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The theory of electron transfer reactions establishes the conceptual foundation for redox solution
chemistry, electrochemistry, and bioenergetics. Electron and proton transfer across the cellular mem-
brane provide all energy of life gained through natural photosynthesis and mitochondrial respiration.
Rates of biological charge transfer set kinetic bottlenecks for biological energy storage. The main
system-specific parameter determining the activation barrier for a single electron-transfer hop is
the reorganization energy of the medium. Both harvesting of light energy in natural and artificial
photosynthesis and efficient electron transport in biological energy chains require reduction of the
reorganization energy to allow fast transitions. This review article discusses mechanisms by which
small values of the reorganization energy are achieved in protein electron transfer and how simi-
lar mechanisms can operate in other media, such as nonpolar and ionic liquids. One of the major
mechanisms of reorganization energy reduction is through non-Gibbsian (nonergodic) sampling of
the medium configurations on the reaction time. A number of alternative mechanisms, such as
electrowetting of active sites of proteins, give rise to non-parabolic free energy surfaces of electron
transfer. These mechanisms, and nonequilibrium population of donor-acceptor vibrations, lead to a
universal phenomenology of separation between the Stokes-shift and variance reorganization energies
of electron transfer.

1 Introduction
This article is about the reorganization energy of electron trans-
fer. It has become a central parameter in studies of electron trans-
fer within and between molecules since the development of the
theory of electron-transfer reactions in solutions by Marcus.[1] A
number of alternative definitions of this parameter are discussed
below. We start with the definition in terms of small thermal fluc-
tuations around equilibria, thus avoiding highly nonequilibrium
states implicit to some other definitions.

Electron transfer represents the process of a tunneling transi-
tion of an electron between two localized states on the donor and
acceptor molecules or molecular groups. The reorganization en-
ergy λ is required to specify the activation barrier to reach the
tunneling configuration. It is best defined[2] through the vari-
ance of the reaction coordinate X (in units of energy) describing
the progression of the reaction from the reactant state (electron
on the donor) to the product state (electron on the acceptor)

λ = 1
2 β ⟨(δX)2⟩. (1)

Here, β = (kBT )−1 denotes the inverse thermal energy and angu-
lar brackets refer to a statistical average over the system config-
urations producing fluctuations of the stochastic variable X , with
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δX = X − ⟨X⟩ denoting the fluctuation from the average value
⟨X⟩. The reaction coordinate for electron transfer is distinct from
many other chemical reactions where some geometrical parame-
ters, such as the distance between the reactants and products, is
used to monitor the reaction progress.[3] Instead, X carries the
units of energy and is defined as the difference in energies of the
transferring electron in the final (at the acceptor) and initial (at
the donor) states. If the electronic energy is E2 on the acceptor
and E1 on the donor, electron tunneling requires equality between
E1 and E2 dubbed as the resonance condition. The reaction co-
ordinate was defined by Lax[4] and Warshel[5] as the energy gap,
the difference, between the acceptor and donor energies

X = E2 −E1. (2)

The resonance condition at which electron tunnels and the reac-
tion reaches the top of the activation barrier is specified by X = 0.

Given that the exact equality between equilibrium values of E1

and E2 is nearly impossible, thermal fluctuations of the energy
gap are required to establish the tunneling configuration. The
reorganization energy in eqn (1) thus quantifies the breadth of
such fluctuations, i.e., the spread of the energy-gap distribution.
It is important to stress that the energy-gap variance in eqn (1) is
calculated from the statistics of small deviations δX from the sta-
tionary value ⟨X⟩. This statistics is not necessarily sampled from
a canonical Gibbsian ensemble and can be produced from more
general ensembles, including those with imposed constraints, as
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discussed below.

This Perspective reports recent results for charge transport in
complex molecular systems, such as proteins, ionic liquids, and
nonpolar liquids. It connects new challenges posed by these me-
dia with fundamental concepts established when the theory of
molecular electron transfer was envisioned.[6–8] Classical theories
of electron transfer, while providing firm conceptual background,
also predict the existence of significant energetic bottlenecks to
efficient charge transport in natural and artificial molecular sys-
tems. How some of these limitations have been lifted by nature’s
creativity is a fascinating ongoing inquiry accomplished by labo-
ratory measurements and, increasingly, by computer simulations.
Condensing these recent advances into a framework of generic
formal theories is one of the goals pursued by this report.

Light harvesting is an important natural[9, 10] and
technological[11] application of electron transfer in molecu-
lar systems. Absorption of light lifts the energy of the molecule
by the photon energy hν to allow reactions that are thermody-
namically forbidden.[12] In molecules, the separation of charge
between the donor and acceptor parts of the donor-acceptor
complex occurs by absorbing the light photon either by a separate
antenna system or directly by the donor molecule[13] thus pro-
ducing the photoexcited electron donor D∗. Charge separation
(CS) competes with charge recombination (CR) according to the
following simplified kinetic scheme

D−A hν−→ D∗−A kCS−−→ D+−A− kCR−−→ D−A. (3)

To utilize the photon energy for subsequent charge transport, the
rate constant of charge separation kCS must be much greater than
the rate of charge recombination kCR to the ground state D–A.[14]

The efficiency of charge separation is specified by the quantum
yield Y equal to the ratio of the number of charge-separated prod-
ucts to the number of absorbed photons: Y ≃ 0.95 for primary
charge separation in bacterial photosynthesis.[9, 15, 16]

From the energy diagram shown in Fig. 1, it is clear that the
free energies of the CS and CR reactions ∆Ga, a = CS,CR add up
to satisfy the energy conservation

∑
a
|∆Ga|= hν . (4)

There is another restriction, imposed by kinetics, which turns out
to be critical for the values of reorganization energies of the cor-
responding reactions. To allow the fastest CS, the reaction driving
force (negative of the reaction free energy) should be equal to the
reorganization energy λCS. The reaction free energy of CR is still
negative and, to avoid fast backward reaction, CR needs to be in
the Marcus inverted region[6] (see below for definition). Com-
bining CS and CR transitions, one arrives at the second constraint
imposed on the reaction free energies involved

∑
a
|∆Ga|> ∑

a
λa. (5)

Assuming λCS ≃ λCR ≃ λ , an energetic constraint on the reorga-
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Fig. 1 Energy diagram of charge separation and charge recombination
reaction in natural and artificial light harvesting. Shown are the free-
energy levels of the reaction steps in eqn (1) and the reaction free energies
∆Ga (a = CS,CR).

nization energy value follows

λ < 1
2 hν . (6)

The reorganization energy has to be sufficiently low to allow light
harvesting with high quantum yield.

Natural bacterial photosynthesis often operates on the red side
of the visible spectrum with hν ≃ 1.8 eV for chlorophyll a pigments
in oxygenic species.[16] The reaction center of much studied[9]

Rhodobacter sphaeroides anaerobic purple bacterium absorbs hν ≃
1.4 eV photon by its primary pair of two sandwiched bacteri-
ochlorophyll pigments (lower edge of the exciton band). Equa-
tion (6) requires λ < 0.7 eV. It was indeed found that first two
charge-separation steps of natural photosynthesis occur as nearly
activationless transitions with the reorganization energies[17–19]

of λCS ≃ 0.35 eV for the primary charge separation and λ ≃ 0.5
eV[20] for the second step. There is just a slight mismatch be-
tween λCS and ∆GCS ≃ −0.25 eV. Quoting from Marcus:[21] “It
has been suggested that the small λ (0.25 eV) and the result-
ing inverted region effect play a significant role in providing this
essential condition for the effectiveness of the photosynthetic re-
action center.”

Small values of reorganization energy found for primary charge
separation in natural photosynthesis satisfy the energy require-
ment for high quantum yield (eqn (6)), but pose the mechanis-
tic question of how such low values are achieved by the protein
medium. While dried protein powders are often viewed as non-
polar media since they show low values of the bulk dielectric con-
stant, proteins in aqueous solutions are decorated by large num-
bers of ionized surface residues.[22] Thermally induced elastic de-
formations of the protein shift surface charges thus producing sig-
nificant electrostatic fluctuations[23] more consistent with highly
polar than nonpolar media (see below). In addition, active sites
of many redox-active proteins are located in sufficient proximity
to highly polar water to allow a substantial water component in
the medium reorganization energy. Nevertheless, it appears that
low values of the reorganization energy are universally achieved
in active sites of redox-active proteins. Reorganization energies
in the range 0.5− 0.7 eV, or lower, are required to explain elec-
tron transport in biological energy chains.[24] Electron hopping
in chains of biological redox cofactors often occurs with near-
zero reaction free energy,[25] making the reorganization energy
the main parameter affecting the activation barrier.
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Fig. 2 kCS/kCR vs λv for the reaction center of Rhodobacter sphaeroides
anaerobic purple bacterium. The parameters for the CS reaction are:
∆GCS = −0.25 eV,[9] λ = 0.35 eV,[17, 18] ωv = 1300 cm−1. The dashed
line is based on the experimental quantum yield Y ≃ 0.95; the crossing of
theoretical solid line with the experimental dashed line occurs at λv ≃ 0.15
eV. The theoretical line is from the Bixon-Jortner equation (eqn (57))
assuming that the electronic coupling is conserved between CS and CR.

The requirement of a low medium reorganization energy also
extends to the internal reorganization of vibrational modes of the
donor and acceptor.[26, 27] As we discuss below, intramolecular
vibrations increase the rate of charge recombination in the Mar-
cus inverted region (−∆G > λ) thus lowering the quantum yield.
The effect of intramolecular vibrations on the quantum yield is
illustrated in Fig. 2 where the ratio of kCS/kCR = Y/(1 −Y ) is
shown vs the vibrational reorganization energy λv (see below)
for primary charge transfer in the reaction center of Rhodobacter
sphaeroides. The outcome from the experimental quantum yield is
shown by the horizontal dashed line, which sets λv < 0.15 eV. This
low value, which requires significant rigidity of the protein active
site, is indeed achieved for many redox-active proteins. Estimated
values range from 0.05-0.09 eV for Fe-porphins[28] to 0.10-0.14
eV for Zn porphyrins[29] and 0.1 eV for azurins.[30]

The case of protein electron transfer is significant given how
much can be learned from natural systems about the princi-
ples of optimizing light harvesting and charge transport in meso-
scopic molecular systems. The problem is obviously important
on its own since protein electron transfer is the basis of en-
ergetics of life. The range of applications of electron transfer
is still much broader, embracing solar energy harvesting,[10, 11]

photocatalysis,[12] electrochemistry,[31] and bioenergetics,[25] to
name just a few. This Perspective article cannot even touch on
most of these active research areas. The main focus here is on
basic parameters affecting the reaction activation energy and fun-
damental principles behind electron transport in molecules. Fun-
damental ingredients of the standard theory are reviewed with an
eye on their potential modifications and extensions as the scope
of research effort is broadened to many new materials for charge-
transfer applications. One naturally wonders if new properties of
novel materials, distinct from polar molecular solvents envisioned
when the theory was originated,[1] can bring new parameters to
tune in order to achieve higher efficiency of charge separation for
energy storage and charge transport. One of the major findings
of studies of protein electron transfer is that the relaxation time,
in addition to the Gibbs energy, can be efficiently used to modify
the reaction activation barrier.[32]

A few words about notations adopted here. Gibbs free en-
ergy G is relevant for experiments performed at constant-pressure
conditions, and those are used in the energy balance diagram in
Fig. 1. In contrast, the Gibbsian canonical ensemble defines the
Helmholtz free energy F corresponding to constant volume. Sta-
tistical mechanics, operating with canonical ensembles, produce
Helmholtz free energies entering our theoretical arguments pre-
sented below. For all practical purposes, the Gibbs and Helmholtz
free energies are mostly indistinguishable for reactions in con-
densed media.

