified by inductively coupled plasma (ICP) spectroscopy. The adsorption of SbCl₃ on SnO₂ NCs at 293 K apparently follows the Langmuir-type behavior with the adsorption amount (Γ_{ad}) increasing in the equilibrium concentration (C_{eq}) (Fig. S1a⁺). From the slope and intercept of the Langmuir plot, the saturated adsorption amount and adsorption equilibrium constant were calculated to be 6.96 × 10⁻¹ mmol g⁻¹ and 1.14 × 10³ M⁻¹, respectively. The large adsorption equilibrium constant suggests strong chemisorption of SbCl₃ on SnO₂. The adsorption amount (Γ_{ad}) can be precisely controlled by the initial concentration of SbCl₃ (C_0) (Fig. S1b[†]).

In the high resolution-transmission electron microscopic (HR-TEM) image of unmodified SnO₂ (Fig. 2a), regularly aligned O-atom rows are observed. The d-spacing in the lattice fringe (3.35 Å) is in agreement with the value for the $SnO_2(110)$ crystal planes (3.35 Å) (ICDD No. 01-075-2893). Elemental mapping of SnO₂-Sb(III) by the TEM-energy dispersive spectroscopic (EDS) (Fig. S2[†]) shows that Sb is uniformly distributed on the whole surface of SnO₂ NCs. In the HR-TEM image (Fig. 2b), many molecular scale dark spots are present on the O-atom rows, whereas the O-atom sequences are connected in the HR-TEM image for the unmodified SnO₂ (Fig. 2a). Further to study the state of the adsorbed Sb ions, Sb3d- and Cl2p-X-ray photoelectron (XP) spectra were measured. In the Sb3d-XP spectra of the samples with varying Γ_{ad} (Fig. 2c), two signals are observed at the binding energy $(E_{\rm B}) = 540.1$ eV and 530.7 eV assignable to the emission from the Sb3d_{3/2} and Sb3d_{5/2} orbitals of Sb(III) ions (Fig. S3 \dagger).²⁸ Both the signals intensify as a result of the increase in $\Gamma_{\rm ad}$ with the $E_{\rm B}$ values hardly changed. As shown by the Cl2p-XP spectra in (Fig. 2d), the samples have the Cl2p signals at $E_{\rm B} = 200.0$ eV and 198.7 eV due to the emission from the Cl2p_{1/2} and Cl2p_{3/2} orbitals.²⁸ Clearly, SbCl₃ is adsorbed on SnO₂ while retaining some of the Cl⁻ ligands. The Cl in the solution after the adsorption of SbCl₃ on SnO₂ NCs can exist as SbCl₃ and free Cl⁻ ions. The mole numbers of Sb $(n_{s,Sb})$ and Cl $(n_{s,Cl})$ in the solutions were determined by ICP spectroscopy and ion chromatography, respectively. The subtraction of $n_{s,Cl}$ - $3n_{s,Sb}$ yields the mole number of free Cl⁻ ions in the solution $(n_{s,Cl})$. Further, the number of Cl⁻ ligands liberated by the adsorption (x in $SbCl_{3-x}$) was calculated to be 1.6-2.0 by the ratio of $n_{s,Cl}$ - to the mole number of the Sb adsorbed on SnO₂ ($n_{ad,Sb}$) (Fig. S4[†]). Diffuse reflectance infrared (DRIFT) spectra for SnO₂-Sb(III) with varying Γ_{ad} were measured (Fig. S5[†]). In the spectrum of unmodified SnO₂, a signal due to the stretching vibration of Sn_s-OH groups is observed at 3700 cm⁻¹, where Sn_s denotes the surface Sn atom. The absorption intensity decreases

Fig. 2. (a) HR-TEM image of unmodified SnO₂. (b) HR-TEM image of SnO₂-Sb(III) prepared at C_0 = 50 mM. (c) Sb3d (c) and Cl2p (d)-XP spectra of SnO₂-Sb(III) with varying Γ_{ad} .

with the Sb(III)-surface modification, almost disappearing at $\Gamma_{ad} = 0.56 \text{ mmol g}^{-1}$. These results indicate that a mixed ligand surface complex is formed by the adsorption of SbCl₃ on SnO₂ via the ligand exchange between Cl⁻ ions and Sn_s-OH groups (Eq. 8).

