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Origin of anomalously stabilizing ice layers on methane
gas hydrates near rock surface
Yang Li,∗a,b Robert W. Corkery,c,d Sol Carretero-Palacios,e Kristian Berland, f Victoria
Esteso,g Johannes Fiedler,h,i Kimball A. Milton,∗ j Iver Brevik,∗k and Mathias Boström∗l

Gas hydrates (GHs) in water close to freezing temperatures can be stabilised via the formation of
ice layers. In a recent work [Boström et al., A&A, A54, 650 (2021)], it was found that a surface
region with partial gas dilution could be essential for obtaining nano- to micron-sized anomalously
stabilizing ice layers. In this paper, it is demonstrated that the Casimir-Lifshitz free energy in multi-
layer systems could induce thinner, but more stable, ice layers in cavities than those found for gas
hydrates in a large reservoir of cold water. The thickness and stability of such ice layers in a pore
filled with cold water could influence the leakage of gas molecules. Additional contributions, e.g.
from salt-induced stresses, can also be of importance, and are briefly discussed.

1 Introduction
Methane hydrates exist in association with rock forming minerals
on the Earth and likely elsewhere in the solar system and beyond.
The most common rock forming minerals in the Earth’s crust are
quartz and feldspars, comprising more than 50% of the crust. In-
deed quartz and feldspars are also known in other bodies, where
hydrates have also been detected or hypothesized, such as Mars,
various planetary moons and asteroids. Methane hydrates exist
in states outside their respective ordinary temperature and pres-
sure windows of thermodynamic stability through the formation
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of a stabilizing ice layer.1–6 This observed effect is referred to
as ‘self-preservation’ or ‘anomalous stabilization’.5,7 It has been
assumed5,7 that anomalous stabilisation occurs when a gas dif-
fusion barrier of ice forms on the outside of the methane hydrate
particles, retarding the hydrate decomposition on decompression.
This ice layer has been generally thought to form kinetically as the
hydrate partially depletes its outer hydrate cages close to its sta-
bility field boundary, either in water or in air. The final ice layer
can give anomalous stability over short to long time scales and
is an effective diffusion barrier because of the annealing of com-
mon hexagonal ice (Ih) domains to form a continuous layer, of-
ten passing through an initial cubic ice phase to a hexagonal one
via a change in the density of stacking faults with time.7,8 The
diffusion barrier appears to be enhanced, as the stacking faults
reduced when annealing is near completion. This occurs most ef-
fectively just below 273 K, and in relatively low salinity water9

(less than 0.5 wt% NaCl) where the freezing point depression
of water is not so pronounced. The anomalous stabilization oc-
curring for higher salinity, i.e., larger than 0.5 wt% NaCl, is less
effective and depressed in temperatures close to 250-260 K.

Indeed, the permafrost hydrates are hosted within porous
rocks, comprising various minerals, and the effect of the stabiliz-
ing ice layers on GHs can be found when analysing onshore and
offshore Arctic hydrates associated with permafrost, where some
GHs, less than 200 m below the ground surface, have been consid-
ered unstable.10 However, even outside the window of stability of
a specific GH,10 dissociation is not immediate. Instead, account-
ing for different sinks that prevent GH methanes from reach-
ing the atmosphere, Ruppel and Kessler suggest a timescale of
400,000-years for complete transfer. 10 Chuvilin, Shakhova and
others,11–13 have found that hydrates in permafrost regions can
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possibly exist at depths 0-200 m from the surface, whereas others
have deemed it unlikely, and argue that the anomalous stabliza-
tion of the water-ice layers is effective only under specific condi-
tions.

We will here proceed as in a recent work,14,15 where an en-
ergy contribution essential for the existence of relatively thick,
molecular scale ice coatings on partially degassed hydrates in ice-
cold water,15 was proposed. By using reliable dielectric optical
properties of water, ice, and GHs combined with a model for
the Casimir-Lifshitz energy there, it was established how nano-
to micron-sized ice-coated type-I CO2 clathrates can float in wa-
ter columns of ocean worlds, potentially forming thermally insu-
lating coatings deposited on top of these oceans, underneath or
within the ice caps.15 Our past findings15 were in line with an
earlier work that modelled the observed geophysics on Pluto.16

In this paper, a theory of the Casimir-Lifshitz free energy, which
supports the anomalous stabilization of methane GHs near a rock
surface, is presented. The necessity for the formation of stabiliz-
ing ice layers is that the Lifshitz energy for a five layered system
with GHs (including separate surface regions) in contact with ice
and water inside the pore has an energy minimum at some spe-
cific ice layer thicknesses. Given the presence of large amounts of
methane hydrates hosted in contact with rock-forming minerals
in permafrost and in continental shelf sediments,11,17 we extend
our previous studies on gas hydrate stabilisation due to Casimir-
force-induced ice layers to a simple model of mineral-lined rock
pores interacting with methane hydrates. Also, the current work
could potentially explain why GHs confined in nanopores have
more stable ice layers compared to GHs in larger pores.6 Methane
hydrate is stable in small quartz cavities even outside the normal
stability window (pressures and temperatures) as long as the sys-
tem is below the freezing temperature of water. This experimen-
tally observed effect is here proposed (at least partly) to be due
to anomalously stabilizing ice layers formed by Casimir-Lifshitz
interactions at the ice-water interface, when GHs are confined
within small water-filled pores in the rocky ground (e.g. quartz
or albite), or in clay (e.g. kaolinite). Finally, we outline a road
map to extend the present work to include other effects (e.g. ion
free energies).

The left panel in Fig. 1 presents a schematic illustration of our
model system, which is represented as a closed pore, connected to
a larger pore system out of the plane of the figure. This idealised
pore is large compared to the layer thicknesses such that it is
possible to model a locally flat five-layered system. We assume
a cavity containing gas hydrate as the initial state, and assume
some loss of methane from the surface layer of the hydrate which
could be approximated as a single gas-depleted low occupancy
layer. We model this system at the temperature and pressure of
the quadruple point, where water and ice coexist with methane
hydrate in the pore.

2 Theory
2.1 Material Modelling

2.1.1 Permittivity of water and ice

The key inputs required to calculate Casimir-Lifshitz energies are
the dielectric functions of the interacting materials. Recently,
Fiedler et al.18 showed that reparameterizing the real and imag-
inary dielectric function of cold water results in the prediction of
the formation of micron-sized ice layers at water surfaces, in con-
trast to the ice premelting found with the older parameterizations
by Elbaum and Schick.19,20 The result found in Ref. [18] was
subsequently confirmed21 using the more recent reparameteriza-
tions of ice and water by Luengo-Márquez and MacDowell.22,23

In the current work, we use the parameters from Luengo-Márquez
and MacDowell for ice and water,22,23 but evaluate the dielectric
functions at the quadruple point of methane GH (T = 272.9K).
One should note that the parameterised models for ice and water
by Luengo-Márquez and MacDowell agree well (except at very
low frequencies) with the dielectric functions for imaginary fre-
quencies derived from experimental data on the real frequency
axis, but they do not obey Kramers-Kronig relation (causality)
which is valid for the model by Fiedler et al.

