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Abstract
Defects are important as they often govern the chemical and physical properties of solid materials. 
Surface defect sites, such as anion vacancies, most commonly oxygen vacancies for oxides, are well-
known reaction sites in heterogeneous catalysis. Although the importance of defects at catalyst 
surfaces is well recognized and commonly accepted by the catalysis community, details of their 
atomic and electronic structures are lacking, which is largely due to the fact that identifying surface 
defects is challenging and mostly beyond the resolution of currently available experimental techniques. 
Moreover, the complexities of the geometrical and electronic structures of surfaces make 
computational investigations difficult. Presently, studying an individual material requires substantial 
amounts of experimental and calculational time/cost; hence few comprehensive studies have been 
performed. In this perspective, we summarize our recent systematic computational efforts using 
density functional theory to calculate surface anion vacancy formation energies (Evac) as important 
descriptors of catalytic performance. The systems explored include binary oxides, complex oxides, 
carbides, nitrides, sulfides, hydrides, and oxides with supported metals. Exotic surfaces with high-
index orientations were also considered. In addition, we studied relationships between 
physicochemical properties and surface anion Evac values in order to rationalize the properties of 
compounds/surfaces and the support metals, and to provide a predictive tool. The definitive goal of 
our work was to gain fundamental knowledge of the factors determining surface defect formation and 
ultimately catalytic activity/selectivity so that ideal catalytic materials/surfaces can be designed and 
manipulated in a highly precise manner.
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1. Introduction 

The chemistry and physics of solid materials is incomplete without considering various types of 

defect.1–5 Various point and extended defects introduced into a structure can dominate its reactivity, 

as well as its catalytic, optical, mechanical, and electrical properties.6–10 In particular, surface point 

defects, such as anion vacancies, strongly affect catalytic performance in terms of both activity and 

selectivity.11,12 For instance, the Mars–van Krevelen (MvK) mechanism, in which anion vacancy sites 

on a solid surface act as reaction sites, is a frequently encountered catalysis process.13,14 The energy 

required to form such defects in the catalyst is typically used to rationalize and predict the performance 

of associated catalytic processes.15 

Surface defects have been investigated using various experimental techniques for many 

years.16–18 Scanning probe technology has proven to be a useful tool, providing significant amounts 

of information on defective surface structures, as it enables the direct visualization of surface 

defects.19–22 On the other hand, experimentally observing vacancies requires sophisticated 

techniques; consequently, they remain largely unexplored.23 In addition, the vacancy formation 

energy (Evac) is not always experimentally obtainable,23 which has led to many theoretical studies on 

anion vacancies in recent years.24–32 Although many contributions toward obtaining Evac values and 

employing them as descriptors of catalytic performance have been reported, especially for bulk systems, 

only a limited number of surfaces have been investigated, and no comprehensive studies have been 

conducted.2,23,31 Indeed, this is a major reason for why data-science-based approaches, which have 

attracted much recent attention in the fields of molecular and materials science, remain in their 

infancies in the heterogeneous catalysis field.33–35 While machine learning (ML), a sub-field of data 

science, is expected to accelerate research in terms of the time and cost involved when properly 

devised, the complexities of solid surfaces provide significant challenges.33 Due to broken symmetry 

at the surface, atoms near the surface generally do not adopt the same positions as in the bulk and 

relax or reform to other structures. As Pauli once famously said: ‘‘God made the bulk; surfaces were 

invented by the devil’’ (Figure 1); hence, the complexities and varieties of surface structures 

compared to their bulk equivalents provide significant difficulties for obtaining clean and reliable 

descriptors for use in ML model constructs of surface-catalyzed reactions. 

Several materials databases are currently available, including the Inorganic Crystal Structure 

Database (ICSD),36 AtomWork,37 the Materials Project,38 the Automatic Flow of Materials Discovery 

Library (AFLOWLIB),39 and the Open Quantum Materials Database (OQMD)40 as well as surface-

property/reaction databases, such as Catalysis-Hub.org41 and the Open Catalyst Project.42 However, 

these model varieties are inadequate, especially for transition-metal-containing compound surfaces 

due to their additional complexities and higher computational costs, despite the importance in 

heterogeneous catalysis. Therefore, determining Evac values for various compound surfaces at the 

same computational level using comparable structural models is highly desirable in order to provide 
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meaningful comparisons. This information is particularly important for experimental researchers that 

require such information when designing and developing practical heterogeneous catalysts.11