2 Crossing parabolas
A great success of Marcus theory is the ability to map a very com-
plex process of quantum tunneling in a condensed medium to a
simple graphical representation in terms of two crossing parabo-
las. The parabolas themselves are partial free energies or po-
tentials of mean force specifying the reversible work invested to
arrive to all possible configurations consistent with a given value
X of the donor-acceptor energy gap. Given that many configu-
rations of the system must be involved, one anticipates that the
partial free energy Fi(X) contains both energy, Ui(X), and entropy,
Si(X), contributions

Fi(X) =Ui(X)−T Si(X). (7)

Here, from standard rules of thermodynamics, one has

Si(X) =−(∂Fi/∂T )V . (8)

Mathematically, the free energy surfaces Fi(X) are derived from
the canonical Gibbsian ensemble by tracing out all possible con-
figurations of the medium and of the donor-acceptor complex
while keeping the energy gap constant. This is achieved by
putting the delta-function in the definition of the partial partition
function as follows

e−βFi(X) ∝
∫

dΓδ (X −E2(Γ)+E1(Γ))e−βHi . (9)

Here, exp[−βHi] is the Boltzmann factor of the Gibbsian ensem-
ble specified by the Hamiltonian Hi in two electron-transfer states
i = 1,2 and Γ denotes the entire manifold of all possible config-
urations of the system (the phase space). The energies Ei are
eigenvalues of the donor-acceptor quantum subsystem and the
rest of the Hamiltonian Hi = Ei +Hb is not affected by the elec-
tronic state.

The energies Ei(Γ) in eqn (9) are taken at the same configura-
tion of the atoms and molecules in the system. This requirement
constitutes the Franck-Condon principle stating that electronic
transitions occur so fast that nuclei of the system are not capa-
ble of changing their positions on that very short time. Therefore,
the energy gap X is also called the “vertical” energy gap to stress
that the nuclear coordinates, usually plotted on the horizontal
axis, remain unchanged during the transition.

The constrained partition functions in eqn (9) immediately
lead to an important linear relation between two free energy
surfaces[33, 34]

F2(X) = F1(X)+X . (10)
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This result follows from a simple manipulation in the partition
function, which effectively implies the law of energy conservation∫

dΓδ (X −∆E(Γ))e−βH1 =
∫

dΓδ (X −∆E(Γ))eβX e−βH2 , (11)

where ∆E(Γ) = E2(Γ)−E1(Γ).
The linear relation states that one arrives at the final surface

F2(X) by adding the energy difference X = ∆E = ∆H to the initial
state F1(X) at any configuration of the system, either at equilib-
rium or out of equilibrium. This notion connects the problem
of electron transfer to spectroscopy of charge-transfer transitions
since the energy of the photon hν = X can be used to both initiate
charge transfer (eqn (3)) and to probe probabilities of different
states X through the optical band-shape. Spectroscopy of charge-
transfer bands has therefore become a primary tool in investigat-
ing charge-transfer reactions.[35]

Given that the energy gap X is the difference of energies, one
anticipates that the entropy components of Fi(X) should cancel
in F2(X)−F1(X) at every X . This expectation is in accordance
with the idea of a “vertical” (optical) transition connecting the
free energy surfaces. This result also follows from the linear rela-
tion between the free energy surfaces. By taking the temperature
derivative of both sides of eqn (10), one arrives at the equality
between the entropy surfaces for the reactants and products[36]

S2(X) = S1(X). (12)

The inequality between Fi(X) is thus caused by U1(X) ̸=U2(X) in
eqn (7).

The simplest approximation for the free energy surfaces is to
adopt the Gaussian statistics of X . This result follows from the
statistical central limit theorem if one assumes that many individ-
ual molecules contribute to changes of X through their thermal
motions. As we discuss below, this approximation is very rea-
sonable when charge-transfer reactions in polar liquids are con-
cerned. The Gaussian statistics of X implies that each Fi(X) can
be specified by two statistical moments, the average Xi = ⟨X⟩i and
the variance

σ2
i = ⟨(δX)2⟩i. (13)

The averages ⟨. . .⟩i refer to each electron-transfer state separately,
i = 1 for the initial state and i = 2 for the final state.

With the Gaussian prescription for exp[−βFi(X)], the free en-
ergy surfaces become parabolas. One can additionally apply the
relation between the variance in eqn (1) and the reorganization
energy to define two separate reorganization energies

λi =
1
2 β ⟨(δX)2⟩i. (14)

With this assignment, one gets two parabolas

Fi(X) = F0i +
(X −Xi)

2

4λi
, (15)

where F0i are the equilibrium free energies such that ∆F0 = F02 −
F01 is the reaction free energy.

The functions Fi(X) are not Marcus parabolas yet. One needs to
additionally impose two exact conditions: the requirement that

12

λ

2λ
St

X1X2 0 X

∆F0

λ
r

Fi(X)

Fig. 3 Free energy surfaces of electron transfer Fi(X). The minima of
two parabolas Xi are separated by twice the Stokes-shift reorganization
energy 2λ St. The variance reorganization energy λ (eqn (1)) specifies
the curvatures of the parabolas. The change in the free energy required
to travel horizontally along each surface the distance 2λ St defines the
“reaction” reorganization energy λ r.

the free energy surfaces cross at X = 0, F1(0) = F2(0), and the
linear relation from eqn (10). These two relations impose the
following constraints on the free energy surfaces

λ = λ1 = λ2 (16)

and
λ St = 1

2 (X1 −X2) , λ St = λ . (17)

The Stokes-shift reorganization energy[23] λ St is separately de-
fined in terms of the separation of parabolas’ minima (Fig. 3).
This parameter is closely related to the Stokes shift between ab-
sorption and emission maxima in optical spectroscopy, whence
the name. We show below that deviations from the equality
λ St = λ , specific to Marcus theory (eqn (17)), are responsible for
the catalytic effect of proteins on redox reactions.

The crossing parabolas also specify the reaction free energy as
the mean of average values of the reaction coordinate

∆F0 =
1
2 (X1 +X2) . (18)

Returning to spectroscopic applications, ∆F0 can be measured as
the crossing point of the absorption and emission charge-transfer
bands if they satisfy the mirror symmetry as required for mapping
optical charge-transfer bands on the electron-transfer theory.[37]

The fundamental linear relation imposed on the Gaussian
statistics of X leaves only one reorganization energy as the pa-
rameter relevant for defining the activation barrier of electron
transfer. The reorganization energies λi define the curvatures of
who parabolas, which must be equal to satisfy eqn (10) and, in
addition, are equal to λ St. One additional reorganization energy
λ r, originally due to Marcus,[6] can be specified as the free en-
ergy required to travel from one parabola’s minimum to the posi-
tion of the second minimum along a single parabolic surface (Fig.
3). The disadvantage of this definition is that it involves a highly
nonequilibrium state which does not have to follow the Gaussian
statistics always applicable close to parabolas’ minima.

From eqn (15), the activation barrier for electron transfer is the
vertical distance between the parabolas minima and their crossing
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point at X = 0

∆F†
i =

X2
i

4λ
=

(∆F0 ±λ )2

4λ
. (19)

In the second relation, which follows from adding and subtract-
ing eqn (17) and (18), “+” and “−” correspond to i = 1 and
i = 2, respectively. Equation (19) establishes the inverted Marcus
parabola representing the reaction rate constant kr (on the loga-
rithmic scale) plotted vs the driving force −∆F0. This energy gap
law, confirmed by a number of experimental studies,[14, 38, 39]

stipulates that making ∆F0 more negative is required to move
from the normal region for the forward rate X1 > 0 to the highest
activationless rate of forward electron transfer at X1 = 0. The rate
declines again with further increasing of the driving force −∆F0

into the exergonic domain, which specifies the Marcus inverted
region X1 < 0.

3 Fluctuation-dissipation relations
The definition of the reorganization energy in eqn (1) involves
the product of the energy-gap variance with the inverse ther-
mal energy β . This specific functionality comes from the static
limit of the fluctuation-dissipation theorem (FDT) also known as
Johnson-Nyquist noise.[40] This theorem states that the variance
of a macroscopic variable A should scale linearly with tempera-
ture, ⟨(δA)2⟩ ∝ T , δA = A−⟨A⟩. When A = X , the slope of this
linear scaling, which is expected to be little affected by tempera-
ture, defines the reorganization energy.

The meaning of the static FDT is easy to appreciate for a har-
monic oscillator in contact with the thermostat at temperature T .
According to the equipartition theorem, the variance of thermally-
induced oscillator displacement δq is ⟨(δq)2⟩ = χkBT , where the
linear susceptibility χ = κ−1 is the inverse of the force constant
κ. The same susceptibility defines the linear displacement of the
oscillator ∆q = χ fext in response to the external force fext. The re-
organization energy thus becomes a linear susceptibility relating
the change in the donor-acceptor energy gap in response to the
movement of charge between the donor and acceptor.[41]

The connection between the reorganization energy and sus-
ceptibility can be made more explicit by applying Kubo’s linear
response theory[42, 43] that leads to the FDT in the frequency
domain. This formulation[41] specifically considers the time-
dependent change of the energy gap ∆X(t) initiated by the move-
ment of charge between the donor and acceptor at t = 0. In Kubo’s
formalism, the time-dependent response function χ(t) can be con-
nected to the time correlation function of the variable X(t)

CX (t) = ⟨δX(t)δX(0)⟩, δX(t) = X(t)−⟨X⟩. (20)

This connection becomes a linear algebraic relation upon apply-
ing the Fourier-Laplace (one-sided Fourier) transform to the time-
dependent functions[43]

χ̃(ω) = β
[
CX (0)+ iωC̃X (ω)

]
, (21)

where tildes are used to denote Fourier-Laplace transformed func-
tions

C̃X (ω) =
∫ ∞

0
dtCX (t)eiωt . (22)
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Fig. 4 Loss spectrum of the Stokes-shift dynamics for electron transfer
between the bacteriopheophytin and primary quinone cofactors of the
photosynthetic bacterial reaction center.[19] The shaded area shows the
part of the Stokes-shift spectrum contributing to the nonergodic reorga-
nization energy. The vertical dashed lines indicate the values of experi-
mental rate constant (kr/(2π)) and the rate constant for primary charge
separation (kCS/(2π)) in the reaction center. Adapted with permission
from Ref. [19]. Copyright 2013 of the Royal Society of Chemistry.