2.1.2 Permittivity of quartz, albite and kaolinite

To model rock materials, quartz, albite and kaolinite are consid-
ered, whose dielectric functions were obtained with density func-
tional theory (DFT) using the VASP software package24–26 start-
ing from experimental lattice constants.27–29 Both electronic and
vibrational contributions to the dielectric function at finite fre-
quencies were taken into account. The electronic contributions
were obtained within the independent-particle approximation us-
ing the HSE06 hybrid functional,30,31 which provides more accu-
rate band gaps than standard DFT calculations in the generalized
gradient approximation (GGA). Phonon modes and Born effec-
tive charges were computed at the GGA-level of theory. The en-
ergy cutoff was set to 400 eV and the Brilloin-zone was sampled
using a k-point density of 0.33 Å−1. The dielectric function was
carefully converged (using visual inspection) with the number of
electronic bands, using respectively 200, 300, and 400 for quartz,
kaolinite, and albite, reflecting the different number of atoms in
the unit cells.

2.1.3 Modelling methane hydrates of different occupancy

Hydrates consist of water and gas molecules forming solid ice-
like structures. Larger molecules can form type-I clathrate struc-
tures, while type-II clathrate structures typically host smaller
molecules.17 Methane hydrates pack in the type-I clathrate struc-
tures.17 In such a system, voids can be either filled or partially de-
gassed. The surface region could, due to diffusion, have a lower
density of gas molecules than the bulk region. We model the
permittivity for methane hydrates with a simple mixing model
considering water and methane molecules in a frozen structure.
Such a model for methane hydrate (εmh) is described in our past
works,14,15 except here we use the improved model for dielectric
function of ice,22 εi, in the Lorentz-Lorenz model32 within the
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Fig. 1 Left: Schematic representation of an idealised filled pore or cavity in a rock composed of quartz. In our model, quartz and high-occupancy (HO)
hydrate are infinite half spaces with respective dielectric functions εR and εL. Between these half spaces we model successive layers of low-occupancy
(LO) hydrate, ice, and water. The layer thicknesses are d1, d2 and d3, and the respective dielectric functions are ε1, ε2 and ε3. Right: Detailed
cross section of the system plotted on the left. Schematic diagram of the five-layer CH4 hydrate system: high-occupancy (HO) gas hydrate εL;
low-occupancy (LO) hydrate, ε1; pure H2O ice, ε2; pure liquid H2O, ε3, and rock surface, εR.

mixing scheme for GHs taken from Bonnefoy et al.33,34

εmh(iζm;Ng) =
1+2Γ
1−Γ

, (1)

with
Γ =

εi −1
εi +2

nwh

ni
+

4παMnM

3
, (2)

where ni is the number density of water molecules in ice,
while nwh and nM are the number densities of water and gas
molecules in the hydrate structure, respectively; and αM is the
gas polarizability. Equation (2) means that the dominating fac-
tors for the dielectric function of GHs are the ice polarizability
(εi −1)/(εi +2) weighted by the number density of water in the
hydrate relative to pure ice, and the polarizabilities of different
gas molecules weighted by their corresponding number densi-
ties. The mass density of water in pure ice35 is 0.9167 g/cm3,
giving the number density of water molecules in pure ice as
ni = 3.06434× 10−2 Å−3. The number densities of water molecules
(nwh=2.65681×10−2 Å−3) and gas molecules (nM = Ng×nwh/46)
in methane GH structures were all derived following the work by
Prieto-Ballesteros et al.36 (and references therein). The number
Ng of gas molecules per 46 water molecules in the GH unit cell
can vary with occupancy: Ng=0 (empty), 1, 2, 3,.., 8 (fully occu-
pied).36 Later on in this work, for example in Sec. 3.1.2, a distinc-
tion is made between surface (s) and bulk (b) regions, replacing
Ng with the more specific Ng,s and Ng,b values, respectively. Cal-
culations to obtain quantum chemical dynamic polarisabilities at
discrete frequencies were fitted at arbitrary imaginary frequencies

iξ to the 5-mode oscillator model,14

αM(iζ ) = ∑
j

α j

1+(ζ/ω j)2 . (3)

The adjusted parameters for CH4 were given in our recent
work.37 This describes the dynamic polarisability accurately up
to a very small (0.02%) relative error.38

2.1.4 Overview of different materials’ permittivities

The dielectric functions we model above are valid for materials
at temperature T = 273.16 K. However, due to the weak depen-
dence of dielectric functions on pressure and the proximity to the
quadruple point temperature of CH4 gas hydrates, we can use, to
a good approximation,14 the same parameterised dielectric func-
tions at the quadruple point for methane hydrate (p = 25.63bar
and T = 272.9K).17 Figure 2 shows the dielectric functions (at
T = 272.9K) employed in this work for water22,23 and ice,22,23

together with those for quartz, albite, kaolinite, and methane
hydrate with different gas molecular occupancies. We observe
that the curve for ice (in cyan) lies above the low occupancy GH
curves, and below the high occupancy curves, which will result
in different effects on ice formation depending on the occupancy.
In contrast, the curve for water (in green) is above the curves of
all considered GHs (thus, above the ice curve) indicating that the
Casimir-Lifshitz interaction alone cannot lead to premelting of ice
in contact with a methane hydrate surface. The three curves on
the top (for quartz, albite and kaolinite) in Fig. 2 are very close
to each other, and the relative magnitudes of these three permit-
tivities with respect to different materials at zero frequency only
yield tiny qualitative differences in the Casimir-Lifshitz interac-
tion as will be shown in Fig. 10. For these reasons, we focus
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Fig. 2 Dielectric functions for fully occupied (Ng=8) methane GH, low
occupancy (Ng=0, 2, 4, 6) methane hydrates, pure H2O ice, pure liq-
uid H2O, quartz, albite, and kaolinite, as functions of the exponent ρ,
in which ρ is defined as ρ = log10 ζ/ζT with ζT = 2πT being the first
nonzero Matsubara frequency at the temperature of the quadruple point
of methane GHs, 272.9 K. The static values of the dielectric constants
for each material εX are given in the legend.

our studies just on quartz in combination with ice, water and dif-
ferent methane hydrates to address the study of Casimir-Lifshitz
interactions. We also study the effects on the Casimir-Lifshitz in-
teraction from using different rock materials, by comparing the
corresponding stresses induced. Indeed, when exploiting the sim-
ilar dielectric functions found from DFT for quartz, albite and
kaolinite, we find only small variations for the Casimir-Lifshitz
forces and stresses, as it will be shown in Fig. 10. Other sets of
materials, material models, or type of interactions (e.g. salt in-
duced pressures), may lead to predictions with a larger diversity.
In addition, based on the relative differences amongst the per-
mittivities of the different materials considered in Fig. 2, we can
qualitatively estimate the configurations in which the ice coating
could be stabilized by Casimir-Lifshitz interactions, as was done
for other material combinations.21 In what follows, we will ana-
lyze anomalously stabilized ice layers in cavities modelled within
a five layer Casimir-Lifshitz theory. The derivation of this theory
is given in the Appendix, and discussion on ionic interactions and
other non-Lifshitz effects are provided in Sec. 4.2.