In this sense, we have endeavored to comprehensively calculate the surface anion Evac 
values of a variety of compounds, including relatively simple binary oxides, complex oxides, carbides, 
nitrides, sulfides, and hydrides, as well as oxides with supported metals at metal/oxide perimeter sites; 
high-index-oriented exotic surfaces were also considered. Throughout this campaign, density 
functional theory (DFT) calculations were performed using the Vienna Ab initio Simulation Package 
(VASP) code43,44 at the same computational level (PBEsol(+U)).45 While the PBEsol(+U) functional is 
not the most computationally accurate, as it underestimates bandgap (BG) values, it nevertheless 
captures trends at reasonable computational cost and facilitates qualitative discussion.31,46 In addition 
to providing these Evac values, we endeavored to correlate surface anion Evac values with the 
physicochemical properties of compounds/surfaces with support metals by deconvoluting the 
observed trends into electronic structures, which is beneficial when screening catalysts (even for as-
yet known materials) for specific applications without incurring significant experimental and/or 
computational costs. The physicochemical properties adopted as descriptors were selected from 
readily available sources such as the periodic table, handbooks, and public databases, and DFT 
calculations obtained through Evac calculations because the aim of our effort is to accelerate screening 
of materials by estimating materials properties, which are difficult to obtain, by using easily obtainable 
values. This Perspective summarizes our recent computational efforts in this campaign, as well as 
the relevant work of others reported in the literature. Computationally assisted future catalysis 
research is discussed in this perspective together with the difficulties and limitations associated with 
the complexities of surface chemistry.

Figure 1. Comparing the complexities of surface structures with a bulk structure inspired by the 
famous quote: “God made the bulk; surfaces were invented by the devil”.
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2. Simple binary oxide surfaces47

Metal oxides play significant roles in heterogeneous catalysis, which is largely governed by surface 
point defects, such as O vacancies. For instance, the MvK mechanism, in which O vacancy sites on 
a metal oxide catalyst surface act as reaction sites, is a frequently encountered catalysis process.13,14 
In addition, metal–support interactions (MSIs) have been ascribed to oxide reducibility as measured 
by the surface oxygen vacancy formation energy (EOvac).48 

As part of our work,47 we calculated EOvac values for insulating and semiconducting oxides, 
with the most stable surface for each compound/structure used in this study, as shown in Figure 2. 
Both (111) and (11 ) surfaces were considered for the Baddeleyite structure because their surface 1
energies (Esurf) are almost the same. The obtained EOvac values were correlated with other readily 
available physical properties, such as the bulk formation energy per atom (Eform), Esurf, the Kohn–
Sham BG, electron affinity (EA; negative of the conduction band minimum (CBM) with respect to the 
vacuum level), ionization potential (IP; negative of the valence band maximum (VBM) with respect to 
the vacuum level), and work function (WF; defined as the average of IP and EA for insulating and 

semiconducting materials). In addition to these computationally derived properties, electronegativity 
(EN) was calculated as the geometrical mean of the Pauling ENs of the atoms in the system according 
to Sanderson’s definition.49

Linear correlations between EOvac and descriptors mentioned above were examined (Figure 
3). BG was found to be the best descriptor (R2 = 0.74) among those explored; a large BG results in a 
large EOvac (O vacancies are difficult to form), which is physically reasonable because O is formally 
an anion with excess electrons in such a compound; its removal generally forces excess electrons to 
be transferred somewhere above the VBM, with the most obvious place being the CBM. Electrons 
enter defect states after O removal, and these states can either be in the valence band, the mid-gap, 
or the conduction band. Excess electrons are expected to be transferred to the CBM in many cases, 
which modulates the stabilities of the remaining excess electrons through the formation of O 
vacancies, which explains why the BG (i.e., the difference between the CBM and VBM) correlates 
well with the EOvac value. Similar trends were observed in computational investigations of bulk 
models.50–54 Understanding the correlations among descriptors also provides guidelines for selecting 
combinations of descriptors when constructing ML models and obtaining chemical/physical insights 
from the models. For example, the correlation between EA and WF is high (0.94), indicating that using 
these quantities together can be redundant for ML studies.