 $\begin{array}{lll} SbCl_3+2HO\text{-}Sn_s \rightarrow & SbCl\text{-}O_b\text{-}Sn_s+2HCl & (8) \\ \text{where }O_b \text{ denotes the oxide ion bridging Sb and surface Sn ion.} \end{array}$

This scheme is consistent with the presence of the dark spots on the O-atom rows in the SnO₂ plane (Fig. 2b), and the density of the dark spots (> \sim 2 nm⁻²) comparable with the value calculated from the adsorption amount of SbCl₃ (2.6 nm⁻²). Thus, the dark spots with highly dispersed at a molecular level in the HR-TEM image can be assigned to the SbCl species chemisorbed on SnO₂.

Diffuse reflectance spectra of SnO₂-Sb(III) with varying Γ_{ad} were measured. In the Kubelka-Munk transformed absorption spectra (Fig. 3a), unmodified SnO₂ has absorption edge of ~400 nm (or ~3.1 eV), and the Tauc plots provides a direct forbidden band gap of 3.58 eV (Fig. S6†) close to the reported value of 3.59 eV.²⁹ The Sb(III)-surface modification causes redshift in the absorption edge of which amount increases with an increase in Γ_{ad} from ~400 nm at $\Gamma_{ad} = 0$ to ~500 nm at $\Gamma_{ad} = 0.56$ mmol g⁻¹. To clarify the origin for the Sb(III)-surface modification-induced absorption, density functional theory (DFT) calculations were carried out for [Sn₁₂O₂₅]-(SbCl)₂ used as a model of

Fig. 3. (a) Absorption spectra of SnO₂-Sb(III) NCs with varying Γ_{ad} . (b) Optimized structure of $[Sn_{12}O_{25}]$ -(SbCl)₂. (c) PEDOS of $Sn_{12}O_{25}]$ -(SbCl)₂. Pale perpule region expresses the band gap of unmodified SnO₂.

SnO₂-Sb(III). In this model, SbCl was bonded to the O atom on the most stable SnO₂(110) plane.³⁰ The DFT-optimized structure of $[Sn_{12}O_{25}]$ -(SbCl)₂ and the projected electronic density of states (PEDOS) are shown, where the pale purple region expresses the band gap of unmodified SnO₂ (Fig. 3b,c). The CB minimum and VB maximum of unmodified SnO₂ consist of Sn5s-5p and O2p orbitals, respectively. The band gap of ~3 eV is close to the absorption edge energy (~3.1 eV) rather than the direct forbidden band gap (3.58 eV). These results indicate that the Sb(III)-surface modification of SnO₂ generates the surface levels consisting of Sb5s-5p and Cl3p orbitals

above the VB maximum of SnO_2 to induce the band gap narrowing and the visible-light absorption.

SnO₂ NC films without and with the Sb(III)-surface modification were formed on fluorine-doped tin oxide electrodes (SnO2/FTO, SnO₂-Sb(III)/FTO). Electrochemical properties of the SnO₂/FTO and SnO₂-Sb(III)/FTO electrodes for OER were studied by measuring the current (J)-potential (E) curves in deaerated 0.1 M NaClO₄ electrolyte solutions (pH 5.7) in the dark (dotted curves) and under visible-light irradiation ($\lambda_{ex} = 420$ nm, solid curves) (Fig. 4a). In the dark, anodic current due to OER rises at $E \approx 1.5$ V in each electrode. Visible-light irradiation of the SnO₂/FTO electrode hardly affects the current. On the contrary, in the SnO₂-Sb(III)/FTO electrode, significant photocurrent is induced with the onset potential shift to $0 \sim +0.1$ V. The value reduced at pH 0 ($+0.34 \sim +0.44$ V) is close to the CB-edge potential of SnO₂ (+0.48 V at pH 0).³¹ This is consistent with the DFTsimulation results that the CB minimum of SnO2 is hardly affected by the Sb(III)-surface modification (Fig. 3c). Photochronoamperometry curves were measured for the SnO2-Sb(III)/FTO electrodes at the rest potential in the dark (Fig. 4b). In the J vs. Γ_{ad} plots (Fig. 4c), the photocurrent initially rises with increasing Γ_{ad} to slowly decrease through a maximum at $\Gamma_{ad} = 0.18$ mmol g⁻¹. Further, in the action spectrum of the photocurrent for OER over the SnO₂-Sb(III)/FTO electrode (Fig. 4d), the photocurrent rises at $\lambda_{ex} \sim 470$ nm to increase as the λ_{ex} becomes shorter, and the profile of the action spectrum well traces the absorption spectrum of SnO₂-Sb(III) NCs. Evidently, the Sb(III)-surface modification endows SnO2 with the visible-induced OER ability.