2.2 Casimir-Lifshitz interaction in multi-layer inhomoge-
neous systems

Lifshitz and co-workers derived the dispersion force between in-
teracting planar media.39 Afterwards, Ninham and co-workers
simplified the theoretical modelling of Casimir-Lifshitz dispersion
forces in the early 1970s.40–43 The original Lifshitz theory ap-
plied to just one intermediate layer (between the interacting ma-
terials) which, for sufficiently large thicknesses, could be taken as
semi-infinite. Recently, it was demonstrated, in the case of a four-
layer geometry,22,44 how to extend the theory to two intervening

layers, which separately, might take infinite thickness. The ex-
tension to consider multi-layer magnetodielectric induced stress
is straightforward and it arises from the difference in magne-
todielectric Casimir-Lifshitz forces22,44–49 in two adjacent media.
Here, we consider four- and five-layer configurations, with ice
and water as the two intervening layers. To evaluate the Casimir-
Lifshitz interactions in these configurations, the intervening me-
dia are treated as inhomogeneous and the theoretical framework
proposed in Ref. [48] is employed. With the inhomogeneous
description, the Casimir-Lifshitz interaction in a general n-slab
structure can be obtained and is consistent with present results,
as detailed in the Appendix.

2.2.1 Four-layer configuration

For the four-layer configuration,44 the stress across the ice-water
interface induced by Casimir-Lifshitz interactions, i.e. across layer
2 and 3 following the scheme in Fig. 1 (right panel), takes into
account the pressure contributions from both sides, that is,

PCL;23 = Pice,right +Pwater,left. (4)

As Pwater,left =−Pwater,right, we have

PCL;23 = Pice,right −Pwater,right . (5)

Suppose these four layers are stacked horizontally along the pos-
itive z-direction from medium 1 to medium 4 without losing any
generality. A positive stress thus corresponds to a force directed
rightwards, in the direction of positive z. In simple terms, out-
ward pointing pressures on the ice layer and on the water layer
have opposite directions at the ice-water interface. The surface
stress on the ice-water interface due to the Casimir-Lifshitz inter-
action, acting from the ice side, is then*

PCL;23 =− T
2π

∞

∑
m=−∞

∫ ∞

0
dk k ∑

s=E,H

(
κ2

Ds
2
− κ3

Ds
3

)
, (6)

in which the sum is over Matsubara frequencies ζm = 2πT |m|, with
m ∈ Z, and E,H represent transverse electric (TE) and transverse
magnetic (TM) polarizations (also commonly denoted by s and
p), respectively. The multiple reflections between the interfaces,
as described by Esteso et al.44 give the mode structures

1
Ds

2
=

−rs
12rs

23e−2κ2d2

1+ rs
12rs

23e−2κ2d2
,

1
Ds

3
=

−rs
43rs

32e−2κ3d3

1+ rs
43rs

32e−2κ3d3
, (7)

where d2,d3 are the thicknesses of layer 2 and 3, respectively.
Here we use the imaginary part of perpendicular wavevector43

κn =
√

k2 +µn(iζm)εn(iζm)ζ 2
m , (8)

where k = |k| is the magnitude of the wavevector parallel to the
surface. For nonmagnetic materials, the permeability satisfies
µ(iζm) = 1 for all m values. The reflection coefficients at a sin-
gle interface, rs

i j, are given as Eq. (28) in the Appendix, along

with the reflections at multiple interfaces45,46,50, rs
i j, in Eq. (36)

* We utilize the natural unit h̄ = ε0 = µ0 = c = kB = 1 throughout, unless specified.
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for the four-layer geometry.

2.2.2 Five-layer configuration

For the five-layer case, the pressure on a surface; for instance, the
surface between medium 2 and 3, has the same form as in Eq. (6),
except that Ds

2 and Ds
3 take the form

Ds
2 =

e2κ2d2

rs
23rs

21
−1 , Ds

3 =
e2κ3d3

rs
3Rrs

32
−1 . (9)

Here the reflection coefficients at multiple interfaces are given in
the Appendix in Eqs. (50a-c). The corresponding Casimir-Lifshitz
free energy in this inhomogeneous five-layer structure is given by

FCL =
T
2

∞

∑
m=−∞

∫ d2k
(2π)2 ln∆E∆H , (10)

with ∆E given from Eq. (46) in the Appendix, and ∆H obtained by
making the substitution ε ↔ µ in the same expression. As men-
tioned above, detailed derivations for the Casimir-Lifshitz stress
and free energy in general n-layered inhomogeneous media are
given in the Appendix. We bring here the specific expression of
FCL in a five-layer system [Eq. (46) in Appendix.]

FCL = T
∞

∑′

m=0

∫ d2k
(2π)2 ∑

s=E,H
ln
[

1+ rs
L1rs

12e−2κ1d1 + rs
12rs

23e−2κ2d2

+rs
23rs

3Re−2κ3d3 + rs
L1rs

23e−2(κ1d1+κ2d2)+ rs
12rs

3Re−2(κ2d2+κ3d3)

+rs
L1rs

3Re−2(κ1d1+κ2d2+κ3d3)+ rs
L1rs

12rs
23rs

3Re−2(κ1d1+κ3d3)

]
,(11)

in which the primed sum means the m = 0 term is counted in its
half weight. A high symmetry is seen in the expression for FC, and
its consistency with four-layered and three-layered configurations
are obvious. Note, however, that the thickness of one or two of
the layers going to zero involves subtleties, as described in detail
in the Appendix.

2.2.3 Non-retarded limits

Thicknesses of intervening materials involved when considering
premelting and formation of ice are typically on the nano- to
micro-scale.14,15,18–21 Around the quadruple point of methane
hydrate (at T = 272.9 K), the wavelength corresponding to the
m = 1 Matsubara frequency is λT ≈ 1.36 µm. This means that in
systems with relatively thin mediating layers (several or few tens
of nanometers), non-retarded interaction will be sufficient to out-
line the main properties of the Casimir-Lifshitz interaction. How-
ever, when the thickness of the mediating layers becomes com-
parable with 1 µm, the retardation effect would inevitably and
significantly modify the non-retarded contributions. On the one
hand, retardation effects are usually thought to not alter the re-
pulsive or attractive character of the contribution to the Casimir-
Lifshitz stress from each Matsubara term, which could facilitate
qualitative estimations. On the other hand, these repulsive and
attractive effects are vital for the premelting and formation phe-
nomena investigated here. It is thus worthwhile, in this work, to
give some thought to the non-retarded behaviors of multi-layer
configurations, including as well three-layer structures51.