The BG is not the single driver of EOvac; otherwise, all metallic compounds with a zero BG 
would have the same EOvac. In fact, our density-of-states-based (DOS-based) defect state analysis  
suggests that the BG cannot be a single descriptor in light of the observed defect-state-position 
diversity.47 In short, reality is more complex. Some correlation with Eform is expected because the 
removal of O requires cation−O bond cleavage; therefore, Eform must reflect bond strength. In fact, the 
Eform of the metal oxide was found to be the second most important descriptor (R2 = 0.55).

The subsequent adsorption of molecular CO, CO2, O2, NO, and H2 on O-deficient surfaces 
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was also investigated (Figure 4), which is of significant importance because surface defect sites are 
often involved in the adsorption process, a fundamental step in a surface-catalyzed reaction. Note 
that only systems with negative adsorption energies (i.e., for which adsorption is likely to occur) are 
plotted here. EOvac was found to linearly correlate with adsorption energy for each molecular species 
considered. These results show that EOvac is a general descriptor for the adsorption of a molecule on 
a defective surface, which is an important catalysis step on an oxide surface. The results potentially 
serve as a practical guide for the design of advanced catalysts and provide insight into the chemical 
and physical principles that govern heterogeneous catalysis processes.

Figure 2. Representative surfaces of some simple binary oxides investigated.
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Figure 3. Correlations between EOvac and other physicochemical properties of oxide surfaces. The 
numbers are correlation coefficients (R). 

Figure 4. Adsorption energies for CO, CO2, O2, NO, and H2 on O-removed surfaces as functions of 
the EOvac value of the binary oxide surface. Only the cases where the Eads values are negative 
(adsorption is likely to occur) are shown. The Eads of CO and NO were calculated for C-down and N-
down adsorption on O-vacancy sites, respectively, while the Eads of CO2 and H2 were calculated for 
both molecular and dissociative adsorption, and the stable structure was adopted.
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3. Mixed oxide surfaces55

Mixed oxides are among the most widely used materials for industrial catalytic processes. They exhibit 
unique properties that are ascribable to their diverse structures for which characteristics can be 
tailored by choosing constituent elements.56,57 Among various mixed oxide materials, AB2X4 spinels 
are regarded as one of the most important class of crystalline compound in catalysis.56 Here A is a 
divalent cation, B is a trivalent cation, and X is a divalent anion in the stoichiometric formula of a 
(normal) spinel compound; X is O for a spinel oxide. The A and B cations also occupy two different 
sites, namely octahedral (Oh) and tetrahedral (Td) sites. Spinel oxide catalysts have been used to 
realize various CO2 hydrogenation reactions, with Zn-based spinel oxides proving to be particularly 
effective. For instance, a catalytic system consisting of ZnGa2O4 and SAPO-34 has been used to 
convert CO2 into lower olefins.58 In addition, bifunctional catalytic systems comprising ZnCr2O4 or 
ZnFe2O4 and a zeolite were found to be effective for the direct conversion of CO2 into aromatic 
compounds.59,60 Zn-based spinel oxides are responsible for CO2 activation in all of these systems, 
with their O vacancies playing significant roles in the efficient progression of each reaction. 
Understanding the nature of the O vacancies of Zn-based spinel oxides and subsequent CO2 
activation on these vacancies is expected to lead to the rational design of effective catalysts for CO2 
transformation reactions.

With this background in mind, we calculated the EOvac values and electronic structures for the 
(100), (110), and (111) surfaces of ZnAl2O4, ZnGa2O4, ZnIn2O4, ZnV2O4, ZnCr2O4, ZnMn2O4, ZnFe2O4, 
and ZnCo2O4, which are normal zinc-based spinel oxides, as shown in Figure 5;55 the (100) surface 
was found to be most stable in each case. With the exception of ZnCo2O4, the smallest EOvac was 
found to be largest on the (100) surface, and the values for the (100) and (110) surfaces were found 
to correlate well with the Eform value for each spinel.