Fig. 4. (a) Current (*J*)-potential (*E*) curves for SnO₂/FTO and SnO₂-Sb(III)/FTO electrodes in deaerated 0.1 M NaClO₄ electrolyte solution (pH 5.7) in the dark and under visible-light irradiation (λ_{ex} = 420 nm, 8.1 mW cm⁻²). (b) Photochronoamperometry curves of SnO₂-Sb(III)/FTO electrodes with varying Γ_{ad} at the rest potential in the dark. (c) Plots of J vs. Γ_{ad} . (d) Action spectrum for the photocurrent of the SnO₂-Sb(III)/FTO electrode. The absorption spectrum is also shown for comparison.

ARTICLE

Au NPs (loading amount $x_{Au} = 2.66$ mass%) were deposited on SnO₂ NCs by the deposition precipitation (DP) method,³² and then, SbCl₃ was chemisorbed on the sample. The d-spacing of the lattice fringe in the deposit (2.36 Å) in the HR-TEM image (Fig. 5a) is in agreement with the value of Au(111) (2.355 Å) (ICDD No. 00-004-0784). In the absorption spectra of Au@SnO₂-Sb(III) (Fig. 5b), new absorption due to the localized surface plasmon resonance (LSPR) appears around 550 nm with Au NP-loading on SnO₂-Sb(III). As shown in the TEM-EDS elemental mapping (Fig. 5c), a single Au NP (~50 nm) is present on a cluster (~500 nm) of many SnO₂-Sb(III) NCs with a primary particle size of ~30 nm (Au@SnO₂-Sb(III)). Intriguingly, every SnO₂ cluster contains ~one Au NP (Fig. S7⁺). The HR-TEM image for the SnO₂ cluster shows that SnO₂ NCs are interconnected through an epitaxial junction with the $(101)_{SnO2}$ //(101)_{SnO2} orientation (Fig. S8⁺). Downsizing Au particle below 5 nm causes a steep decrease in its melting point (T_m) from T_m \approx 1100 K at Au particle size (d_{Au}) = 5 nm to $T_m \approx$ 700 K at d_{Au} = 2 nm.33 In the DP method, small Au NPs are initially generated during the heating process at temperature $(T_c) = 773$ K, and the surface diffusion on the cluster of SnO₂ NCs would be greatly enhanced finally to be fused into a single Au NP (~50 nm). For comparison, Au NPs were loaded on SnO₂ NPs consisting of isolated particles (~100 nm) by the DP method, and SbCl₃ were adsorbed on the samples (Au/SnO₂-Sb(III)). Au NPs are dispersed on the surface of SnO₂ NPs in Au/SnO₂-Sb(III) (Fig. S9⁺) as observed for the usual Au/MOs.³⁴

Fig. 5. (a) HR-TEM image of Au@SnO₂-Sb(III) prepared at $C_0 = 50$ mM. (b) Absorption spectra of Au@SnO₂-Sb(III) (solid lines) and SnO₂-Sb(III) (dotted lines) with varying Γ_{ad} . (c) TEM-EDS mapping of Au@SnO₂-Sb(III) prepared at $C_0 = 50$ mM.

The visible-light activities of various samples for H_2O_2 generation from air-satured water were evaluated (Fig. 6a). While SnO_2 and