The full Fourier transform of the time correlation function C̄X (ω)

follows from C̃X (ω) as C̄X (ω) = 2Re
[
C̃X (ω)

]
. The frequency-

domain FDT establishes the relation between the loss function
(power spectrum[44, 45]) χ ′′(ω) = Im[χ̃(ω)] and C̄X (ω). It follows
by taking the imaginary part of both sides in eqn (21)

C̄X (ω) = 2kBT
χ ′′(ω)

ω
. (23)

According to eqn (1), λ = βCX (0)/2 is obtained by integrating
C̄X (ω) over all frequencies[32]

λ =
∫ ∞

0

dω
πω

χ ′′(ω). (24)

The correlation function CX (t) is accessible from time-
dependent fluorescence of photoexcited optical dyes[46] and is
known as the Stokes-shift time correlation function. It is also ac-
cessible from numerical computer simulations.[47, 48] Its conver-
sion to the loss spectrum χ ′′(ω) provides a convenient graphical
representation of the relaxation spectrum of the medium affecting
charge transfer.[19] For multi-exponential decay of the correlation
function CX (t), the loss spectrum becomes a sequence of Debye
peaks, with the peak position pointing to the inverse relaxation
time and its amplitude to the relative contribution of a specific
relaxation process to the overall reorganization energy given as
the overall area under the χ ′′(ω)/(πω) curve (Fig. 4). Restricting
the range of integration leads to the nonergodic reorganization
energy discussed below.

4 Physical models of reorganization energy
The results presented so far are very generic. They combine
Gaussian statistics of the energy gap with dynamics through the
Stokes-shift time correlation function. This general framework
can be amended with specific physical mechanisms when micro-
scopic interactions of the transferring electron with the surround-
ing medium are introduced. Before proceeding to this next step,
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we briefly discuss the model of linear coupling between the quan-
tum subsystem and harmonic thermal bath. This model, which
has strongly influenced theory development, forms the basis of
theories of radiationless transitions in condensed materials,[49]

including Marcus theory.

4.1 Linear coupling to a harmonic bath

The power spectrum χ ′′(ω) which integrates to the reorganization
energy according to eqn (24) can be mapped on a bath of har-
monic oscillators with distributed resonance frequencies to which
the transferring electron is coupled through a function linearly de-
pending on oscillator displacements.[45, 50] To simplify the discus-
sion, we consider only one oscillator with the effective force con-
stant κ representing the harmonic medium. The electron-medium
interaction is a linear function of the oscillator displacement q
with the coupling constant Ci depending on the electron-transfer
state. Two instantaneous energies Ei(q) establish the fluctuating
energy gap ∆E(q) = E2(q)−E1(q)

Ei(q) = E0i −Ciq+ 1
2 κq2. (25)

Here, E0i are the gas-phase energies unaffected by the medium.

The electron-medium coupling constant Ci carries the physical
meaning of a Hookean external force stretching the harmonic os-
cillator to the equilibrium distance

q0i = κ−1Ci. (26)

Given that displacements are different in two electronic states,
the linear coupling model turns into the picture of two shifted
parabolas along the coordinate q. The energy gap becomes a lin-
ear function of q and the functions Ei(q) from eqn (25) can be
projected on two Marcus parabolas through eqn (9). These two
parabolas, now plotted against the reaction coordinate X , have
the curvature

λ = 1
2 κ−1∆C2, (27)

where ∆C = C2 −C1. The Stokes-shift reorganization energy be-
comes

λ St = 1
2 ∆C [q02 −q01] = λ . (28)

The linear coupling model projects Gaussian fluctuations of the
medium onto Gaussian fluctuations of the energy gap. The re-
action free energy becomes ∆F0 = ∆E0 −C2

2/(2κ)+C2
1/(2κ) with

∆E0 = E02 −E01.

4.2 Microscopic models of medium reorganization

The linear model is a phenomenological description of physi-
cal nonlinear microscopic interactions between the transferring
electron and the surrounding medium. The electronic quantum-
mechanical eigenvalues for the donor and acceptor states are
modulated by interactions with the medium leading to electron
transfer, a radiationless transition requiring resonance. In most
cases, the interaction with the medium is weak compared to
intramolecular excitation energies ∆E0,mn = E0m − E0n between
eigenstates of the unperturbed donor-acceptor complex. One can
therefore apply the quantum-mechanical perturbation theory in

terms of the electron-medium interaction Hamiltonian H ′

Ei = E0i + ⟨ψi|H ′|ψi⟩+∑
j ̸=i

⟨ψi|H ′|ψ j⟩⟨ψ j|H ′|ψi⟩
∆E0,i j

. (29)

The first term describes the direct interaction of the transferring
electron with the medium and the second refers to polarization of
the electronic density and accounts for polarizability corrections.
If the first terms is expanded into a series in respect to the medium
coordinate q, the linear term becomes −Ciq in eqn (25).

One can alternatively assign a microscopic interaction poten-
tial, of electrostatic origin, between the transferring electron and
a given molecule in the liquid to write the first term in eqn (29)
as a sum of all individual interactions vi( j) with N molecules in
the liquid

Ei = E0i +∑
j

vi( j). (30)

Since molecules of a polar medium carry molecular multipoles, of
which the dipole moment is most significant for polar molecular
liquids, the index j specifies both the position and orientation of
a given molecule in the medium.[51] Given that the distribution
of molecular charge in the donor-acceptor complex changes upon
electron transfer, the interaction potential vi( j) is different in two
electron-transfer states and the difference ∆v( j) = v2( j)− v1( j) is
responsible for fluctuations of the energy gap.

From eqn (30), one can immediately proceed to calculate the
energy-gap variance in eqn (1) to obtain[51, 52]

λ = 1
2 βρ

∫
d1d2∆v(1)∆v(2) [δ (1,2)+ρh(1,2)] . (31)

Here, δ (1,2) denotes the delta-function in both coordinates and
orientations and h(1,2) is the statistical binary correlation func-
tion of the particles in the medium; ρ = N/V is the number den-
sity of N liquid molecules occupying the volume V . The pair dis-
tribution function of the medium[51] g(1,2) is connected to the
correlation function through the equation g(1,2) = 1+h(1,2).

In the case of electron transfer in polar liquids, one can be more
specific and define the interaction of the electric field difference
∆E0 of the transferring electron with the dipole moment m j of
molecule j in the liquid

∆v( j) =−m j ·∆E0. (32)

The liquid fluctuations are composed in this case of dipole transla-
tions and rotations. In terms of the correlation function h(1,2) =
h0(r12)+hor(r12,ω1,ω2), translations and rotations are mathemat-
ically reflected by a sum of the isotropic component h0(r12), de-
pending only on the intramolecular separation r12, and the ori-
entational component hor(r12,ω1,ω2) depending on both the sep-
aration and orientations of two molecules in the liquid specified
by Euler angles ω1,2. Substituting this correlation function to eqn
(31), one arrives at the reorganization energy as a sum of the
component produced by orientational fluctuations of dipoles in
the liquid, λp, and the density component, λd

λ = λp +λd . (33)

The convolution of two 3D space integrals in eqn (31) is sim-
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Fig. 5 Longitudinal susceptibilities χL(k) of [bmim][PF6] and
[bmim][BF4] ILs calculated from MD simulations at T = 300 K.[53] They
are compared to χL(k) for SPC/E water[54] at the same temperature.
Adapted with permission from Ref. [53]. Copyright 2020 American Chem-
ical Society.

plified in reciprocal space. The orientational component can be
expressed in terms of the longitudinal k-dependent susceptibility
function[55, 56] χL(k)

λp =
1
2

∫ dk
(2π)3

∣∣∆Ẽ0(k)
∣∣2 χL(k). (34)

Following original dielectric formulations of the theory,[1] the sus-
ceptibility function is often related to the k-dependent dielectric
constant of the liquid[57, 58] 4πχL(k) = ε−1

∞ − εL(k)−1, which can
be viewed as the k-dependent Pekar factor.[59] In this relation,
ε∞ is the high-frequency dielectric constant and the longitudinal
dielectric function εL(k) becomes the static dielectric constant εs

in the continuum limit k → 0, when one arrives at the standard
Pekar factor

c0 = ε−1
∞ − ε−1

s . (35)

This polarity parameter enters all traditional continuum theories
of polarons[59, 60] and electron transfer[1] in polar materials.

An important property of χL(k) is that it reaches a plateau at
small wavevectors k at the level χL(k) ≃ χL(0) = (4π)−1c0 (solid
black line in Fig. 5). At a sufficiently large size of the donor-
acceptor complex, χL(k) can be replaced with χL(0) in the k-
integral in eqn (34). The result is the dielectric formulation for
the medium reorganization energy. If the donor and acceptor are
viewed as two spheres with, correspondingly, radii RD and RA sep-
arated by the distance R, one arrives at the Marcus equation for
the medium reorganization energy

λ = c0e2
(

1
2RD

+
1

2RA
− 1

R

)
. (36)

Importantly, λ ∝ β present in eqn (1) disappears from the final
equation because of the macroscopic, k → 0 limit adopted for the
susceptibility. The disappearance of the β factor is a consequence
of the long-range character of dipolar interactions allowing one
to arrive at the limit of macroscopic Johnson-Nyquist noise. The
reorganization energy λp still depends on temperature through
the liquid expansivity for experiments performed at constant pres-
sure, but the overall temperature dependence is weak.

The above arguments do not apply to the density component λd
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Fig. 6 Arrhenius plot for the rate constant of charge recombina-
tion in for the porphyrin-fullerene donor-acceptor dyad (inset) in 2-
methyltetrahydrofuran used as a solvent. The points represent ex-
perimental data and the solid line refers to theoretical calculations.[62]

Adapted with permission from Ref. [62]. Copyright 2016 American Chem-
ical Society.

in eqn (33). Because of the short range of the density fluctuations
largely driven by an entropic penalty to re-arrange the molecular
repulsive cores, the scaling

λd ∝ T−1 (37)

is maintained and the overall explicit dependence on temperature
becomes λ = a+b/T . The density component of the reorganiza-
tion energy is the main contributor to its decaying temperature
dependance[61] resulting in an observable bell-shaped form of
the Arrhenius plot.[62] Figure 6 shows experimental results for
the charge-recombination rate constant in a porphyrin-fullerene
donor-acceptor dyad[63] measured in a wide range of temper-
atures available for 2-methyltetrahydrofuran used as a solvent.
The solid line in the plot comes from theoretical calculations al-
lowing good account of the measurements. The assumption of a
temperature-independent λ leads to the canonical straight line of
the Arrhenius law and cannot be reconciled with the data.