ML was also used to statistically analyze and predict EOvac values for all surface O sites of 
ZnM2O4 and to identify factors that are predictively important, using the descriptors discussed above, 
namely Eform, IP, EA, BG, and the geometric descriptors. The type of surface orientation was also 
implemented using a one-hot encoding method. Well-performing ML methods were evaluated with a 
set of six widely used ML methods, namely the least absolute shrinkage and selection operator 
(LASSO) and ridge regression linear methods, support vector regression (SVR) and Gaussian 
process regression (GPR), as kernel methods, and random forest regression (RFR) and extra tree 
regression (ETR), as tree ensemble methods. Monte Carlo cross-validation with 100 random leave-
10%-out trials was performed to obtain the average root-mean-square error (RMSE) and to evaluate 
the predictive capability of each ML model. Figure 6(A) demonstrates that the six ML methods tested 
in this study were able to predict EOvac to within an RMSE of 0.49–0.77 eV/defect. Tree ensemble 
methods performed relatively well, with ETR determined to be the most predictively accurate. R2 was 
also determined to be 0.82 for the ML model based on ETR, which demonstrates that EOvac can be 
predicted using a dataset with only 106 data points and readily available descriptors. Accuracy is 
expected to be improved once more data are obtained in the future. As a side note: we are arguably 
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still observing overfitting to the training data and non-negligible gaps between training and test errors 
for the best-performing model based on ETR. This observation has recently been discussed in terms 
of "benign overfitting" in modern ML models and remains an involved problem in the community.61–63 
In principle, ETR works as a pseudo piecewise-linear interpolation, and given a small number of data 
points, interpolating noisy training data can be more informative and give better prediction rather than 
also trying to separate noise out in such underspecified cases with small samples. We confirmed that 
ETR with bootstrapping did not improve prediction performance.

With the best ML method (ETR) in hand, the SHapley Additive exPlanations (SHAP) 
technique was then used to identify and prioritize descriptors, as shown in Figure 6(B); i.e., the 
contribution of a given input feature to the target (EOvac) response was identified.64,65 The most 
important descriptor was found to be Eform, followed by the type of surface orientation, IP, and 
coordination number. As expected, Eform is a significantly important descriptor, with the Surface(111) 
descriptor contributing highly because, unlike the other two surfaces, EOvac and Eform correlate poorly 
for the (111) surface. This analysis also revealed that EOvac (SHAP value) tended to be high for low 
Eform (feature value), which indicates that not only is bulk property information necessary, but 
information on the local structures of surface O sites is also necessary. In addition, both geometrical 
and electronic properties were identified to be important for predicting EOvac. Breakdown of SHAP 
values as waterfall plots for two representative surfaces (ZnAl2O4 (110) and ZnCo2O4 (111)) are also 
shown in Figure 6(C,D). For example, in ZnAl2O4 (110), it can be seen that the high EOvac value is 
mainly due to the large absolute value of Eform and the fact that the surface orientation is not (111). 
On the other hand, for ZnCo2O4 (111), the relatively small absolute value of Eform and the unstable 
(111) surface contribute to lowering the EOvac value. These additional analysis reveals which 
descriptors are responsible for increases and decreases from the dataset average value (3.13) 
relative to the predicted value. 

Stability
(100) > (110) > (111)

Zn

M
(= Al, Ga, In, V,

Cr, Mn, Fe, Co)

O

(100)

(110)

(111)

Figure 5. EOvac values for all surface O sites and all ZnM2O4 surfaces as functions of Eform.

Page 8 of 23Catalysis Science & Technology



9

(A) (B)

(C) (D)ZnAl 2O 4 (110) ZnCo 2O 4 (111)

-2.811 = Formation energy (E form)

0 = Surface (111)

4.45 = Band gap (BG)

0 = Coordination number (Zn)

2.469 = Electron affinity (EA)

3 = Coordination number (M)

1.85 = Bond length average

1 = Surface (110)

0 = Surface (100)

6.919 = Ionization potential (IP)

126.421 = Surface energy (E surf)

f(x) = 6.38

E[f(X)]= 3.13 E[f(X)]= 3.13

f(x) = 3.14

1 = Surface (111)

4.554 = Ionization potential (IP)

-1.56 = Formation energy (E form)

3 = Coordination number (M)

2.664 = Electron affinity (EA)

1 = Coordination number (Zn)

1.891 = Band gap (BG)

1.89 = Bond length average

0 = Surface (100)

0 = Surface (110)

112.948 = Surface energy ( Esurf)

Figure 6. (A) Average RMSEs for predicting EOvac for all ZnM2O4 surface O sites from 100 random 
leave-10%-out trials using various ML methods. (B) SHAP values of the descriptors used to predict 
EOvac using ETR. SHAP values of individual factors are plotted as dots (blue corresponds to low 
features, red to high features). Here, features are ordered in descending order according to the sum 
of their absolute SHAP values. Breakdown of SHAP values as waterfall plots for (C) ZnAl2O4(110) 
and (D) ZnCo2O4(111) is provided to determine which feature values are responsible for increases 
and decreases from the base value (dataset average: E[f(X)]) of 3.13 relative to the predicted value. 
Positive and negative contributions of each feature (SHAP values: f(x)) are shown in red and blue, 
respectively.
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4. High-index oxide surfaces66