Firstly, we consider the simple case of a three-layer system
consisting of nonmagnetic media and arranged as ε1-ε2-ε3, in
the non-retarded limit, where the frequency and spatial depen-
dence separates due to the small thickness of the intervening
layer d, d ≪ ζ−1

1 . In this case, the Casimir-Lifshitz free energy
FCL can be expressed in terms of the Hamaker constant52,53

(A123 =−12πd2FCL),

A123 =
−3T

2

∞

∑
n=0

′ ∫ ∞

0
dxx ln ∆̂123(ζn;x) , (12)

where the coefficient ∆̂123(ζ ;x) is defined as ∆̂123(ζ ;x) = 1 +

r̂12(ζ )r̂23(ζ )e−x, the reduced reflection coefficient r̂i j is

r̂i j(ζ ) =
ε j(iζ )− εi(iζ )
ε j(iζ )+ εi(iζ )

, (13)

and the corresponding zero frequency Hamaker constant (A123;0)
takes the form

A123;0 =
−3T

4

∫ ∞

0
dxx ln ∆̂123(0;x) . (14)

As previously pointed out,54 the m = 0 frequency Matsubara
term sometimes has the opposite sign to the rest of finite fre-
quency terms. For the case here, a positive sign for A123 (or
A123;0) indicates short range (or long range for A123;0) attrac-
tion, while a negative sign indicates repulsion.51 The different
separation regimes for the three-layer interaction are short range
non-retarded regime (free energy ∝ d−2), retarded regime (free
energy ∝ d−3), and the long-range thermal regime (free energy
∝ d−2). Here, the retardation leads to a reduction of the m > 0
contributions to the Casimir-Lifshitz free energy, leaving long-
range results dominated by the m = 0 term (as long as the ef-
fect of screening from ions on the m = 0 term at very large sep-
arations is negligible). Hence, for a water-ice-vapor system, the
relation of the dielectric function fulfils ε1 > ε2 > ε3 for finite fre-
quencies, while the relation ε2 > ε1 > ε3 is attained at zero fre-
quency. We thus find a negative A123 (repulsion) and a positive
A123;0 (attraction) zero frequency Hamaker constant, indicating
that the formation of a finite size ice layer on a water surface at
the triple point of water is possible, as it was recently predicted
based on the complete Casimir-Lifshitz theory using a revised and
improved set of dielectric functions.37 The argument relating rel-
ative magnitudes of dielectric functions in a three layer structure
to either attraction or repulsion, which can be understood by con-
sidering Eq. (12) and Eq. (14), goes back to the original work
by Dzyaloshinskii, Lifshitz, and Pitaevskii (DLP).39 As an illus-
tration, the different three-layer Hamaker constants relevant for
us are given in Table 1. For three-layer configurations, the inter-
vening layer would be stabilized by a repulsive short-range and
attractive long-range Casimir-Lifshitz force. So only specific GH-
ice-water and GH-ice-quartz configurations with low enough oc-
cupancy numbers for GH, and GH-water-quartz satisfiy this crite-
rion. Particularly, for the GH-ice-water-quartz structure, the con-
sequences of the competition between the formation of ice in the
short range, due to GH-ice-water, and the expansion of the water
phase due to the ice-water-quartz data in Table 1, are not obvious
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Configurations (1-2-3) Ng A123 (meV) A123;0 (meV)

GH-ice-water
0 −6.00×100 2.25×10−1

4 −3.48×10−2 2.09×10−1

8 5.89×100 1.88×10−2

GH-water-ice
0 1.87×101 −2.21×10−1

4 1.27×101 −2.05×10−1

8 6.82×100 −1.83×10−1

GH-ice-quartz
0 −8.53×100 1.22×101

4 1.04×101 1.12×101

8 2.90×101 1.00×101

GH-water-quartz
0 −3.03×101 1.20×101

4 −1.73×101 1.10×101

8 −4.65×100 9.72×100

ice-water-quartz − −2.80×101 −2.92×10−1

ice-water-albite − −2.25×101 −2.79×10−1

ice-water-kaolinite − −2.57×101 −2.92×10−1

water-ice-vapor − −4.74×101 3.18×10−1

ice-water-vapor − 5.98×101 −3.16×10−1

Table 1 The Hamaker constant A123 and its contributions from the zeroth
Matsubara term A123;0 for various three-layer configurations.

and therefore require explicit evaluations as done in Sec. 3.

Also these arguments provide a useful framework leading to
some intuitive understanding in the more complicated multi-layer
cases considered in this work, mainly four- and five-layer config-
urations. As already known, in a four-layer system, the contribu-
tion from four-layer interactions to the Casimir-Lifshitz free en-
ergy can be derived as F14 = FCL −F123 −F234, in which F123, as
well as F234, is the Casimir-Lifshitz free energy of the three-layer
(or DLP) configuration. When thicknesses of the intervening lay-
ers (2 and 3) are very small, the non-retarded limit leads us to
the Hamaker constant for F14 as

A14 =
−3T

2

∞

∑′

n=0

∫ ∞

0
dxx ln

[
1+

r̂12(1− r̂2
23)r̂34e−x

∆̂123(ζn;xη2)∆̂234(ζn;xη3)

]
, (15)

in which ηi = di/d and d = d2 + d3 is the total thickness of inter-
vening layers. In the non-retarded limit, the Casimir-Lifshitz free
energy in this four-layer system is

F(nr)
CL =

−A1234

12πd2 , A1234 =
A123

η2
2

+
A234

η2
3

+A14 . (16)

Similar generalizations apply to five-layer configurations, giving
the relations satisfied by the five-layer interaction Hamaker con-
stants A15 and the total one A1∼5 as follows

A1∼5 =
A1234

(1−η4)2 +
A2345

(1−η2)2 − A234

η2
3

+A15 , (17)

where now d = d2 +d3 +d4. For inhomogeneous multi-layer con-
figurations, the details of mediating layers introduce extra com-
plexities as we shall see below.

Fig. 3 The Casimir-Lifshitz free energy per unit area in four-layer sys-
tems, namely the methane GH (GH)-ice-water-quartz, varying with the
thickness of medium 2, which is ice here, while the total thickness of ice
and water layers, denoted as d, is fixed to d = 1000 nm. The influence of
different occupancy number Ng of cages in the GH is also shown.

3 Results
3.1 Predictions based on Casimir-Lifshitz free energy con-

siderations
3.1.1 Uniformly filled GH

Suppose a uniform methane GH material filling a cavity is cov-
ered by two intervening layers, namely ice and water layers, near
a rock surface. Since the distance between the outer surface of
methane GH and the wall of the rock cavity is almost fixed, it is
reasonable to treat the total thickness d of these ice and water
layers as a constant. Consider, first, a representative case with
a total thickness of the intervening layers being d = 1 µm. Fig-
ure 3 shows that the anomalously stabilizing ice layer on the GH
tends to be suppressed by the Casimir-Lifshitz interaction when
it has a relatively high occupancy (Ng ≥ 6). When the occupancy
number decreases, a clear-cut minimum of free energy occurs,
for instance an ice layer of about 3 nm with Ng = 4. For lower
occupancies, a relatively wide range of anomalously stabilizing
ice layer thicknesses, of about 100 ∼ 700 nm, are allowed to form.
However, relatively minor perturbations can modify the ice thick-
ness formation, and hence, alter the ability to prevent leakage
of gas molecules. Yet, for very thin ice layers, a strong repulsive
Casimir-Lifshitz stress acts against further melting. Notably, it
would appear that, for a uniform bulk GH, the more gases stored
in it, the less stable its ice layer will be.

Furthermore, the fixed total thickness of ice and water layers,
or the size of GH compared to the volume of cavity, is also im-
portant to the stability of the self-preserving ice film. Figure 4
shows a specific case examined in Fig. 3 corresponding to the
methane GH-ice-water-quartz configuration with the occupancy
number of GH being Ng = 0. As the distance between the GH and
the cavity wall, d, decreases, the ice layer tends to become thin-
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Fig. 4 The Casimir-Lifshitz free energy per unit area in the methane GH
(Ng = 0)-ice-water-quartz, varying with the thickness of ice film for dif-
ferent fixed total thickness d of ice and water layers. The inset shows the
ratio βGQ = FCL/FGQ, where FGQ is the four-layer contribution obtained
by subtracting the GH-ice-water and ice-water-quartz contributions from
the total Casimir-Lifshitz free energy FCL, for the same settings corre-
sponding to the same color lines.

ner. However, it is evident that when d decreases, the Casimir-
Lifshitz interaction gains a stronger ability to stabilize a nano- to
micron-sized ice layer on this GH (for the d = 500 nm case here,
its thickness is about 170 nm).