When the temperature dependence of the reorganization en-
ergy is not concerned, continuum dielectric theories (e.g., eqn
(36)) provide reasonable estimates of the magnitude of λ . This is
not the case anymore for electron transfer in ionic liquids (ILs).
ILs are conducting liquids composed of opposite sign ions. Strong
Coulomb interactions in ionic pairs produce quasiperiodic order-
ing of opposite-charge ions[64, 65] reflected by a sharp peak of
χL(k) found by molecular dynamics (MD) simulations[53, 66] (Fig.
5). This sharp peak contributes significantly to the reciprocal-
space integral in eqn (34), invalidating the dielectric continuum
limit when applied to solvation in ILs. The limit k → 0 taken in
χL(k) to arrive to eqn (36) does not apply to ILs and the phe-
nomenology of continuum solvation does not extend to ILs as
media for electron transfer. The peak of χL(k) in molecular polar
liquids is lower in magnitude and is positioned at higher k-values,
as illustrated with calculations done for SPC/E water[67] in Fig.
5. A more collective structural ordering in ILs shifts the peak to
lower k-values making it essential for the reciprocal-space calcu-
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lations.

4.3 Medium polarizability

The appearance of the high-frequency dielectric constant ε∞ in
the Pekar factor (eqn (35)) is a reflection of the separation of
time scales when electronic polarization follows adiabatically all
slower degrees of freedom.[1, 68] A full account of molecular elec-
tronic polarizability requires microscopic liquid-state theories,[69]

but a substantial simplification is achieved by adopting Frohlich’s
model[70] in which permanent molecular dipoles are immersed
in a continuum dielectric with the dielectric constant ε∞. Elec-
trostatic interactions between the transferring electron and the
medium dipoles become screened by the electronic polarization
such that the dipole moment m in eqn (32) is multiplied with the
screening parameter q to become[71] qm. The value of q consis-
tent with simulations[68] is the Lorentz cavity factor[72]

q =
ε∞ +2

3ε∞
. (38)

This formulation replaces the microscopic susceptibility func-
tion χL(k) in eqn (34) with a screened function to produce a new
medium polarity parameter in its continuum, k → 0, limit

4πχL(0) = q2
(

1− ε−1
s

)
. (39)

This polarity parameter, which should replace c0 in the standard
Marcus eqn (36), turns out to be close numerically to the original
Pekar factor. Figure 7a shows 4πχL(0) from eqn (39) vs c0 for 15
common molecular solvents (see the full list in the Supplementary
Material (SM)). For most practical purposes, either of the two can
be used in continuum models for the reorganization energy.

From the microscopic perspective, addition of electronic polar-
izability to a fluid of molecules carrying permanent dipole mo-
ments produces two effects: (i) screening of electrostatic inter-
actions and (ii) an increase of the effective, mean-field molecu-
lar dipole from the gas-phase value m to an effective condensed-
matter dipole[69] m′. These two effects oppose and mostly com-
pensate each other in the reorganization energy: λ is found
to be nearly unchanged when ε∞ is increased while keeping m
constant.[68] Polarizability corrections in numerical simulations
is a separate issue.

Nonpolarizable force fields of molecular liquids assign an ad-
justed, condensed-matter dipole m′ to molecules. For instance,
the dipole moment of SPC/E water, m′ = 2.35 D, is substantially
higher than its gas-phase value m = 1.89 D. Simulations with non-
polarizable force fields do not include screening by electronic po-
larization and corrections are required.[73–75]

A universal correction scheme is not possible since the ratio of
λ values in a polarizable solvent and in its nonpolarizable mimic,
incorporating polarizability in terms of the effective dipole m′,
depends on solvent polarity.[74] Figure 7b presents λ calculated
from eqn (34) with a full account for the polarizability effects and
for a corresponding mimic solvent with ε∞ = 1 and the molecu-
lar dipole m′ (see SM). The dimensionless reorganization ener-
gies λσs/e2 (σs is the molecular diameter) scale approximately
linearly with the dimensionless density of dipoles (in Gaussian
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Fig. 7 (a) The polarity parameter in eqn (39) vs the Pekar parameter
c0 (eqn (35)) for 15 polar molecular solvents (see SM for details). The
dashed line specifies the equality line to guide the eye. (b) Reorganization
energy of the two-sphere configuration with RD = RA (eqn (36)) vs the
solvent dipolar density y′ (eqn (40)); RD/σs = 1. Calculations are done
with the full account of the polarizability effects (λ , filled points) and for
nonpolarizable solvents with ε∞ = 1 and the effective dipole m′ assigned
to the liquid molecules (λnpol, open points). Red points indicate the
ratio λnpol/λ and the dashed line is a polynomial fit through the points:
0.544+0.057y′−0.00163(y′)2.

units)

y′ =
4π
9

βρ(m′)2. (40)

[This parameter becomes βρ(m′)2/(9ε0) in SI units, where ε0 is
the vacuum permittivity]. The ratio of λnpol/λ is close to unity
for highly polar solvents, but drops to ≃ 0.6 at lower polarities.
For water, one obtains a correction factor ≃ 0.8. It should be used
to multiply λ in nonpolarizable force-field solvents to account for
the screening effects.

5 Nonergodicity and nonparabolicity
The construction[1] and experimental verification[38] of Marcus
theory is a monumental development in science based on fun-
damental ideas of Gaussian statistics, Gibbsian ensembles, and
fluctuation-dissipation relations connecting the spread of fluctu-
ating localized quantum states to thermal energy of the medium.
It provides a sufficiently simple two-parameter description of the
reaction activation barrier requiring the reorganization energy
and the reaction free energy as input parameters (eqn (19)). The
medium reorganization energy finds its firm foundation in elec-
trostatics of interactions of the donor and acceptor molecules with
the polarizable medium. This microscopic foundation is the phys-
ical motivation for applying the central limit theorem and Gaus-
sian statistics of X and the reason for a relatively narrow range of
λ values in polar media.

The monumental character of the theory is also a source of its
rigidity toward parameter manipulations to achieve faster charge
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separation critical to the operation of both artificial and natural
photosynthesis. Nature relies on vectorial, trans-membrane elec-
tron transport through chains of cofactors in its energy chains
for all energy needs.[25] One wonders if Marcus theory provides
a sufficiently solid foundation for describing hopping electron
transport in biology and can be equally applied to developing
strategies for man-made devices to transform solar energy to sep-
aration of charges.

Two major difficulties arise when applying Marcus theory to bi-
ological hopping electron transport, and they both are implicit to
the inverted Marcus parabola, that is −β∆F† vs −∆F0, specified
by eqn (19). First, a large negative reaction free energy (positive
driving force −∆F0) is required to eliminate the activation barrier
and bring the donor and acceptor energy levels to tunneling reso-
nance. Such large driving forces are usually not found in biolog-
ical electron-transport chains, which often operate at near-zero
driving force. The reorganization energy often exceeds ≃ 1 eV for
reactions in solution and is believed to be somewhat smaller, ≃ 0.8
eV, for protein electron transfer.[76] Such large activation barri-
ers often produce electron-transfer rates too slow for an efficient
charge transport.[77] Independently of specific measurements and
theories and numerical algorithms to interpret experimental data,
a fundamental question persistent in the electron-transfer field is
whether new physical mechanisms can be identified that poten-
tially eliminate energy bottlenecks predicted by Marcus theory
and allow lower reorganization energies and maximum rates at
lower driving forces.

What is described next is an attempt to step beyond the limits of
the Marcusian straitjacket and to identify scenarios for lowering
the reorganization energy and altering the energy-gap law. As
is nearly universally the case, nature has already identified such
mechanisms and one needs to turn to protein electron transfer
and natural photosynthesis for clues and inspiration.

5.1 Nonlinear (non-parabolic) effects

The linear coupling model specified by eqn (25) requires that the
Hookean force constant κ stays the same in both electron-transfer
states. This requirement physically implies that the structure of
the medium is not altered by the transferring electron. This is
not true for most problems involving small ions since the liq-
uid structure is strongly affected by the ionic charge. However,
many donor and acceptor molecules are large, thus reducing the
strength of electrostatic interactions with the solvent. In addi-
tion, the long range of the Coulomb interaction involves many
molecules not in immediate contact with the donor or acceptor
and the structural variations get averaged out.

There are several physical situations when altering the force
constant of medium fluctuations is required. The most straight-
forward case is the alteration of the frequencies of donor and ac-
ceptor vibrations related to changing oxidation state[78, 79] (also
through Duschinsky rotations of normal modes[80]). The sec-
ond set of problems is brought by the second-order perturba-
tion term in eqn (29). If the donor-acceptor complex is polar-
izable, this term produces the free energy of electronic polariza-
tion − 1

2 Es ·ααα i ·Es by the medium electric field Es. This term is

quadratic in the solvent electric field viewed as a collective sol-
vent coordinate. If the polarizability of the donor-acceptor com-
plex ααα i changes between two states, the effective Hookean force
constant of the medium fluctuations gains a dependence on the
electron-transfer state. In all these cases, and potentially in many
others, the linear coupling model (L-model, eqn (25)) needs to
be generalized to the quadratic coupling model (Q-model) with
the energy states defined by the following equation

Ei(q) = E0i −Ciq+ 1
2 κiq2. (41)

The reason for the name is that the energy gap is now a linear-
quadratic function of the medium coordinate: ∆E(q) = −∆Cq+
1
2 ∆κq2, ∆κ = κ2 −κ1.

Independently of physical reasons for altering the force con-
stant, the Q-model provides a first glimpse into the world beyond
the Marcus framework. Like the latter (L-model), the Q-model
allows an exact mathematical solution for the free energy sur-
faces within Gibbsian statistics for assigning statistical weights to
different system configurations. The result is[81]

F1(X) =
(√

|α||X −X0|−
√

α2λ1

)2
,

F2(X) = ∆F0 +

(√
|1+α||X −X0|−

√
(1+α)2λ2

)2
.

(42)

The parameter X0 here is related to the reaction free energy ∆F0

through the following equation

X0 = ∆F0 −λ1
α2

1+α
. (43)

The free energy surfaces are nonparabolic and the model al-
lows separation of the Stokes-shift and variance reorganization
energies according to the rule

λ2 < λ St < λ1. (44)

The 1,2 indexes here can be swapped: the main result is that λ St

falls between two unequal variance reorganization energies. The
extent of non-parabolicity is controlled by the non-parabolicity
parameter

α =
2λ St +λ2

λ1 −λ2
. (45)

It tends to infinity in the Marcus limit λ1 = λ2 when the free en-
ergy surfaces become crossing Marcus parabolas.