Oxides are expected to exhibit high catalytic reactivities at high-index surfaces and at surface defects, 
such as corners and step edges, because cations and anions in these environments exist in more 
unfavorable coordination environments and have lower coordination numbers than atoms on smooth 
faces or in the bulk. Computational studies on irregular sites are leading experimental ones owing to 
difficulties associated with the latter. An actual oxide particle can have many exposed orientations; 
hence, the development of an algorithm that can rapidly model diverse surfaces and considers surface 
reconstruction is expected to be very helpful because attempts to experimentally synthesize high-
index surfaces and unstable surface sites, which can be handled computationally, fail because stable 
surfaces become reconstructed. 

We developed a workflow that efficiently produces a set of accessible terminations by 
removing those that are metastable against macroscopic facet formation, and compared the cleaved 
surfaces with surfaces suggested by a genetic algorithm (GA) for promising orientations using 34 
orientations of β-Ga2O3 and θ-Al2O3.66 Seven and six terminations, which are considered to be 
experimentally accessible, were located for β-Ga2O3 and θ-Al2O3, respectively, for which the highest 
Esurf was roughly twice that of the lowest. The lowest EOvac among the accessible surfaces were found 
to be 3.04 and 5.46 eV for the (101) and (20 ) terminations of β-Ga2O3 and θ-Al2O3, respectively, 1
which are 1.32 and 1.11 eV, respectively, lower than those of the most stable surfaces. 

Correlations between minimum EOvac values and a number of descriptors were determined 
for β-Ga2O3 and θ-Al2O3, thereby providing insight into the formation of O vacancies on exotic surfaces. 
As mentioned above, the EOvac values of stable surfaces are strongly related to bulk BG and Eform, 
while the bulk O vacancy formation energy correlates with the BG, Eform, mid-gap energy relative to 
the O 2p band center, and atomic electronegativities.52,67 However, these descriptors cannot be used 
when investigating different terminations of the same crystal. Three descriptors were examined, 
namely, the Esurf, IP, and BG of each surface slab model. Plots of minimum EOvac as functions of Esurf 
for the various surfaces, which showed the best R2 among the three descriptors for both compounds, 
are shown in Figure 7. EOvac decreases with increasing Esurf, which is natural because less stable 
surfaces may have O in less favorable environments that can be removed with less energy. In addition, 
the EOvac values on accessible surfaces show good correlations with local coordination environment 
descriptors, which suggests that exploiting surface O in an unfavorable environment in an 
experimentally accessible termination enhances O-vacancy-related catalyst performance even in 
materials that are unreactive on their most stable surfaces.
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Ga 2O 3 (100) Ga 2O 3 (201) Ga 2O 3 (310)

Ga 2O 3 (101) Ga 2O 3 (112)

Ga 2O 3 (113) Ga 2O 3 (111)
: Ga

: O

: O with the lowest E Ovac

(A) (B)

R2 = 0.42

R2 = 0.49

Figure 7. (A) EOvac vs. Esurf for β-Ga2O3 and θ-Al2O3. R2 values for the linear fits of all terminations, 
only accessible terminations, and only inaccessible terminations are also given, respectively. (B) 
Accessible terminations of β-Ga2O3. Green, red, and blue balls indicate Ga, O, and O sites with the 
lowest EOvac, respectively.
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5. Carbides, nitrides, sulfides, and hydrides68

Metals and metal oxides play central roles in heterogeneous catalysis.69 However, the use of less-
explored classes of compound as catalysts is always crucial when exploring new processes,70 with 
metal nitrides, carbides, sulfides, and hydrides among such materials.71,72 While these compounds 
are not new, there is growing interest in their catalytic properties and potential applications that include 
thermal, photo-, and electro-catalysis.73,74 For instance, nitrides and carbides are known to play roles 
in a number of valuable catalytic processes, such as NH3 synthesis,75 Fischer–Tropsch synthesis,76 
and hydroprocessing.77 Sulfides have also been extensively used in the petroleum industry.78,79 
Although hydrides have been less explored in heterogeneous catalysis, these materials, including 
surface hydrides as well as hydride-containing mixed-anion compounds, have received much 
attention recently for use in a variety of catalytic processes, including NH3 synthesis and CO2 
hydrogenation, where surface H species play important roles.80–82 