To illustrate the influence of the presence of quartz rock, we
evaluate the relevant three-layer scenarios in Fig. 5. The effect
of this presence, as shown in Fig. 4, is significant only when the
thickness of intervening layers is not large. The formation of ice
layer for four-layer cases as those in Fig. 3 and Fig. 4 behaves sim-
ilarly to the GH in a bulk of water without any other restrictions,
when the total thickness of the intervening ice and water layers
is sufficiently large. This can be figured out by comparing Fig. 3
and the bottom panel in Fig. 5. The shallow energy minimum for
an empty GH structure in contact with cold water occurs at an ice
layer thickness of about 265 nm (to guide the eye, it is marked
with a vertical dashed line in the bottom panel of Fig. 5). On the
other hand, for the methane GH-ice-quartz structure, an ice layer
forms only when the GH has a very small occupancy number, and
the intermediate layer is thin (about 12 nm for Ng = 0 case, as in
the top panel in Fig. 5). So, in general, for the relatively large
separation distance between the GH and the micron-sized quartz
material, a single ice layer cannot fill in the whole space as an
intervening layer typically.

3.1.2 GH with specific surface layers

As shown above, for the pure GH in a cavity, a naive guess is that
its capability to store the methane gas is quite limited because,
as the number of gas molecules increases, the Casimir-Lifshitz in-
teraction tends to prevent the formation of the anomalously sta-
bilized ice layers. Practically, however, the concentration or dilu-
tion could happen near the surface of the GH, which complicates

Fig. 5 The Casimir-Lifshitz free energy per unit area in three-layer con-
figurations: methane GH-ice-quartz (GIQ) (top panel), and methane GH-
ice-water (GIW) (bottom panel), varying with the thickness of ice film,
for different occupancy number Ng of cages in the GH. The labels denote
positions of the minima of the free energy.

the interaction and the related phenomena. It was recently pre-
dicted15 that nano- to micron-sized anomalously stabilized ice
layers can form via Casimir-Lifshitz interactions on GHs, with a
low-occupancy surface region in contact with cold water. Note
that while a depleted surface region is physically realistic, a GH
with a bulk region totally depleted of gas molecules is thermo-
dynamically unstable. In the following section we will demon-
strate that a proper understanding of the effect from confinement
on anomalous stabilization requires a five-layer Casimir-Lifshitz
model. It enables us to include separate bulk and surface regions
for the methane GH as well as a layered structure of ice, water
and rock.

Suppose the methane GH is originally fully-occupied with the
occupancy number Ng,b=8 (the subscript b denotes that it is for
bulk region), then the leakage of gas molecules, via thermal dif-
fusion, might result in a thin surface region with a lower occu-
pancy number Ng,s < 8 (the s here stands for the surface region).
When the surface of GH is not so empty, for instance Ng,s = 6,
the ice coating is still suppressed. But when Ng,s = 4, this thin
surface of GH facilitates the growth of ice. However, its capabil-
ity is quite limited, and an ice film at most about 3 nm thickness
appears when the surface GH is thick enough. For the surface
with a lower occupancy number, the increasing surface thickness
leads to an increasing equilibrium ice film thickness. As shown
in Fig. 6, for Ng,s = 0 and Ng,s = 2 cases, the respective equilib-
rium ice film thicknesses approach their corresponding four-layer
results in Fig. 3. Therefore, by eliminating some gases stored in
the surface of bulk GH, the fully-occupied bulk can be stabilized
under an ice coating of a few hundreds of nanometers.

Besides the thickness of surface GH, the constraints due to the
quartz cavity are also important. As shown in Fig. 7, where the
Ng,s = 0 and Ng,s = 2 cases are given without losing any general-
ity, when the GH is closer to the quartz cavity wall, the equilib-
rium thickness of ice layer will correspondingly decrease. How-
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Fig. 6 The equilibrium thickness of ice layers, with the given total thick-
ness of ice and water layers as d = d2+d3 = 1000 nm, varying as functions
of the thickness of surface GH layer in the configuration high occupied GH
(bulk)-lower occupied GH (surface)-ice-water-quartz. Here as illustration
we consider Ng,b=8 and the values for Ng,s are given in the figure.

ever, when the distance between the GH and the quartz are large
enough, only the thickness of surface GH determines the size of
the ice layer, as can be seen from Fig. 6.

3.2 Insights from Casimir-Lifshitz stresses
3.2.1 Relation between stress and free energy results

The Casimir-Lifshitz stress approach can provide similar informa-
tion as the Casimir-Lifshitz free energy approach for all the inho-
mogeneous scenarios considered here. This is in contrast to the
more complicated configurations, where GH-ice-water is in con-
tact with a flexible water vapor region. In such cases, the free
energy approach is superior since positions and depths of both lo-
cal and global energy minima can be predicted. Our main results
in this paper come from the free energy approach, but here we
also show in Fig. 8 the Casimir-Lifshitz stress of four-layer sys-
tems studied in Fig. 3. The ice-water equilibrium can be found
from the thicknesses that give zero stress across the ice-water in-
terface. According to Fig. 8, with a relatively large occupancy
number, such as Ng = 6,8 here, the stress at the ice-water inter-
face is always negative, implying the suppression of ice growth.
When the methane GH has a lower occupancy number, for in-
stance Ng = 0,2,4, this stress varies from positive to negative,
as the thickness of the ice layer increases. Thus the repulsive
Casimir-Lifshitz stress for short range promotes the ice growth,
while its attractive counterpart for long range prevents further
freezing, resulting in a nano- or micron-sized ice layer. These
results based on Casimir-Lifshitz stress arguments are consistent
with those in Fig. 3 and Fig. 6, which are also justified by compar-
ing insets of Fig. 3 and Fig. 8. As for the five-layer configurations
investigated in Fig. 6 and Fig. 7, we demonstrate in Fig. 9 the
dependence of Casimir-Lifshitz stress across the ice-water inter-
face Piw and the corresponding free energy per unit area, FCL,
on ice and water layer thicknesses, denoted as d2 and d3 respec-
tively. Their consistency with the results shown in Fig. 6 and Fig. 7

Fig. 7 The equilibrium thicknesses of ice layers, with different given
thicknesses d1 of surface GH layers, varying as functions of the total
thickness of ice and water layers in the configuration high occupied GH
(bulk)-lower occupied GH (surface)-ice-water-quartz. Here we consider
Ng,b=8 and the values for Ng,s are given in the figure.

Fig. 8 The Casimir-Lifshitz ice-water stress in four-layer systems, namely
the methane GH (GH)-ice-water-quartz, varying with the thickness of
medium 2, which is ice here, while the total thickness of ice and water
layers, denoted as d, is fixed to d = 1000 nm. The influence of different
occupancy number Ng of cages in the GH is also shown.
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is clearly seen, which again illustrates the equivalence between
stress and free energy arguments.