Fig. 6. (a) Comparison of the photocatalytic activity of SnO₂, SnO₂-Sb(III) ($\Gamma_{ad} = 0.18 \text{ mmol g}^{-1}$), Au/SnO₂, and Au@SnO₂-Sb(III) ($\Gamma_{ad} = 0.18 \text{ mmol g}^{-1}$) for H₂O₂ generation from air-saturated water under visible-light irradiation ($\lambda_{ex} = 420 \text{ nm}$) at 298 K. (b) Time courses for the photocatalytic H₂O₂ generation from air-saturated water in the Au@SnO₂-Sb(III) and Au/SnO₂-Sb(III) with $d_{Au} = 6.4 \text{ nm}$, $x_{Au} = 2.59 \text{ mass}\%$ (green) and $d_{Au} = 3.1 \text{ nm}$, $x_{Au} = 2.66 \text{ mass}\%$ (blue) systems under irradiation ($\lambda_{ex} = 420 \text{ nm}$) at 298 K. (c) Time courses for H₂O₂ decomposition by Au@SnO₂-Sb(III) ($\Gamma_{ad} = 0.18 \text{ mmol g}$ -1) in the dark or under visible-light irradiation ($\lambda_{ex} = 420 \text{ nm}$) or by Au/SnO₂-Sb(III) ($\Gamma_{ad} = 0.18 \text{ mmol g}$ -1) in the dark at 298 K. (d) The relation between the photocatalytic activity of Au@SnO₂-Sb(III) with varying Γ_{ad} for H₂O₂ generation and the photocurrent of the SnO₂-Sb(III) electrodes at the rest potential in the dark.

electrode provides a positive correlation between them (Fig. 6d), indicating that the OER is the key step in this reaction. To check the stability of Au@SnO2-Sb(III), the photocatalytic reaction was repeated under the same conditions. The photocatalytic activity is maintained even after the reaction was repeated 5 times (Fig. S11a[†]). Further, the absorption spectra (Fig. S11b⁺) and XP spectra (Fig. S12⁺) of Au@SnO₂-Sb(III) show that not only the amounts of Sb and Au but also the states hardly change before and after the repeated reaction. The external quantum yield (ϕ_{ex}) for the reaction in the Au@SnO₂-Sb(III) system reaches 1.1% at $\lambda_{ex} = 420$ nm (Fig. S13⁺), and the action spectrum is similar to that of the photocurrent (Fig. 4d), strongly suggesting that this reaction is induced by the excitation of not the LSPR of Au NPs but SnO2-Sb(III) NCs. Also, SnO2 has broad emission around 440 nm due to the surface vacancy in the photoluminescence (PL) spectrum (Fig. S14⁺),³⁵ and the spectrum hardly changes with the Sb(III)-surface modification. A significant decrease in the signal intensity is observed with the loading of Au NPs in spite that the unit structure of Au@SnO2-Sb(III) has only ~one Au NP. In this system, the excited electrons can be transported and collected to a single Au NP from the surrounding SnO₂ NCs interconnected each other.

On the basis of the energy diagram (Scheme 1a), the action mechanism of Au@SnO₂-Sb(III) for the photocatalytic H₂O₂ synthesis from water and O2 is discussed in terms of the analogy with the natural photosynthesis (Scheme 1b). Excitation of Au@SnO2-Sb(III) by photons with $\lambda_{ex} = 420$ nm promotes the electrons in the Sb(III)-induced levels above the VB of SnO₂ to the CB of SnO₂. The holes generated in the Sb(III)-surface levels oxidize water to yield O₂ and H⁺ without the diffusion to the surface and with the assistance by the photoelectrocatalytic activity. On the other hand, a recent electrochemical study using Au/fluorine-doped SnO₂ rotating electrode have shown that Au NPs loaded on SnO₂ possess electrocatalytic activity for 2e-ORR.36 Thus, H+-coupled 2e-ORR effectively proceeds on the surface of Au NP with the aid of the electrocatalytic activity,^{25,37} generating the concentration gradient of the excited electrons in the SnO2 NCs towards the radial direction of Au NP to be the driving force for the one-directional electron transport in the functional unit of Au@SnO₂-Sb(III). Consequently, the excited electrons in the cluster of SnO₂-Sb(III) NCs are transported and collected to a single Au NP via the interparticle electron transport through the high-quality interface, and effective charge separation is achieved. The electron transport between SnO₂ NPs was previously utilized for the photoanode of quantum dot-sensitized solar cells.³⁸ Although the Sb(III)-surface modification somewhat increases the adsorptivity of SnO2 for H2O2, it is still much weaker than the other MOs (Table S2[†]), and the decomposition of H₂O₂ once generated can be suppressed over SnO₂-Sb(III). In this case, the importance of the large Au particle size ($d_{Au} = \sim 50 \text{ nm}$) in Au@SnO₂-Sb NCs should be emphasized. In the Au/semiconductor photocatalysts, the charge separation through the interfacial electron transfer from the semiconductor to Au NP is enhanced with increasing Au particle size.³⁹ Although Au NP shows the catalytic activity for H₂O₂ decomposition, the activity decreases with increasing Au particle size and negligibly small at $d_{\rm Au} > 12$ nm.²⁵ In addition, the robustness of each component in the photocatalyst and the strong chemical bond between the SbCl species and SnO2 would lead to the stable production of H2O2. In this manner, Au@SnO2-Sb(III) fulfils the requirements (1)-(6) to exhibit the remarkable photocatalytic activity and stability for the production of H2O2 from water and O2 under