The catalytic reaction mechanisms of the aforementioned materials are of significant interest. 
In particular, the MvK mechanism, where surface anion vacancies serve as active centers, is often 
considered for this class of material.83 Recently, Zeinalipour-Yazdi et al. investigated the mechanism 
of the NH3 synthesis reaction over Co3Mo3N using DFT calculations and found that this reaction can 
proceed through a N-based MvK mechanism.84 In addition, several studies have reported that 
Fischer–Tropsch syntheses over Fe carbides proceed by a MvK mechanism involving the liberation 
of carbon from the carbide surface and the dissociative adsorption of CO, which recovers the carbide 
surface by filling carbon vacancies.85–87 Although such work greatly contributes to the body of 
knowledge on the catalysis of non-oxide-based materials, our present understanding of their catalytic 
roles and surface properties remains insufficient. 

In our study,68 surface properties, such as work function (WF), were calculated for binary 
compounds in which the cation is a group 3, 4, or 5 element (i.e., Sc, Y, La, Ti, Zr, Hf, V, Nb, or Ta) 
and the anion is either H, C, N, O, or S. Figure 8 shows the WF values of representative surfaces of 
the considered compounds. With the exception of YN, which has a very small bandgap (0.07 eV), 
these compounds are all metallic, with WFs smaller than that of Ag (4.56 eV) (with the exception of 
TiC, whose WF is close to 4.61 eV). In contrast, the oxides and sulfides exhibit large WF ranges of 
1.97–8.33 eV and 2.28–6.02 eV, respectively. Many oxides and sulfides feature BGs; hence, values 
of IP and EA that exclude the explicit effects of in-gap surface states are also shown. The oxides and 
sulfides exhibited lower WFs when their cations were reduced.

Many low-WF systems share the same crystal structure; therefore, the relationship between 
the cation and the Evac value of the surface anion was investigated for the fluorite (111) surfaces of 
hydrides and the rocksalt (100) surfaces of nitrides and group 4 and 5 carbides. Some of the 
investigated compounds were hypothetical, but were included to observe trends over a wider range 
of elements. In addition, identifying correlations between the surface-anion vacancy-formation 
energies and other physicochemical quantities enables Evac to be rationalized and predicted, which is 
beneficial when screening materials for specific applications in a significantly computationally cost-
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effective manner. With the aim of identifying general versatile relations, correlations between Evac and 
the physicochemical properties of various hydrides, carbides, and nitrides, as well as the elemental 
properties of the cations and anions in these compounds, are shown in Figure 9. For the properties 
of the compounds themselves, Eform and WF provide relatively high correlation coefficients, although 
the M–Xvac length and the bulk density, correlate poorly with Evac. These results highlight the 
importance of both structural and electronic properties when developing an understanding of Evac, 
which is consistent with the aforementioned discussion on oxide surfaces. Regarding elemental 
properties, EA and cation electronegativity were found to correlate well with Evac (high R). Note that 
BG, which serves as a good EOvac descriptor for many oxide surfaces (see section 2), was not 
considered as a descriptor here because all of the hydrides, carbides, and nitrides considered have 
zero BGs.

Figure 8. WFs of representative hydride, carbide, and nitride compound surfaces, as well as IPs and 
EAs based on bulk definitions (bars). The WFs of elemental metals (crosses) are also shown.
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Figure 9. Correlation map of Evac, physicochemical properties of hydrides, carbides, and nitrides, and the 
properties of elemental cations and anions associated with these compounds (M and X, respectively). The 
physicochemical properties of the hydrides, carbides, and nitrides include WF, Eform, bulk density, and 
length of the M–X bond (M-Xvac length), where X is the atomic anion to be removed. Here, Evac, WF, Eform, 
and M-Xvac length were obtained using DFT calculations while elemental properties of the cations and 
anions were obtained from the CRC handbook. The numbers are correlation coefficients (R).
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6. Metal/oxide perimeter sites88