As mentioned above, even though structural solvent changes
around charged donor and acceptor are possible and lead to es-
tablished non-parabolicity effects for small ions,[83] simulations
often find Marcus parabolas well justified for larger donor and
acceptor molecules in polar solvents.[84, 85] The situation can
change for protein electron transfer. Proteins are highly packed
media with little room in their cores for structural changes. How-
ever, water is a light and mobile part of the thermal bath that
can respond to altering charge distribution by wetting parts of
the protein core (electrowetting). There is increasing evidence,
mostly from computer simulations,[86–89] that water can pen-
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Fig. 8 Free energy surfaces for electron transfer between the CuI/II ac-
tive site and the nearby tryptophan residue of azurin calculated in the
Q-model (solid lines) and obtained from MD simulations (points).[82]

The upper portions of the simulation data are obtained from the results
around the minima by applying the linear relation from eqn (10). The
reorganization energies are: λ1 = 2.09 eV, λ2 = 1.17 eV, and λ St = 1.65
eV (see eqn (44)). Adapted with permission from Ref. [82]. Copyright
2022 American Chemical Society.

etrate into active sites of redox-active proteins in response to
changing oxidation state or light activation.[90] When this hap-
pens, the protein-water thermal bath changes its structure be-
tween two oxidation states and the force constant becomes state-
dependent as described by Q-model (eqn (41)). The resulting
free-energy surfaces are non-parabolic as is shown in Fig. 8 for
electron transfer between the CuI/II active site and the neighbor-
ing tryptophan residue in the azurin protein. Simulations provide
the portions of the free energy surfaces close to their minima and
the upper parts of each curve are obtained from the linear free-
energy relation (eqn (10)).[82] The Q-model provides the picture
of crossing non-parabolic free-energy surfaces with different cur-
vatures at their corresponding minima.

The Q-model offers advantages for the energy efficiency of
charge transfer by lowering the driving force required to achieve
activationless reactions. The activation barrier vanishes for for-
ward electron transfer at X1 = 0 (eqn (19)), which in Q-model
becomes

X1 = ∆F0 +λ1
α

1+α
. (46)

The driving force −∆F0 = λ required to reach the top of the Mar-
cus inverted parabola becomes −∆F0 = λα/(1+α) within the Q-
model. For instance −∆F0 = λ/2 at α = 1. When intramolecular
reorganization energy λv is taken into account (see below), the
top of the inverted parabola becomes λv + λ in Marcus model,
but is λv +λα/(1+α) in Q-model. The overall shift of the maxi-
mum of the inverted parabola to lower values of the driving force
is illustrated[91] in Fig. 9 for the donor-acceptor charge-transfer
complex studied by Miller and coworkers.[38]

5.2 Fast transitions in slow media
Equation (24) defines the reorganization energy as the entire en-
ergy dissipated to the medium in the form of heat when elec-
tron is transferred and allowed to relax. Energy dissipation at
a given frequency,[43] ∝ ωχ ′′(ω), is given by the loss spectrum

 !

 "

 #

 $

 %

&'
()
*+
,-

. 
/

$01$0% 01 0%%01

,. 2%+,34

,5.6783&
,9:*;<-

,!,=,!>

Fig. 9 Energy gap law for the Marcus model (black line) and for the
Q-model (blue line). The position of the top of the inverted parabola
shifts from λ +λv in Marcus model to λv +λα/(1+α) in Q-model. The
parameters in the plot are taken from Ref. [91] where Q-model was applied
to fit the experimental kinetic data.[38]

χ ′′(ω) (Fig. 4). The variance reorganization energy λ thus re-
flects the fluctuation-dissipation philosophy stipulating that the
medium modes that dissipate the most are those that fluctuate
the most. The relative significance of different relaxation pro-
cesses contributing to the overall thermodynamic λ is specified
by amplitudes of the corresponding relaxation peaks in χ ′′(ω).

The interpretation of λ as the frequency integral over the loss
spectrum calls for its extension to processes when the thermo-
dynamic view becomes limited. When some essential relaxation
modes of the medium become slower than the reaction time
τr = k−1

r , they do not contribute anymore to reaction’s activation
on the observation time τr. This limitation sets up a constraint on
the phase space available for sampling, which makes the distri-
bution of system’s statistical configurations non-Gibbsian.[92, 93]

This new statistics defines the nonergodic reorganization energy
becoming essential when the rate constant kr imposes a low-
frequency cutoff on the loss spectrum[94] (Fig. 4)

λ (kr) =
∫ ∞

kr

dω
πω

χ̃ ′′(ω). (47)

The nonergodic reorganization energy λ (kr) depends on the re-
action rate kr and turns into the standard, thermodynamic reor-
ganization energy at kr → 0. It is obvious that kr → 0 is a mathe-
matical idealization and, realistically, the thermodynamic limit is
achieved when the reaction time τr becomes longer than the re-
laxation time τslow of the slowest medium mode noticeably con-
tributing to λ .

Primary charge separation in bacterial reaction centers is
an important application of this concept. The reorganization
energy,[17] λ (kr)≃ 0.35 eV, arises from restricting the fluctuation
spectrum of the protein-water thermal bath on the reaction time
scale τr ≃ 3− 10 ps. This value is a significant reduction from
the equilibrium reorganization energy λ ≃ 2.46 eV achieved by
computer simulations with the simulation time of 10 ns.[23]

The phenomenology of frequency cutoff introduced by the re-
action rate should generally apply to fast reactions in media with
dispersed relaxation times allowing both fast and slowly relax-
ing processes coupled to electron transfer. From the experimental
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Fig. 10 Charge transfer in DCVA molecule.[99]

side, alteration of the spectroscopic Stokes shift through the sol-
vent glass transition[95] is accurately described[96] by eqn (47).
Another recent example[97] concerns the reorganization energy
in ionic liquids. Spectroscopic studies of charge-transfer bands in
the DCVA chromophore[98, 99] (Fig. 10) dissolved in ionic liquids
produced a surprising result of the reorganization energy close in
magnitude to that measured in cyclohexane (see below). On the
other hand, the equilibrium reorganization energies calculated
from eqn (34) with the structure factors shown in Fig. 5 are sig-
nificantly higher (horizontal lines in Fig. 11). The resolution of
the puzzle is found in terms of eqn (47): the short lifetime of
the photoexcited chromophore τe ≃ 200 ps imposes a frequency
cutoff kr = τ−1

e on the loss spectrum producing the nonergodic
reorganization energy consistent with observations (Fig. 11).

5.3 Nonergodic sampling
Both the standard Marcus formulation[6] and the Q-model[81]

employ Gibbsian statistics for statistical averages. It is based on
the assumption of ergodicity implying that all essential configu-
rations have been sampled on the time of observation. This does
not have to be always the case. Some parts of the configura-
tion space could be unreachable to the system, either by geomet-
rical constraints, such as those imposed by the protein fold, or
through dynamical restrictions requiring times too long to reach
those configurations. A well-known example is the second-order
phase transition of spontaneous magnetization, when half of the
phase space specifying the macroscopic magnetic dipole either
“up” or “down” is dynamically restricted by the diverging time
required to flip it.

Glassy dynamics and glass transition provide examples of non-
Gibbsian sampling more relevant to the statistics of proteins.[100]

The phase space of such media is broken[92] into “components”
such that the transition time between components exceeds the
observation time. The separation of the system phase space into
components breaks the system symmetry since the symmetry of
the distribution function, due to imposed constraints, is lowered
compared to the symmetry of the Hamiltonian.[93] The result is
that the statistical weights assigned to system configurations do
not strictly follow the Gibbsian recipe.

The change in statistical sampling propagates to the breakdown
of the link between the first and second moments of the reac-
tion coordinate X stipulated by the static limit of the fluctuation-
dissipation theorem.[101, 102] For the stretched Hookean oscillator
considered in eqn (25), the connection between the first and sec-
ond statistical moments is established through the linear suscep-
tibility connecting the stationary displacement reached at t → ∞
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Fig. 11 Nonergodic reorganization energy λ (kr) (eqs (47)) for
[bmim][BF4] (IL-1) and [bmim][PF6] (IL-2) ILs. The vertical dotted line
indicates kr = τ−1

e with τe = 2× 10−10 s representing the lifetime of the
excited state of the DCVA chromophore[99] shown in Fig. 10. The hori-
zontal lines, indistinguishable on the plot scale, indicate the equilibrium
values of the reorganization energy for IL-1 and IL-2 calculated from eqn
(34) with the susceptibility functions shown in Fig. 5. The dashed hor-
izontal line marked “exp.” indicates the reorganization energy from the
band-shape analysis of DCVA. Adapted with permission from Ref. [97].
Copyright 2022 American Chemical Society.

to the force applied at t = 0

∆q = χC. (48)

For an unconstrained oscillator stretched by force C, the suscepti-
bility χ = κ−1 is the inverse force constant. It provides access to
both the variance and Stokes-shift reorganization energies in eqn
(27) and (28).

Constraints imposed on the configurations available to the sys-
tem can have different physical origin, but they lead to common
phenomenology when applied to electron transfer. Instead of the
equality between the Stokes-shift and variance reorganization en-
ergies in the Gibbsian formulation (eqn (17)), one finds the fol-
lowing inequality[32]

λ St < λ . (49)

The free energy surfaces are still parabolas for the linear coupling
model, but with curvatures not related to the separation between
their minima specified by 2λ St (Fig. 3). The effective reaction re-
organization energy, that is the reversible work required to move
along the first surface to the position of the second minimum, is
reduced, because of the lower curvature, to the following “reac-
tion” reorganization energy

λ r =
(λ St)2

λ
< λ St. (50)

Crossing of the free energy surfaces still defines the activation
barrier and the standard Marcus formula can be reformulated
from eqn (19) to a form in which λ r replaces λ

∆F† =
(∆F ′

0 ±λ r)2

4λ r . (51)

Importantly, the reaction free energy ∆F ′
0 in Eq. (51) is distinct

from the equilibrium free energy entering Marcus equation (Eq.
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Fig. 12 Free energy surfaces for electron transfer between the CuI/II

active site of azurin and the nearby tryptophan residue. Shown is the
calculation from MD simulations (points) based on the protein compo-
nent of the thermal bath. The dashed lines are fits to parabolas with
unequal curvatures. The free energy surfaces labeled as in Fig. 8 are
plotted with zero reaction free energy. The ratio λ St/λ is 0.34 for 1 → 2
transition and 0.64 for 2 → 1 transition. Adapted with permission from
Ref. [82]. Copyright 2022 American Chemical Society.

(19)). It is reduced by the same nonergodicity factor as the reac-
tion reorganization energy in Eq. (50)

∆F ′
0 = ∆F0(λ St/λ ). (52)

The efficiency of the thermodynamic driving force is diminished
in nonergodic media.

The nonergodic driving force applies to transitions between the
donor and acceptor immersed in a nonergodic thermal bath, such
as the interior of a protein. In contrast, the thermodynamic re-
action free energy is often determined by measuring the equilib-
rium redox potentials of the cofactors removed from that specific
environment and brought in contact with electrodes of an elec-
trochemical experiment. If the activation barrier is expressed in
terms of the equilibrium driving force ∆F0, one obtains

∆F† =
(∆F0 ±λ St)2

4λ
. (53)

The energy gap law for lnkr plotted against the driving force −∆F0

still yields −∆F0 = λ St at the top of the inverted parabola. This
plot thus gives information about λ St, while the parabola’s curva-
ture provides λ .