3.2.2 Effect on stress using three different cavity materials

As shown in Fig. 2, the dielectric functions of the examined rock
(quartz and albite) and clay (kaolinite) materials are similar, es-
pecially when compared with the dielectric functions of the other
materials involved in the cavities here considered, that is, ice, wa-
ter, and methane GHs. Fig. 10 shows the Casimir-Lifshitz stress
for three different cavities represented by a four-layer system
in which the rocky material is albite (blue line, box), kaolin-
ite (green line, triangle) or quartz (red line, circle) and Ng =
0. We fix the size of the cavity between the GH and the rock,
and the total thickness of ice and water layers is kept constant
(d = 1000 nm), allowing the thickness of ice to vary. Specifi-
cally, the four-layer systems considered here comprise either GH-
ice-water-rock or GH-ice-water-clay. The difference between the
stress and induced effects on stabilization is very small in these
cases, giving rise to anomalously stabilized ice layer thicknesses
of 245, 244 and 244 nm for cavities formed by albite, kaolinite
and quartz, respectively. Also for higher Ng values we find similar
anomalously stabilized ice thicknesses. Considering Ng = 2, the
stabilized ice thickness becomes 145 nm for albite and kaolinite,
and 144 nm for quartz cavities, whereas when the gas molecules
is set to be Ng = 4, the ice thickness is 3 nm for the three ma-
terials. However, one can imagine situations where the experi-
mental dielectric function of specific rock or clay materials may
have much stronger effects on the melting of stabilized ice layers,
which merits further investigations on such effects and various
geophysical applications.

4 Discussion
4.1 Analysis of the results

4.1.1 Limitations of the Hamaker Approach

According to the results above, when one of the intervening lay-
ers is not thick, the interaction between its two interfaces dwarfs
others. Multi-layer interactions, such as four- and five-layer in-
teractions here, introduce more complexities compared with the
three-layer cases. As detailed in the Appendix, we can extract
the contribution from the pure four-layer interaction to the total
Casimir-Lifshitz free energy FCL, denoted as FGQ for the config-
urations depicted in Fig. 3 and Fig. 4, by subtracting two three-
layer interaction contributions, namely GH-ice-water (FGIW) and
ice-water-quartz (FIWQ), that is, FGQ = F −FGIW −FIWQ. The in-
set of Fig. 4 shows significances of FGQ. When either ice or water
layer is thin, then the interaction between the two closest inter-
faces of this medium dominates; while both ice and water lay-
ers are relatively thick, the four-layer interaction could contribute
much more than the three-layer interactions. On the other hand,
in the non-retarded limit, the contributions from the four-layer
interaction are typically quite small. For example, when Ng = 0,
AGQ resulting from the four-layer interaction, is only about 2% of
the the total Hamaker constant A at best, as illustrated by the left
case of Fig. 11. This is quite different from the inset of Fig. 4 and
the right cese of Fig. 11, in which we clearly see a region where

|βGQ|< 1, proving the influence of retardation effects.
Moreover, for multi-layer contributions, their non-retarded

forms, marked by their corresponding Hamaker constants, are in-
fluenced not just by the dielectric functions of materials involved
as in three-layer cases, but also by the relative size of the interven-
ing media. The dependence of Hamaker constants on the relative
size of the ice layer in the configuration described by Fig. 3 and
Fig. 4, is shown in detail in Fig. 11. As expected, when η2 = d2/d
approaches 0 or 1, the total Hamaker constant A goes to the three-
layer contribution η−2

2 AGIW (red lines) or η−2
3 AIWQ (green lines).

The pure four-layer interaction term AGQ can only contribute in
a limited way for the Ng = 0 and Ng = 4 cases, and would not
change the sign of A, which is determined by η−2

3 AIWQ. Since the
permittivity of methane GH with the occupancy number Ng = 8
is between that of ice and water, more subtleties exist and are
shown by the solid lines in Fig. 11. There is a section of η2 (about
0.30 to 0.45) when Ng = 8, in which AGQ has the magnitude com-
parable or even larger than two three-layer contributions. In this
region, even a subtle balance, where a vanishing total Hamaker
constant appears, can be achieved.

The case on the right in Fig. 11 (retarded), which shows the
ratios of free energy for the same system with a relatively large
total thickness of ice and water layers of 1000 nm thickness, is
evidently different from the case on the left (non-retarded). As it
has been seen on the left panel, when η2 approaches 0 or 1, FGIW

or FIWQ should dominate. However, with the retardation effects
included, the purely four-layer contribution FGQ could overwhelm
three-layer contributions FGIW and FIWQ in a quite large range
of η2, for instance 0.2 < η2 < 0.7, which manifests the crucial
role of the retardation effect in multi-layer interactions. Thus,
it seems the non-retarded approximations are not very reliable in
this case. However, the three-layer Hamaker constants have some
merit providing predictions on formation of ice or water layers.

4.1.2 Analysis of Energy Contributions

The results in the previous sections were derived from careful
computations of the free energy and stress for a large number of
different inhomogeneous four-layer and five-layer geometries. As
an example, we show in Fig. 9 the contour plots for a system with
a 500 nm thick low-occupancy methane GH surface layer above
the bulk methane GH. The equilibria, that is, the thicknesses of
ice and water giving energy minima, depend on the distances be-
tween the GH and quartz. We observe that the thinner the GH
surface layers are, the smaller the equilibrium thicknesses of the
ice film will be. This is in line with the general results for multi-
layered Casimir-Lifshitz interactions as discussed in the book by
Parsegian.55 For five-layer cases, the contributions to the reduced
Casimir-Lifshitz free energies Fr = FCL−FGbGsI, obtained for inho-
mogeneous systems by omitting the contribution irrelevant to the
thickness of ice layer, for the same configuration as in Fig. 9, are
analysed in Fig. 12. Due to the four-layer interaction, FGSQ almost
always dominates, while the other four-layer contributor FGbW

is suppressed at the time. There is an exception to the above,
which occurs when the regularized free energy Fr vanishes due
to cancellations between the various contributions. Three-layer
contributions are significant only when η2 approaches 0 or 1 as
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Fig. 9 Contour plots of the Casimir-Lifshitz stress across ice-water interface Piw and its corresponding free energy per unit area FCL as functions
of ice and water layer thicknesses, denoted as d2 and d3 respectively, for a configuration with GH (bulk)-GH (surface)-ice-water-quartz (GbGsIWQ)
schematically shown in right panel of Fig. 1, with various occupancy numbers (Ng,s= 0, 2, 4, 6) of a "thick" (500 nm) layer of surface GH. The solid
black curves indicate the equilibrium systems with zero stress.

Fig. 10 The Casimir-Lifshitz ice-water stress in four-layer systems,
namely the methane GH (GH)-ice-water-rock, varying with the thick-
ness of medium 2, which is ice here, while the total thickness of ice and
water layers, denoted as d, is fixed to d = 1000 nm and Ng is equal 0.