The interaction between a metal nanoparticle and its oxide support has been extensively discussed 
in the heterogeneous catalysis field.89–93 The supported metal nanoparticle and the support itself affect 
each other in a manner that creates unique surface properties and electronic structures.94 Sites 
located in the immediate vicinity of the metal/oxide interface, referred to as “perimeter sites”, are often 
considered to be the catalytically active sites.95,96 For instance, supported noble metal nanoparticles 
can promote the formation of surface O vacancies in reducible metal oxide supports at perimeter 
sites, which serve as active redox centers for various reactions through the MvK mechanism.97,98 
Despite its importance in the broad field of heterogeneous catalysis, the nature of the interaction 
between a metal nanoparticle and its metal oxide support, and its effect on O-vacancy formation, have 
not been extensively investigated due to the complexity of the system; consequently, it remains a key 
heterogeneous catalysis research area.11 Computational approaches that address this issue99–102 in 
a systematic fashion and in a manner that investigates the underlying physics/chemistry are 
necessary, as accessing such systems experimentally is difficult due to their complex nature.

Group 13 metal oxides, including In2O3, Ga2O3, and Al2O3, show unique properties and serve 
as excellent catalysts and supports for various valuable chemical transformations.103,104 In particular, 
much attention has been paid to In2O3 recently. In2O3 was found to promote the hydrogenation of CO2 
to methanol, with its surface oxygen vacancies playing significant roles in the efficient progression of 
the reaction.105–107 Performance can be further improved by combining this material with a second 
component, such as Pd,108,109 Co,110 or Ni.111 Interactions between In2O3 and the second active 
component are key to creating more oxygen vacancies that are responsible for adsorbing and 
activating reactants.

Our study considered the adsorption of metal nanoparticles on an In2O3 slab with a (111) 
surface,88 and the metal element, M, was selected from among Cu, Ag, Au, Pd, Pt, Ir, and Re. The 
M/In2O3 system was modeled as a semi-infinite M nanorod supported on In2O3 (111); similar models 
have been employed for investigating metal/oxide sites at perimeters and interfaces (Figure 
10A).112,113 One major objective of this study was to systematically analyze differences under the 
same computational conditions, thereby enabling direct comparisons over seven elements M. 
Specifically the relationship between the EOvac value of the In2O3 (111) surface and the adsorbed metal 
nanorod was investigated. 