A number of simulations of protein electron transfer[103, 104]

have produced λ St ≃ 0.7 − 0.8 eV consistent with
observations.[24, 105] However, a significantly larger value
of λ lowers the reaction reorganization energy λ r entering the
activation barrier. Equations (51) and (53) thus predict different
reorganization energies when evaluated from the energy gap law
and from the overall activation barrier obtained, for instance,
from the Arrhenius slope of the reaction rate constant. This
notion seems to be supported by electrochemistry of proteins.
It provides direct access[106] to λ r by scanning the electrode
overpotential η , which is directly connected to ∆F ′

0 in eqn (51)
as eη = −∆F ′

0. Accordingly, thin-film protein electrochemistry
has consistently reported λ r ≃ 0.2 − 0.6 eV for redox-active
proteins.[107–111] These values are consistently lower than

−b b q

∞∞

∆q

b

C

κ
−1

(a)

(b)

U

Fig. 13 (a) Potential energy U(q) of the constrained harmonic oscillator
−b < q < b. (b) Displacement ∆q of the constrained oscillator in response
to the external force C. The susceptibility deviates downwards from the
linear response χ = κ−1 as the pulling force increases and the equilibrium
position of the stretched oscillator approaches the constraining boundary.

λ St ≃ 0.7−0.8 reported by solution measurements.[105]

The inequality between the reorganization energies in eqn (49)
can be understood from the thermodynamic arguments. The
work externally done to transfer charge should be equal (equi-
librium) or higher (non-equilibrium) than the change in the sys-
tem free energy.[112] The work externally done to move charge e
through the potential difference ∆ϕ while polarizing the environ-
ment is

wext =
1
2 e|∆ϕ |= λ St. (54)

The system free energy invested in moving charge can be viewed
as the free energy of solvating an effective solute interacting with
the medium by the potential ∆V = ∑ j ∆ν( j) (eqn (32)). By apply-
ing the statical perturbation theory and truncating the expansion
series after the second term one gets[36] the change in the system
free energy (see SM)

|∆F |= 2λ St −λ . (55)

When work is done out of equilibrium, the inequality wext > |∆F |
is required, from which eqn (49) follows.

Proteins relaxing on time scales longer than the reaction time
should be viewed as nonequilibrium systems in which producing
work requires energy dissipation and entropy production. Indeed,
computer simulations of protein electron transfer have shown
that nonergodic sampling leading to eqn (49) is mostly char-
acteristic of large, membrane-bound protein complexes.[88, 113]

For instance, the variance reorganization energy was found to
increase continuously, without saturation in MD simulations of
the membrane-bound bc1 complex[32] when longer observation
windows from the simulation trajectory (∼ 15 µs) were allowed.
Similarly, attempts to converge relaxation times for the distance
dynamics between protein residues have lead to relaxation times
growing linearly with sampling time.[114]

The protein medium is the main component of the thermal bath
producing nonergodic statistics of configurations. Hydration wa-
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Fig. 14 Reorganization energies λ1 (C = 0), λ2 (C), and λ St vs the
constraining distance b normalized with the linear equilibrium position
q0 =C/κ. The reorganization energies are normalized by the Marcus re-
organization energy of the linear coupling model λ =C2/(2κ) (eqn (27)).

ter coupled to protein fluctuations substantially masks its non-
ergodic character for smaller globular proteins (e.g., azurin and
cytochrome c). It can still be revealed by considering fluctuations
produced by protein alone. They display a strong separation be-
tween λ St and λ according to eq (49) (Fig. 12). The jammed and
frustrated protein interior promotes glassy dynamics[100] with
strong features of nonergodic sampling.[115, 116]

Nonergodic sampling of configuration space implies that the
system is not allowed to reach full equilibrium and stays out
of equilibrium on the reaction time scale. Following the gen-
eral discussion by Reiss,[117] nonequilibrium configurations can
be reached by imposing constraints on dynamic and thermody-
namic variables. How to map inequality (49) on specific con-
straints imposed on statistics of configurations is currently not
clear, but significance of constrains can be illustrated by apply-
ing a simple modification to the standard linear coupling model
considered above.

In contrast to a harmonic bath displaced by the Hookean force
of the electron-medium coupling considered in eqn (25), the
medium oscillator is now constrained by the condition −b < q < b
(Fig. 13a). This constraint is equivalent to putting an infinite re-
pulsive potential at |q| = b. To simplify the model, one can put
C1 = 0 and C2 =C. It is clear from Fig. 13b that the susceptibility
χ from eqn (48) should deviate downward from the linear re-
sult χ = κ−1 as C increases pulling the equilibrium displacement
closer to the repulsive wall at q = b. The response becomes non-
linear and one anticipates the breakdown of the standard Marcus
picture. While the analytical solution for the free energy surfaces
Fi(X) is quite complicated in this case, the Stokes-shift and vari-
ance reorganization energies are readily defined from the average
position ⟨q⟩C at a given value of the electron-medium coupling C

λ St = 1
2C [⟨q⟩C −⟨q⟩0] ,

λi =
1
2 βC2⟨(δq)2⟩i,

(56)

where two reorganization energies λi correspond to the variance
of q calculated at C (λ2) and C = 0 (λ1).

Figure 14 shows three reorganization energies, two λi and λ St,
for the constrained medium oscillator as functions of the posi-
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Fig. 15 Temperature dependence of the reorganization energies λ St

(“St”, open squares) and λ (circles): λ > λ St at high temperatures
(open circles) and λ St ≃ λ below the crossover temperature Tc ≃ 170
K (filled circles). The simulation results (points) are for the cytochrome
c protein.[118] Reproduced with permission from Ref. [118]. Copyright
2018 American Chemical Society.

tion of the constraining boundary b. As b increases, one arrives at
the standard Marcus description when all reorganization energies
converge to a single value λ = C2/(2κ) of the linear model (eqn
(27)). As the repulsive boundary approaches the equilibrium po-
sition of the linear oscillator q0 =C/κ, both the average ⟨q⟩C and
the variance of q become affected, but to a different degree. One
finds the reorganization energies split in a way qualitatively sim-
ilar to the result of the Q-model (eqn (44)). However, this sep-
aration does not reproduce inequality (49), which is often found
to apply to both variance reorganization energies,[88] λ1 ≃ λ2, in
protein electron transfer. The type of constraints allowing this
phenomenology is currently unknown. It is still worth noting a
substantial reduction of all reorganization energies involved im-
posed by constrained configuration space. While inequality (49)
is not satisfied by both variance reorganization energies λi, the
main phenomenology of their strong reduction, required for func-
tioning of natural photosynthesis and biological energy chains, is
captured by the constrained oscillator model.

It appears that proteins as media for biological charge transport
have to maintain nonergodic sampling of configurations to allow
low activation barriers for individual charge hopping transitions.
One therefore wonders if thermodynamic conditions can be al-
tered to allow the return to the FDT commonly found for electron
transfer in polar liquids. Protein dynamical transition reported by
Mössbauer spectroscopy[100, 119] and by neutron scattering[120]

as a crossover in the slope of atomic displacements vs tempera-
ture provides such a transition mechanism. Figure 15 illustrates
this general result[118, 121] for the temperature-dependent reor-
ganization energies of the cytochrome c redox-active protein. A
significant level of nonergodicity, represented by a large extent
of λ over λ St, is maintained in the entire physiological range of
temperatures. The protein returns to the state consistent with the
FDT, λ ≃ λ St, below the crossover temperature close to the tem-
perature of the protein glass transition. This crossover leads to
a sharp increase in the activation barrier of electron transfer and
is marked by a kink in the Arrhenius plot for the reaction rate
constant.
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Fig. 16 Illustration of the effect of intramolecular quantum excitations
on on the activation barrier in the normal (a) and inverted (b) regions of
electron transfer. X = 0 indicates the crossing point of classical parabolas
when the energy gap is used for the reaction coordinate.

6 Vibrational reorganization
As mentioned above, the discovery of the inverted region by Mar-
cus was not only an amazing result of a consistent theory devel-
opment, but was was also viewed as holding large significance
for photo-induced charge separation (eqn (3)). As illustrated in
Fig. 1, this is ensured by putting forward charge separation in the
near-activationless region and backward charge recombination in
the inverted region of electron transfer.

The picture of crossing parabolas was established for classi-
cal medium modes and requires modification if some of vibra-
tional energies exceed the thermal energy: h̄ωv > kBT (quantum
regime). The problem was solved for radiationless transitions in
solids,[4, 26, 78, 122] before Marcus took on electron-transfer reac-
tions in polar liquids.[1] Bixon and Jortner later adopted[27, 123]

the Huang and Rhys solution[26] to derive a convenient expres-
sion for the rate constant in the limit of a quantum mode q cou-
pled linearly to the transferring electron, which thus becomes the
quantum limit of the linear model (eqn (25)).

Qualitatively, the solution can be understood from a simple di-
agram shown in Fig. 16. A quantum vibration coupled to a trans-
ferring electron lifts the classical free energies of electron transfer
by multiples of the quantum vibrational phonon h̄ωv. There are
therefore many crossing points adding to a single crossing of the
standard Marcus picture. Given that h̄ωv ≫ kBT , only the lowest
state is populated on the reactants side (“1” in Fig. 16). For reac-
tions in the normal region (Fig. 16a), these new crossings increase
the barrier and quantum vibrations effectively do not change the
activation energy.

The situation is significantly different in the inverted region
(Fig. 16b). As before, only the ground state is populated on the
reactant side, but crossings with the vibrationally excited states
in the inverted region reduce the activation barrier. Vibrationally
excited states carry somewhat lower weight due to the Franck-
Condon overlap between the reactant and product vibrational
functions thus reducing the effect of transitions involving vibra-
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Fig. 17 Energy gap law ln[kET] vs the driving force −∆F0 in the Marcus
model (orange line) and from the Bixon-Jortner equation (BJ, black line).
Two vertical red arrow marks the exponential factor exp[−S] by which
the rate is lowered in the normal electron-transfer region. The horizontal
arrow marks the vibrational reorganization energy λv by which the top
of the inverted asymmetric parabola is shifted when vibrations are taken
into account. Also shown are the results of eqn (59) at γ̄ = 0.1 (green
line) and γ̄ = 0.5 (blue line); S = 2 and h̄ωv = 1300 cm−1.

tional excitations. In the normal region, the rate is multiplied
with the exponential factor exp[−S], where S = λv/(h̄ωv) is the
Huang-Rhys factor given as the ratio of the vibrational reorga-
nization energy λv and the energy of the vibrational quantum
h̄ωv. The Huang-Rhys factor S carries the physical meaning of the
number of vibrational excitation produced in the vertical Franck-
Condon transition corresponding to the maximum of the optical
absorption line.