Fig. 11 Left: The ratios of the Hamaker constant A = AGIWQ =

η−2
2 AGIW +η−2

3 AIWQ +AGQ for the methane GH-ice-water-quartz (GIWQ)
configuration relative to its contributions, namely (η−2

2 AGIW)/A (red),
(η−2

3 AIWQ)/A (green) and AGQ/A (blue), with the GHs of different oc-
cupancy numbers, Ng = 0 (dotted), Ng = 4 (dashed) and Ng = 8 (solid).
Right: The corresponding Casimir-Lifshitz free energy ratios, namely
FGIW/F, FIWQ/F and FGQ/F, with the same settings as the left case and
the total thickness of ice and water layers is 1000 nm. Singularities occur.
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Fig. 12 Ratios of the contributions to the reduced Casimir-Lifshitz
free energy Fr = FCL −FGbGsI = FGsIW +FIWQ +FGbW +FGsQ +FGbQ for the
methane GH (bulk)-methane GH (surface)-ice-water-quartz (GbGsIWQ)
configuration relative to the total. Namely, shown are the relative contri-
butions of FGsIW/Fr (orange), FIWQ/Fr (purple), FGbW/Fr (blue), FGsQ/Fr
(green) and FGbQ/Fr (red), with various occupancy numbers Ng,s of the
500nm surface GH and the total thickness of ice and water layers is
1000nm.

expected. The five-layer contribution is also typically small, but
usually comparable with or even larger than the three-layer con-
tributions.

4.2 Some general remarks on the role of ions
Here our focus is on systems, where the stability of ice layers on
methane gas hydrates within pores can be influenced. In previ-
ous sections, we predict that the effect of surface confinement, via
Casimir-Lifshitz free energies in inhomogenoeus systems, and the
corresponding stresses, tends to reduce the thickness of anoma-
lously stabilized ice layers, but also to enhance the stabilising
Casimir-Lifshitz free energy minima. While under specific con-
ditions a dominating, and always contributing, role has been pro-
posed for the Casimir-Lifshitz induced stresses across ice-water
interface, another salt-dependent contribution56–61 can induce
destabilisation via repulsive forces for ice-water-quartz regions.

The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory62,63

for interactions between charged particles, or surfaces, in salt so-
lutions treats colloid stability in terms of a balance of an attractive
van der Waals force and a repulsive electrical double-layer force.
An applied theory for salt-dependent forces in systems with ice-
water-vapor was discussed a few years ago by Thiyam et al.61

We focus in the current work on cases with high salt concentra-
tions and/or pH near the isoelectric points (where surface charges
are assumed close to zero), and the Casimir-Lifshitz interaction
is dominating. It would be of interest in the future to address
salt effects away from such specific limits (e.g. study cases with
low salt concentrations61, varying pH,61 or including different
types of background salt ions58,64). A brief discussion on salt
can be illuminating and indicate how salt is expected to influ-
ence the result. In order to quantify such additional contribu-
tions one must account for ions in water and the surface charges

of ice, quartz, albite, and kaolinite. Some concentration of ions
are always present in water, even in pure water due to autodis-
sociation into H+ and OH– at pH 7. Autodissociation of water
(ice) molecules at the ice-water interface (and correspondingly
for quartz, albite and kaolinite) still takes place, generating an
ice surface charge. Measurement of the zeta potential of the in-
terfaces can be understood through a pH-dependent charge reg-
ulation model involving chemisorption of H+ ions. When surface
ice molecules dissociate at high pH, H+ is liberated into solution
leaving a negative charge due to OH– remaining bound to the
interface. At low pH, H+ ions bind to surface molecules (analo-
gous to forming an hydronium ion), resulting in a positive surface
charge. The presence of surface charge induces physisorption of
ion through electrostatic interactions. Physisorption can be mod-
elled through a Poisson-Boltzmann model where the electrostatic
potential of ions and surface charge is determined by solving
the Poisson equation for the physisorbed ion concentration pro-
files65 and chemisorbed surface charge.60 Equilibrium physisorp-
tion profiles are described using a Boltzmann distribution deter-
mined from ion electrostatic energies. The free energy, and the
force derived from the free energy, due to charge chemisorption
and physisorption can be determined from the electrostatic en-
ergy of the electric field generated by the ions and surface charge,
the entropic energy of ion concentration profiles,66 and a charge
transfer force.60

In the same way as when only Casimir-Lifshitz interactions are
accounted for above, P23 is given by the difference of pressure
across ice and pressure across salt water. One can then assume
that the total stress across the water-ice interface can be approxi-
mated as,

P23 ≃ PCL,23 −PS,3 . (18)

The corresponding free energy is approximately given by the sum
of the five-layer Casimir-Lifshitz and ion free energies

F ≃ FCL +FS . (19)

The zeta potentials for ice,67 quartz68 and albite,68 as func-
tions of salt concentration and pH, are all negative for pH 7, indi-
cating negative surface charges. Usui56,57 considered the salt in-
duced pressure between a pair of surfaces with dissimilar electro-
static surface potentials both with same sign of the surface charge
within the Gouy-Chapman-Stern-Grahame double-layer model. It
was demonstrated that the double-layer force at low concentra-
tions under surface charge regulation, was always repulsive be-
tween a pair of negatively charged surfaces, increasing with a
decreasing surface separation.56,57,59 These salt induced free en-
ergies are thus expected to promote growth of the liquid water
layer. Since the total thickness of the ice and water layers is as-
sumed fixed, this suggests melting of the ice layer. For low salt
concentrations this effect is expected to dominate over the Lif-
shitz free energies. Hence, further studies away from the limits
of high salt concentrations (e.g. sea salt) and/or pH at isoelectric
points will be highly important expansions.

There can in fact also be effects of aqueous ions on the dielectric
function of water, and therefore on the reflection coefficients used
in the current work. This effect is known to be exceedingly small
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except at very high salt concentrations (exceeding 1 mol/L).69

This is higher than the salt concentration of, for example, ocean
water. Nevertheless, in general the possibility of tuning the for-
mation of ice externally, or controlling the heat flux with an ex-
ternal electric field (which was studied for metal surfaces70,71)
merits further study. One should note that a correction to the
Casimir-Lifshitz interaction energy can occur, at high salt concen-
trations and/or thick water layers, due to screening of the zero
frequency term by ions.72–75 The impact of electrostatic energies
of aqueous ions is usually more significant than the corresponding
indirect impact on the Casimir-Lifshitz interaction.

5 Conclusions
It is well established that GHs containing a large fraction of
methane molecules can exist under conditions of low tempera-
tures and high pressures.6 Such conditions may, for example, oc-
cur below the seabed and in deep permafrost layers. However,
GHs have also been observed in shallow permafrost layers below
the freezing point of water.13 To be specific, ice layers covering
methane GH surfaces have been associated with the stabilisation
of GHs and believed to prevent the methane gas molecules from
leaking out.4–6

In this work, we have demonstrated how Casimir-Lifshitz in-
teractions at the quadruple point help to stabilize ice layer cov-
ers separating water from methane GHs inside porous rocks.
Confinement effects are, within our Casimir-Lifshitz model, pre-
dicted to favor reduced ice layer thickness, compared to those of
methane hydrates in larger reservoirs of ice cold water.15 Notably,
while the self-preservation layers becomes thinner in pores, they
may turn out to be more stable against perturbations compared
to in larger water reservoirs.