Scheme 1. (a) The energy diagram of Au@SnO₂-Sb(III) was constructed by assuming that the CB edge potential of SnO₂ is approximated by the flat band potential of +0.48 V (SHE at pH 0).³¹ The VB maximum potential and the top of the surface levels due to the SbCl species were estimated from the band gap of SnO₂ and the absorption edge of SnO₂-Sb(III) to be 4.08 V and ~+3 V, respectively. (b) Analogy with the natural photosynthetic system.

visible-light irradiation. Compared this system to the natural photosynthetic system, the cluster of SnO₂-Sb(III) NCs acts as "light harvester (antenna chlorophylls)", "electron transporter and collector (light energy transporter and collector in antenna chlorophylls)" and "oxidation reaction end (P680)", while Au NP operates as "reduction reaction end (P700)".

Conclusions

This study has shown that visible-light irradiation ($\lambda_{ex} = 420$ nm) of Au@SnO₂-Sb(III) stably yields H₂O₂ from water and O₂ with a rate of 6.1 mM g⁻¹ h⁻¹ and an external quantum yield of 1.10%. Au@SnO₂-Sb(III) has a unique unit structure consisting of a single Au NP (~50 nm) and a cluster (> 150 nm) of SnO₂-Sb(III) NCs (~30 nm). The remarkable activity stems from the efficient charge separation through the interparticle electron transfer from SnO₂-Sb(III) NCs to a single Au NP, the electrocatalytic activity of Au NPs for 2e⁻-ORR, the visible light-induced activity of SnO₂-Sb(III) for OER, the weak adsorptivity of SnO₂-Sb(III) for H₂O₂, and the low catalytic activity of large Au NP for H₂O₂ decomposition. We believe that this study would pave the way of a new biomimetic design of highly active robust inorganic nanohybrid photocatalysts for the solar-to-chemical conversion.

Data availability

The data supporting the findings can be found in the article and ESI, and are available from the authors upon reasonable request.

Author Contributions

ARTICIF

M. T., S. N., and Y. Y. conducted catalysts synthesis, characterization, and photocatalytic reaction experiments, T. S. performed TEM observation and analysis, H. K. performed DFT simulations, and H. T. supervised the work and data analysis.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by JST Adaptable and Seamless Technology Transfer Program through Target-driven R&D, JSPS KAKENHI Grant-in-Aid for Scientific Research (C) no. 20K05275, 20K05674, and 21K05236, the Futaba Foundation, Nippon Sheet Glass Foundation for Materials Science and Engineering, Sumitomo Foundation, Takahashi Industrial and Economic Research Foundation.