The Franck-Condon vibrational overlap only lowers the for-
ward rate by exp[−S] in the normal region (marked by red ar-
rows in Fig. 17), but strongly affects the decay of the rate with
increasing driving force in the inverted region. The overall en-
ergy gap law (Fig. 17) for the forward reaction is given by the
Bixon-Jortner equation[27]

kET ∝ V (R)2e−S
∞

∑
m=0

Sm

m!
exp

[
−β

(X1 +mh̄ωv)
2

4λ

]
, (57)

where the last term comes from the Gaussian distribution func-
tion broadening and shifting each vibronic transition by the sol-
vent modes characterized by the average energy gap X1 = ∆F0 +

λ St and the variance σ2
1 given by eqn (13). m vibrational quanta

added to the average energy gap increase the activation barrier
in the normal region (X1 > 0) and decrease it in the inverted re-
gion (X1 < 0). Further, V (R) is the electronic coupling between
the donor and acceptor exponentially decaying with the donor-
acceptor distance R. Each vibronic excitation comes with the
Poisson distribution weighting factor characterized by ⟨m⟩ = S.
The Poisson weights make the overall rate constant decay with
increasing driving force in the inverted region, but much slower
than predicted by the classical Marcus picture (Fig. 17). This
slower decay is responsible for the constraint imposed on the vi-
brational reorganization energy of natural photosynthesis shown
in Fig. 2.

A new extension of the traditional formalism accounting for the
vibronic envelope[4, 26, 27, 78, 122] appears when the promoting vi-
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brational mode modulates the donor-acceptor distance R and the
electronic coupling V (R)

V (R) =Vee−
1
2 γδR. (58)

Here, Ve is the electronic coupling at the equilibrium donor-
acceptor separation, γ is the distance decay parameter, and the
displacement from equilibrium q = δR is viewed as a quantum
mode to which the reorganization energy λv and the frequency ωv

are assigned. The model can be extended to multiple vibrational
modes when q = δR becomes one of the modes in the vibrational
manifold.[27]

The vibrational reorganization energy λv = 1
2 κv∆R2

e is related
to the alteration ∆Re of the equilibrium distance of the vibrating
bond characterized by the harmonic force constant κv. The equi-
librium displacement ∆q = ∆Re defines the new parameter of the
theory γ̄ = γ|∆Re|/(4

√
S) which enters the modified Bixon-Jortner

equation[124]

kET ∝ V 2
e e−S−2

√
Sγ̄

∞

∑
m=0

(
√

S+ γ̄)2m

m!

exp
[
−β

(X1 +mh̄ωv)
2

4λ

]
.

(59)

This equation converges to the standard result in eqn (57) at
S ≫ γ̄2. The new model parameter γ̄ can significantly modify
the energy gap law if its value is sufficiently large (green and
blue lines in Fig. 17). This, however, is more likely to happen
for proton and hydrogen atom transfer[125–127] because of the
faster distance decay of the vibrational wave functions for more
massive protons yielding γ = 45− 60 Å−1. With γ = 60 Å−1, one
gets γ̄ ≃ 1.5 at ∆Re ≃ 0.1 Å. With this estimate, γ̄2 exceeds the
Huang-Rhys factor S ≃ 1 in the power series over the vibronic
transitions in eqn (59). Such large values of γ̄ strongly affect the
energy-gap law: the maximum of the distorted inverted parabola
shifts to much higher values of the driving force (Fig. 17). These
estimates suggest that γ̄ > 1 makes reaching the inverted region
mostly impractical. The existence of the inverted region for pro-
ton transfer without the companion electron transfer[128, 129] is
still debated[130, 131] and new experimental evidence is needed.

The formalism incorporating the donor-acceptor vibration into
the Franck-Condon factor allows an extension to nonequilibrium
vibrational populations which can be experimentally reached by
exposing the molecule to sufficiently intense continuous IR radi-
ation or to IR pulses with duration exceeding the rate of vibra-
tional relaxation.[132] The limit of classical vibrations affected by
IR pumping is illustrative since it conceptually connects to protein
electron transfer. The rate constant of electron transfer becomes
proportional in this limit to the Boltzmann activation factor con-
necting to eqn (19)

kET ∝ exp

[
−β

X2
1

4λeff

]
. (60)

Vibrations of the donor-acceptor distance lead to an effective vari-

ance reorganization energy λeff given by

λeff = λ +β (h̄ωv)
2n̄(S+ γ̄2), (61)

where n̄ is the stationary nonequilibrium population of the donor-
acceptor vibrational mode. It becomes equal to n̄ = n̄eq =

(β h̄ωv)
−1 in the equilibrium limit of classical vibrations. From

this solution, one anticipates an exponential enhancement of the
electron-transfer rate with increasing nonequilibrium population
∆n = n̄− n̄eq of the donor-acceptor bond

kET(n̄)
kET(n̄eq)

= exp [A∆n] , (62)

where the second term in λeff in eqn (61) was assumed to be
small compared λ and the constant A > 0 incorporates the rest of
activation parameters. The transition rate is therefore enhanced
when a nonequilibrium population of donor-acceptor vibrations
is produced by IR pumping.[132–134]

Similarly to phenomenology found for protein electron transfer
(eqn (49)), eqn (60) offers a separation between the Stokes-shift
and variance reorganization energies, λeff > λ St. Even if the stan-
dard Marcus prescription λ St = λ is maintained for the solvent
mode coupled to electron transfer, a nonequilibrium population
of the donor-acceptor and other vibrations[124] leads to the break-
down of this relation. Nonequilibrium phenomena, which can be
modeled by imposed constraints (Fig. 14), thus universally induce
separation of λ St and λ . We now discuss similar phenomenology
found for electron transfer in nonpolar solvents.

7 From polar to nonpolar solvents
A significant class of electron-transfer reactions where prescrip-
tions of standard theories are expected to break down is electron
transfer in nonpolar media.[135–137] Nonpolar solvents are com-
posed of molecules with both molecular dipole and quadrupole
moments sufficiently close to zero to produce small reorgani-
zation energy. These media present a limiting case for which
the standard models[6] offer no physical mechanism for elec-
tron transfer. Classical theories predict the solvent reorganiza-
tion energy to scale linearly with the Pekar factor[59] (eqn (35)).
Accordingly, the reorganization energy is expected to drop to
a nearly zero value when the static dielectric constant εs ap-
proaches ε∞ ≃ n2

D in nonpolar solvents, where nD is the solvent
refractive index. In contrast to this prediction, quite substantial
reorganization energies in nonpolar solvents have been reported
experimentally.[138–142]

The standard models view fluctuations of quantum energy
states as produced by Coulomb interactions of the electron with
the solvent permanent dipoles (eqn (32)). In the absence of per-
manent dipoles and of corresponding dipolar rotations, one needs
to define alternative nuclear fluctuations shifting electronic states
to the tunneling configuration X = 0. Physical interactions allow-
ing such fluctuations are also electrostatic in character. However,
instead of interactions with permanent dipoles, the interaction of
the electron is with induced dipoles, via the induction forces.[143]

The nuclear fluctuations are afforded not by dipolar rotations,
but, instead, by translations of the induced dipole, i.e., through
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density fluctuations.
To be more specific, one can consider electrostatics applicable

to studies of intramolecular optical charge-transfer bands.[142]

The solute is viewed as a dipolar particle changing its dipole mo-
ment with charge transfer from m1 in the initial state to m2 in
the final charge-transfer state; ∆m = m2 −m1 is the change of the
molecular dipole (Fig. 10). The induction interaction between the
solute dipole and polarizable solvent molecules is proportional to
the molecular polarizability α and scales with the distance as r−6

Fei =−m2
i U, U = ∑

j
v( j). (63)

Here, the interaction potential energy is

v( j) = (α/r6
j )
[
1+P2(m̂ · r̂ j)

]
(64)

and P2(x) is the second-order Legendre polynomial between the
unit vector of the solute dipole m̂ = m/m and the position of
molecule j in the solvent r̂ j = r j/r j. Correspondingly, ∆v( j) in
eqn (32) is replaced with

∆v( j) =−δm2v( j), (65)

where δm2 = m2
2 − m2

1. The solvent-induced component of the
energy gap becomes Xs = Fe2 −Fe1 yielding the Stokes-shift reor-
ganization energy as follows

2λ St = δm2 [⟨U⟩2 −⟨U⟩1] . (66)

The variance reorganization energy is found from the variance of
the interaction potential (eqn (1))

λ = 1
2 β (δm2)2⟨(δU)2⟩, (67)

where the fluctuating solute-solvent interaction energy U is a sum
of all individual interaction energies (eqn (63)).

The next steps follow the procedures outlined above for polar
liquids (eqn (31)), except that one has to introduce the micro-
scopic density response of the molecular liquid to describe den-
sity fluctuations. This goal is achieved[143] through the density-
density structure factor[43] S(k) specifying the variance of the in-
teraction potential due to molecular translations

⟨(δU)2⟩= ρ
∫ dk

(2π)3 ṽ(k)2S(k). (68)

The density structure factor, experimentally determined by
scattering techniques,[144, 145] is specified in reciprocal space
and, therefore, ṽ(k) in eqn (68) is the spatial Fourier transform of
the real-space interaction energy in eqn (64). Given that interac-
tions of the solute dipole with induced dipoles (induction interac-
tions) decay with distance much faster, ∝ r−6, compared to to the
dipole-dipole interaction, r−3, one anticipates that there will be
fewer solvent molecules within the interaction range and the rules
of Gaussian statistics imposed by the central limit theorem might
be violated. This indeed follows from the analysis of absorption
and emission band-shapes of the DCVA chromophore[98, 99] (Fig.
10) in cyclohexane.

The results of global band-fitting analysis of DCVA at a number
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Fig. 18 Variance reorganization energies for absorption (blue) and emis-
sion (green) transitions and λ St (black) vs T .[142] The results are from
the band-shape analysis for the DCVA chromophore[98, 99] (Fig. 10). The
dashed line is drawn through the Stokes-shift data.

of temperatures are shown in Fig. 18. The analysis provides two
variance reorganization energies λi (eqn (14)) and the Stokes-
shift reorganization energy λ St (eqn (17)). One finds substan-
tial values for the variance reorganization energies, λ1 ≃ 0.17 and
λ2 ≃ 0.47 eV. In addition, λ St falls between λ1 and λ2, in agree-
ment with prescriptions of the Q-model (eqn (44)). A part of
the reorganization energies shown in Fig. 18 can be assigned to
classical intramolecular vibrations and only λ St ≃ 0.14 eV was es-
timated to arise from the cyclohexane solvent. Similar values of
the solvent reorganization energy were previously reported for
molecular systems[138, 140] and, more recently, for semiconduc-
tor nanoparticles dissolved in alkanes.[141]

The results for electron transfer in nonpolar solvents strongly
deviate from predictions of standard models, but are, in many
ways, similar to phenomenology found for redox-active proteins.
Protein phenomenology is related to the violation of sampling
rules prescribed by the Gibbsian statistics. The situation is some-
what different with electron transfer in nonpolar solvents. Vio-
lations of the standard theory arise from the microscopic nature
of the solute-solvent interaction (eqn (63) and (64)). Due to its
short range, fluctuations of the energy gap do not follow the sta-
tistical rules derived for macroscopic and quasi-macroscopic col-
lective coordinates. The resulting phenomenology of FDT viola-
tion turns out to be similar in very different physical systems: one
universally finds separation of the Stokes-shift and variance reor-
ganization energies.