Although the change in EOvac upon nanorod adsorption depends on the O site and the type 
of element M, it tends to be lowered by adsorption (O vacancies are likely to form), especially for Pt, 
Ir, and Pd. In addition, such decreases in EOvac were mainly observed at O sites near the nanorod. 
The minimum EOvac value for each system is primarily discussed here, as our main objective was 
directed toward investigating the effect of the type of metal M. The minimum EOvac values were found 
to depend on M (Re > Ag > Cu > Au > Pt > Ir > Pd) and to show a fair correlation with WF (R2 = 0.55), 
as shown in Figure 10B. In addition, minimum EOvac was found to correlate better with degrees of 
electron transfer (Bader charge) from support to nanorods upon removal of O giving a minimum EOvac 
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(R2 = 0.83, see Figure 10C). Here, we discuss the reason why M can be grouped into three sets, 
namely, {Ag, Cu, Re}, {Au}, and {Ir, Pd, Pt}, in terms of the relationship between EOvac and the level of 
electron transfer to the M. Figure 10D shows electronic DOSs of the In2O3 bulk, the In2O3 slab without 
O vacancies, the In2O3 slab with one O vacancy on each side that minimizes EOvac, and the WF of M. 
Cleavage to form a surface results in surface-induced states just above the bulk VBM, while the 
removal of O results in occupied defect states higher than these surface-induced states. The EF 
values in O-desorbed In2O3 are higher than the Pt, Ir, and Pd WFs, lower than the Re, Cu, and Ag 
WFs, and almost the same as the Au WF, which suggests that charge transfer from defect states to 
the nanorod reduces the Pt, Ir, and Pd energies; therefore, these M atoms act as electron scavengers 
that lower EOvac by inducing interactions between M and In2O3. In contrast, Re, Cu, and Ag cannot act 
as strong electron scavengers, while Au can act as an electron scavenger to some extent. To further 
understand the charge transfer from defect states to nanorods, an analysis of the charge density 
distribution was conducted. Figure 10E shows charge transfer when M is Pd, and the site of O 
removal was taken very close to the Pd nanorod. The charge transfer in the case of M = Cu, Ag, Au, 
and the case where O atoms far away from the nanorods were removed has been investigated in our 
previous reports.88 Charge transfer from the O-defect sites near the Pd nanorods (blue spheres, 
highlighted by blue inverted lines) onto the Pd nanorods can be observed. Similar results were 
obtained for Ag and Au, and the amount of charge transfer from the support to the nanorod 
qualitatively becomes larger in the order Ag, Au, and Pd, which means that more charge is transferred 
from the support site to the metal nanorod when the WF of the metal is larger. This result indicates 
that EOvac can be controlled by the combination of catalyst supports and supported metals. These 
observations are consistent with previous theoretical studies on relevant metal/oxide systems. 
Puigdollers and Pacchioni demonstrated that excess electrons are transferred to Au when O is 
removed from a ZrO2 support with a Au nanoparticle adsorbed on its surface when the vacancy site 
is close to the nanoparticle.114 EOvac was lowered by up to 2.2 eV in Au-nanorod-adsorbed anatase 
TiO2 when the vacancy site was close to a Au nanorod.115 Bazhenov et al. observed a steep drop in 
EOvac at O sites near the nanoparticle in Rh-nanoparticle-adsorbed ZrO2, which was ascribed to the 
accommodation of electrons by Rh where EOvac decreases.116 It is important to note that geometrical 
relaxation had less of an effect in our system, as the M atoms barely moved upon removal of surface 
O, which enabled precise analysis of the effect of charge transfer alone when analyzing differences 
in minimum EOvac across various elements M. These observations assist in the selection of 
nanoparticles that activate the surface sites of the support.
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Figure 10. (A) Representative model for the adsorption of M nanorods on In2O3. Red and brown balls 
indicate O and In, respectively, while gold-colored balls represent M (Au in this case). Plots of 
minimum EOvac as functions of (B) the WF of the M slab with EA and IP of an In2O3 (111) slab and (C) 
the change in nanorod Bader charge upon O desorption. (D) Site-projected DOSs of (i) the In2O3 bulk, 
(ii) the In2O3 (111) slab without O vacancies, (iii) In2O3 (111) slab with one O vacancy on each side 
that minimizes EOvac, and WF of M. The bulk and slab DOSs without vacancies are aligned using the 
average local potential at atomic sites, and the slab DOSs with and without O vacancies and the metal 
WF are aligned at the vacuum level. (E) Charge-density transfer from the support to the Pd nanorod 
with O vacancy formation. The charge density of the isosurface is 0.1 (elementary charge / Å3).

Page 17 of 23 Catalysis Science & Technology



18

7. Conclusions and future outlook
Discovering new catalysts is a formidable challenge; consequently, many of the advances in the 
catalysis field have arisen through trial-and-error investigations, which are often very resource-
intensive and intellectually frustrating. Establishing effective and accurate catalyst design guidelines 
by providing a fundamental understanding of catalytic materials and processes will accelerate the 
further development of high-performance catalysts. In this perspective, we summarize a series of 
studies aimed at understanding and controlling the formation of surface anion vacancies, which can 
serve as active sites for a number of catalysis applications. In addition to obtaining Evac values as 
important descriptors of catalytic performance, we examined correlations between surface anion Evac 
values and the physicochemical properties of compounds/surfaces together with those of support 
metals by deconvoluting observed trends into electronic structures. Despite limitations in 
computational accuracy and the existing diversity of metal-oxide surfaces, our efforts provide 
guidance for the design of solid catalysts.

Many challenges currently remain, ranging from fundamental chemistry/physics to 
computational issues and the design of materials with tailored properties. The systematic 
rationalization of anion vacancies through experimental observations of a large number of surface 
systems remains unexplored and unrealistic because sophisticated techniques that are both time- 
and cost-intensive are required, and evaluating Evac is not always possible even when state-of-the-art 
techniques are used. In terms of computational challenges, the inability to match defect calculations 
performed using various incarnations of electronic structure theory is a major problem.117 The need 
to carry out post-DFT corrections reduces the transferability and predictive power of these methods. 
Problems related to surface termination and structure are ubiquitous. The development of automated 
methods for calculating defects and subjecting the results to ML can potentially overcome these 
limitations.118–120 On the other hand, finding descriptors that are highly correlated with the formation 
of anion vacancies on various solid surfaces with different geometries and electronic properties is an 
expected role of the ML approach, but we still need to improve datasets for this purpose. Finally, the 
ability to design and synthesize new catalyst materials with specific properties by manipulating surface 
imperfections remains a great challenge in catalysis science. 
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