Notes and references

- 1 R. Noyori, M. Aoki and K. Sato, *Chem. Commun.*, 2003, **39**, 1977-1986.
- 2 D. B. Miklos, C. Remy, M. Jekel, K. G. Linden, J. E. Drewes and U. Hübner, *Water Res.*, 2018. **139**, 118-131.
- 3 S.-i. Yamazaki, Z. Siroma, H. Senoh, T. Iori, N. Fujiwara and K. A. Yasuda, J. Power Sources, 2008, 178, 20-25.
- 4 Y. Yamada, S. Yoshida, T. Honda and S. Fukuzumi, *Energy Environ. Sci.*, 2011, 4, 2822-2825.
- 5 A. M. Shaegh, N.-T. Nguyen, S. M. M. Ehteshami and S. H. Chan, *Energy Environ. Sci.*, 2012, **5**, 8225-8228.
- 6 K. Mase, M. Yoneda, Y. Yamada and S. Fukuzumi, *Nat. Commun.*, 2016, 7, 11470.
- 7 J. M. Campos-Martin, G. Blanco-Brieva and J. L. G. Fierro, *Angew. Chem. Int. Ed.*, 2006, **45**, 6962-6984.
- 8 H. Hou, X. Zeng and X. Zhang, Angew. Chem. Int. Ed., 2020, 59, 17356-17376.
- 9 H. Tada, Nanoscale Adv., 2019, 1, 4238-4245.
- 10 S. Wu and X. Quan, *ACS EST Eng.*, **2022** DOI: 10.1021/acsestengg.1c00546, and the references therein.
- 11 Q. Tian, L. Jing, S. Ye, J. Liu, R. Chen, C. A. H. Price, F. Fan and J. Liu, *Small*, 2012, **17**, 2103224, and the references therein.
- 12 J. Xiao, Q. Han, Y. Xie, J. Yang, Q. Su, Y. Chen and H. Cao, *Environ. Sci. Technol.*, 2017, **51**, 13380-13387.
- 13 L. Wang, J. Zhang, Y. Zhang, H. Yu, Y. Qu and J. Yu, Small, 2022, 18, 2104561, and the references therein.
- 14 N. Kaynan, B. A. Berke, O. Hazut and R. Yerushalmi, J. Mater. Chem. A., 2014, 2, 13822-13826.
- 15 H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa and T. Hirai, *ACS Catal.*, 2016, **6**, 4976-4982.
- 16 Y. Wang, Y. Wang, J. Zhao, M. Chen, X. Huang and Y. Xu, *Appl. Catal. B*, 2021, 284, 119691/1-11.
- 17 W.-C. Hou and Y.-S. Wang, ACS Sustain. Chem. Eng., 2017, 5, 2994-3001.
- 18 W. Zhang, X. Chen, X. Zhao, M. Yin, L. Feng and H. Wang, *Appl. Surf. Sci.*, 2020, **527**, 146908/1-9.
- 19 W. Xie, Z. Huang, R. Wang, C. Wen and Y. Zhou, J. Mater. Sci., 2020, 55, 11829-11840.
- 20 T. Liu, Z. Pan, J. J. M. Vequizo, K. Kato, B. Wu, A. Yamakata, K. Katayama, B. Chen, C. Chu and K. Domen, *Nat. Commun.*, 2022, **13**, 1034/1-8.

- 21 L. Yang, D. Fan, Z. Li, Y. Cheng, X. Yang and T. Zhang, *Adv. Sustain. Syst.*, 2022, **6**, 2100477.
- 22 Electrochem. Soc. Jpn. Ed., Denkikagaku Binran (Handbook of Electrochemistry), Maruzen, Tokyo, 2000.
- 23 S. Zhao, X. Zhao, Appl. Catal. B, 2019, 250, 408-418.
- 24 X. Li, C. Chen, J. Zhao, Langmuir, 2001, 17, 4118-4122.
- 25 M. Teranishi, S. Naya and H. Tada, J. Am. Chem. Soc., 2010, 132, 7850-7851.
- 26 K. Kim, J. Park, H. Kim, G. Y. Jung, M.-G. Kim, ACS Catal., 2019, 9, 9206-9211.
- 27 D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal., 2012, 2, 599-603.
- 28 XPS database, http://techdb.podzone.net/
- 29 M. Voinov and J. Augustynski, *Heterogeneous Photocatalysis*, Edited by Schiavello, M. John Wiley & Sons, New York **1997**.
- 30 J. Oviedo and M. J. Gillan, Surf. Sci., 2000, 463, 93-101
- 31 H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B, 2000, 104, 4585-4587.
- 32 S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda and Y. Nakahara, *Preparation of catalysts V*, Elsevier, Amsterdam, **1991**.
- 33 P. Buffat and J.-P. Borel, Phys. Rev. A, 1976, 13, 2287-2298.
- 34 T. Ishida, T. Maruyama, A. Taketoshi and M. Haruta, *Chem. Rev.*, 2020, **120**, 464–525.
- 35 X. Zhang, F. Guo, L. Zhuang, Q. Jin and X. Zhang, *Opt. Quantum Electronics*, 2022, **54**, 82/1-12.
- 36 T. Kunimoto, S. Naya and H. Tada, Chem. Lett., 2021, 50, 1589-1591.
- 37 C. M. Sánchez-Sánchez and A. J. Bard, Anal. Chem., 2009, 81, 8094-8100.
- 38 K. Tvrdy, P. A. Frantsuzov and P. V. Kamat, Proc. Natl. Acad. Sci., 2011, 108, 29-34.
- 39 H. Tada, T. Kiyonaga and S. Naya, Chem. Soc. Rev., 2009, 38, 1849-1858.