8 Discussion
Marcus theory of electron transfer[6] is a time-proven frame-
work for understanding radiationless and photoinduced elec-
tronic transitions in molecules. It rests on several fundamental
assumptions: (1) The Gaussian statistics of the medium fluctu-
ations, (2) The fluctuation-dissipation (Johnson-Nyquist[40]) lin-
ear scaling of the Gaussian variance with temperature, (3) The
linear coupling of the quantum subsystem to the medium coor-
dinates, and (4) The Gibbsian statistics for the medium configu-
rations affecting the quantum subsystem. These assumptions im-
pose a number of bottlenecks on the energetics of electron trans-
port in charge-transfer chains made of molecules. The main prac-
tical restriction impacting harvesting of light energy is the con-
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dition of the driving force matching the reorganization energy at
the maximum transition rate. The driving force at the rate maxi-
mum is reduced through either a lower reorganization energy or
by stepping beyond the linear Marcusian framework.

The Gaussian statistics is likely the most robust part of the the-
ory: it is the consequence of the long range of electrostatic inter-
actions involving many molecules within the interaction distance.
It is, therefore, a consequence of the central limit theorem, that
is the law of large numbers. The interaction potential becomes
more short-ranged in nonpolar liquids, when the electron-dipole
interaction in a polar liquid is replaced with the electron-induced
dipole interaction in a nonpolar liquid. These media are increas-
ingly used in applications to solar energy conversion because of
low reorganization energy penalties involved.[146, 147]

Electron transfer in nonpolar solvents challenges yet another
assumption of standard theories: the linear scaling of the energy
gap variance σ2

i (eqn (13)) with temperature (Johnson-Nyquist
noise[40]). This anticipated scaling allows one to define the vari-
ance reorganization energy (eqn (1)) as a meaningful parameter
weakly affected by temperature. The linear temperature scaling
strictly applies to the variance ⟨(δA)2⟩ ∝ T of a macroscopic vari-
able A and might become less accurate on the microscopic length
scale. It holds well for long-ranged electron-dipole interactions
modulated by thermally fluctuating dipolar orientations. Reori-
enting liquid dipoles requires an enthalpic penalty, from which
the temperature scaling follows.[148] In contrast, density fluctua-
tions rearrange close packing of molecular cores and are entropic
in nature. A corresponding variance of the energy gap is nearly
temperature-independent and components of the reorganization
energy arising from density fluctuations gain an explicit T−1 de-
pendence on temperature. This temperature scaling leads to a
bell-shaped Arrhenius law shown in Fig. 6.

Marcus description of charge transfer falls under a broader um-
brella of linear response theories when the source of perturbation,
transferring electron in this case, can be represented by a per-
turbation term in the Hamiltonian being a linear function of the
medium coordinates.[43] The Gaussian statistics of the thermal
bath is then projected on the Gaussian statistics of the energy gap.
Correspondingly, a nonlinear medium-electron coupling projects
a Gaussian medium on non-Gaussian energy-gap statistics. This
notion opens the door to the world on nonlinear phenomenol-
ogy of charge transfer with non-parabolic free energy surfaces.
Quoting from Yuen-Ron Shen:[149] “nonlinearity provides excite-
ment in physics”. It also provides an opportunity for a less generic
description and leads to non-trivial phenomena. Formulation of
consistent nonlinear models for charge transfer quickly becomes
a challenging goal. With the steep rise of theoretical difficulty,
one wonders what is the payoff. Are there any advantages to the
efficiency of charge transfer that can be gained if a nonlinear sce-
nario replaces the standard linear model?

This general question is far from being answered since very few
models allow consistent analytical solutions satisfying the funda-
mental constraints, such as the linear relation in eqn (10). Like
the Marcus model, the Q-model provides a mathematically ex-
act analytical framework to study electron transfer. It converts
to Marcus model when the force constant of medium fluctuations

 !

"#

" 

$

%

!&'
(
)
*
+
,
-.
)
,
/
0&
)
1

#!!2!!%!!3!! !!

&4(-/)-5.6&78&9:;0&<=

Fig. 19 Conduction resonances in streptavidin (blue), DNA polymerase
Φ29 (red), and Anti-DNT (black) proteins vs the electron injection po-
tential on the NHE scale.[151] The resonances located at ∼ 300 mV are
shifted by ∼ 700 mV from the oxidation potentials of tyrosine (1.0 V[152])
and tryptophan (between 0.952 V[152] and 1.3 V vs NHE[153, 154]). The
dashed lines are Lorentzian fits through the experimental points. Adapted
with permission from Ref. [151].

becomes unaffected by electronic transition (κ1 = κ2). This non-
linear model shows that the energetic requirement for reaching
the maximum electron-transfer rate can be softened. Marcus the-
ory gives maximum rate at the driving force equal to the reorga-
nization energy, while it is always lower in the Q-model (eqn (46)
and Fig. 9).

Biological macromolecules, and most notably proteins, offer a
much wider spectrum of possibilities for affecting electronic tran-
sitions. Proteins possess a complex hierarchy of molecular mo-
tions occurring on a broad range of characteristic time scales.[150]

Most of biologically significant charge-transfer reactions fall in
the range of reaction times within the protein relaxation spec-
trum (Fig. 4). Some of the protein motions become nearly uni-
versally frozen on the reaction time. One is forced to introduce
the concept of nonergodic reorganization energy and of the cor-
responding nonergodic reaction barrier. Ergodicity breaking vio-
lates the Gibbsian statistics of sampling the configuration space,
which is phenomenologically reflected in the separation between
the Stokes-shift and variance reorganization energies (eqn (49)).

Proteins provide a complex environment in which fluctuations
of the protein core, hydration water, and a small number of wa-
ter molecules hydrating the protein active site produce a com-
plex spectrum of energy-gap fluctuations with many relaxation
times involved.[155] The combination of slow and fast relaxation
times leading to highly dispersive dynamics can be achieved in
other media, and ionic liquids provide an example of a medium
mimicking protein electron transfer (Fig. 11). The set of tools to
control rates of reactions and parameters to tune to affect reactiv-
ity clearly increases. The picture of nonergodic electron transfer
makes the relaxation time, in addition to thermodynamic driving
forces, a new parameter to tune the reaction rate.

This article is mostly about the reorganization energy of elec-
tron transfer, but the reaction free energy takes an equally impor-
tant position in electron-transfer theories and its alteration is re-
sponsible for the inverted bell-shaped parabola (Fig. 17) and the
inverted region of electron transfer. The reduction of the reaction
free energy due to nonergodic sampling from the thermodynamic
value ∆F0 to its nonergodic counterpart ∆F ′

0 (eqn (52)) can signif-

Journal Name, [year], [vol.],1–21 | 17

Page 17 of 21 Physical Chemistry Chemical Physics



icantly affect the role of driving force in biological charge trans-
port. It might explain the empirical observation of little sensitivity
of charge-transport chains to changes of redox potential[156] and
the observation of uphill, in free energy, electron hops in biologi-
cal energy chains.[157, 158]

A confirmation of nonergodic character of the driving force in
proteins has arrived from single-molecule electrochemical scan-
ning tunneling microscopy measurements.[151, 159, 160] Electron
injection into proteins was studied by combining gold, palladium
and platinum electrodes, along with varying the substrate po-
tential in a single-protein junction (Fig. 19). Resonance in con-
ductance vs the electrode potential indicates that electrons are
injected into localized states within the protein likely to be as-
sociated with aromatic amino acids.[154] However, the conduc-
tance resonances are shifted by ≃ 0.7 V from the nearest equi-
librium oxidation potentials of tryptophan (between 0.952 V[152]

and 1.3 V[153, 154] for radical cation formation) and of tyrosine
(1.0 V for the neutral phenol radical[152]). The shift is consistent
with eqn (52) when λ St/λ ∼ 0.3, often found in protein electron
transfer,[103] is adopted.

The field of electron transfer is actively moving toward
mesoscopic systems of charge transport, including biolog-
ical nanowires made of polymerized redox-active proteins
(cytochromes).[161, 162] Long-ranged conductivity through amino
acid relays[151, 154, 163] adds versatility to the pathways by which
charge can traverse mesoscopic distances in biology. The more
traditional mechanism of interprotein charge transfer is still in-
sufficiently understood because of high computational resources
required for simulations and difficulty of controlling the kinetics
in the laboratory setting. Whether the nonergodic mechanism of
lowering the activation barrier applies to these reactions remains
an open question.

The difficulty of assigning reorganization energy to interpro-
tein electron transport goes back to early attempts to fit clas-
sical DeVault and Chance experiments for charge transfer be-
tween cytochromes and bacterial reaction centers,[164] which re-
sulted in quite high, 2.24[165] and 2.10 eV,[166] medium reor-
ganization energies.[15] These uncertainties have never been re-
solved. For instance, recent measurements of electron transport
in crystalline lattices of tetraheme chromophores have shown
very slow hopping rates requiring reorganization energies in the
range 1.14 − 1.82 eV.[158] Electrochemistry of proteins, on the
other hand, suggests that half redox reactions of proteins immo-
bilized on metal electrodes have very low reorganization energies
in the range 0.15 − 0.2 eV.[107] This seems to become possible
because of a partial dehydration of a globular protein when at-
tached to organic surface layers covering the electrode.[115] The
hydration water is partially removed and the nonergodic statistics
of the protein (Fig. 12) becomes effective in lowering the activa-
tion energy. This mechanism might explain the performance of
electron shuttle proteins (plastocyanins, azurins, ferredoxins, and
cytochromes) in biological energy chains: the reaction is allowed
upon binding to a large protein complex.

The potential range of reorganization energy values is quite
broad. It might carry biological significance since, along with
the need to transport electrons by small electron shuttles, more

general considerations suggest that controlling the rate of ox-
idative phosphorylation in respiratory chains requires stopping
cross-membrane electron transport when needed. A dramatic ex-
ample of this biological necessity is the ability of periplasm cy-
tochromes of microbes to act as electron capacitors to store elec-
trons during the periods when extracellular electron acceptors be-
come unavailable.[167] Reverse reactions must be quite slow for
this mechanism to operate.

9 Outlook
Efficient transport of charge through molecules in natural and
artificial photosynthesis requires low values of the medium re-
organization energy for charge transfer. Analyzing mechanisms
allowing such conditions have broadened our understanding of
the meaning of an ensemble average when applied to systems
with dispersive dynamics (proteins, ionic liquids, etc). The main
fundamental result is that dynamics and separation of time scales
affect statistically averaged quantities making them deviate from
the corresponding equilibrium thermodynamic parameters. The
question of whether this rule applies to enzymatic reactions in
general and can provide mechanisms for lowering activation bar-
riers in biology remains a challenge for future studies.
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