Future work should further explore the potential environmen-
tal impacts from such stabilized gas hydrates. As was discussed in
the introduction, Chuvilin, Shakhova and others,11–13 have ex-
perimentally found that hydrates in permafrost regions seem to
exist at very shallow depths from the surface. In fact, hydrates
were found outside the expected pressure and temperature sta-
bility zone. For example Froitzheim et al.76 reported observa-
tion of methane from particular rock types likely sourced from
deep methane hydrates. The current investigation of GH self-
preservation in pores is thus both relevant and important. Our
study urgently calls for examining other relevant energy contri-
butions, including those due to salt61,77,78 and curvature,79 as
well as effects accounting for temperatures23 below the quadru-
ple point in future work.
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Appendix: Casimir-Lifshitz interaction

Derivation of the Casimir-Lifshitz free energy for four-slab
system

In this appendix, we use natural units, with h̄ = c = kB = 1, and ra-
tionalized Heaviside-Lorentz electromagnetic units. We consider
a 4-slab system, each slab being homogeneous:

ε,µ(z) =


z < a : ε1,µ1,

a < z < b : ε2,µ2,

b < z < c : ε3,µ3,

c < z ε4,µ4.

(20)

The free energy is given in general by

F =
T
2

∞

∑
m=−∞

∫ d2k
(2π)2 ln∆E∆H, (21)

the sum being over Matsubara frequencies ζm, and E,H represent
transverse electric (TE) and transverse magnetic (TM) polariza-
tions, respectively. We will use the inhomogeneous medium de-
scription given by Li and co-workers.48 We regard the regions 2
and 3 as a single region, labeled with “in”, as a inhomogeneous
medium. To obtain an unambigously finite result, we subtract a
reference energy corresponding to removing the boundary a, that
is, letting medium 2 to extend to −∞. Then, we add back in the
energy corresponding to that reference energy. So

F = Fsub +Fref. (22)

Here we consider the TE contribution only, the TM contribution
being obtained by the obvious substitutions, E → H, ε ↔ µ.

Consider first the reference situation, which is just the familiar
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DLP (three-layer) configuration. There

∆E
ref = 1−

[e2,−,e3,−]µ (b)[e3,+,e4,+]µ (c)

[e2,−,e3,+]µ (b)[e3,−,e4,+]µ (c)
, (23)

where ei satisfies(
∂z

1
µi

∂z −
k2

µ i
− εiζ 2

)
ei = 0. (24)

(The overline on the 2 is to remind us that region 2 has been
extended to −∞.) The generalized Wronskians are defined by

[ei,e j]µ =
1
µi

e′ie j −
1
µ j

e′jei, (25)

evaluated at the same point. In this DLP configuration, we may
define

ei,± = e∓κiz, κi =
√

k2 + εiµiζ 2. (26)

Then it is immediate to find ∆E
ref = ∆E

234, in which

∆E
234 ≡ 1− rE

23rE
43e−2κ3(c−b), (27)

in terms of the reflection coefficients

rE
i j =

κ̂ j − κ̂i

κ̂ j + κ̂i
, κ̂i =

κi

µi
. (28)

This directly gives the Casimir-Lifshitz energy and pressure.

Now for the subtracted four-slab configuration, we need to
compute

∆E
sub = 1−

[e1,−,ein,−]µ (a)[ein,+,e4,+]µ (c)
[e1,−,ein,+]µ (a)[ein,−,e4.+]µ (c)

, (29)

where the effort is only in finding the solution in the 2+3 region.
We can take ein,∓(z) to be e±κ2z for a < z < b; then by requiring,
from the differential equation (24), continuity of the solution,
and of 1

µ times the derivative of the solution, we find

ein,∓(z) = e±κ2z, a < z < b, (30a)

while for b < z < c,

ein,∓(z) =
[
(κ̂3 − κ̂2)e∓κ3(z−b)+(κ̂3 + κ̂2)e±κ3(z−b)

] e±κ2b

2κ̂3
.(30b)

Then ∆E
sub is readily calculated to be

∆E
sub = 1+ rE

12e−2κ2(b−a) rE
23e2κ3(c−b)+ rE

34

e2κ3(c−b)+ rE
34rE

23
. (31)

When this is multiplied by ∆E
ref in Eq. (27), the denominator in

Eq. (31) is cancelled, and we are left with ∆E = ∆E
1234, in which

∆E
1234 ≡ 1+ rE

43rE
32e−2κ3(c−b)+ rE

32rE
21e−2κ2(b−a)

+ rE
21rE

43e−2κ2(b−a)e−2κ3(c−b). (32)

a

εR, µRεL, µL

b1

ε1, µ1

b2

ε2, µ2 ε3, µ3

b3

. . .

c

Fig. 13 Geometry of n homogeneous parallel slabs, with interfaces at
bi, i = 0,1,2, . . . ,n,n+ 1, with permittivity εi and permeability µi in the
i > 0th slab. These slabs are sandwiched between two parallel semi-
infinite media, where for z < a, the permittivity and permeability are
εL, µL, and for z > c, the permittivity and permeability are εn+1 = εR,
µn+1 = µR, where a = b0 < b1 < b2 < · · ·< bn < bn+1 = c.

Casimir-Lifshitz pressure on intermediate surface

We know that the principle of virtual work is satisfied in this for-
mulation. Therefore, the force on the intermediate interface, b,
between media 2 and 3, is

pb =− ∂
∂b

T
∞

∑
m=0

′ ∑
s=E,H

∫ d2k
(2π)2 ln∆s. (33)

Here,

∂
∂b

ln∆s =
2κ2

Ds
2
− 2κ3

Ds
3
, (34)

where, after a bit of rearrangement,

Ds
3 =−1− e2κ3(c−b)

rs
43rs

32
, Ds

2 =−1− e2κ2(b−a)

rs
12rs

23
, (35)

and the effect of the fourth medium is absorbed in the effective
reflection coefficients

rs
32 =

rs
32 + rs

21e−2κ2(b−a)

1+ rs
32rs

21e−2κ2(b−a)
, rs

23 =
rs

23 + rs
34e−2κ3(c−b)

1+ rs
23rs

34e−2κ3(c−b)
. (36)

Casimir-Lifshitz theory with n intervening slabs

Let us generalize the above considerations to the situation with
n homogeneous layers sandwiched between two semi-infinite
bulks. The situation is illustrated in Fig. 13.

The free energy is still given by Eq. (21), and to obtain a finite
energy we subtract the reference situation, which would now be
given by letting the region 1 extend to −∞, that is, eliminate the
boundary a, which gives the n−1 intermediate slab configuration.
The subtracted ∆ is given by the generalization of Eq. (29),

∆E
sub = 1−

[eL,−,ein,−]µ (a)[ein,+,eR,+]µ (c)
[eL,−,ein,+]µ (a)[ein,−,eR,+]µ (c)

, (37)

In the outer slabs, we take (κi =
√

k2 +ζ 2
mεi(ζm)µi(ζm))

eL,− = eκLz, eR,+ = e−κRz, (38)
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while in the first interior slab, we may take

e1,∓ = e±κ1z, a < z < b1, (39)

while ein in the remaining slabs can be written as

ein,∓(z) = A±
i eκiz +B±

i e−κiz, bi−1 < z < bi, (40)

where A+
1 = 1, A−

1 = 0, B+
1 = 0, B−

1 = 1, and the coefficients are
obtained by the continuity of the function, and of 1/µ times the
derivative of the function, at the interfaces. These matching con-
ditions can be written in matrix form:

Mi+1ψ±
i+1 = Niψ±

i , ψ±
i =

(
A±

i
B±

i

)
, (41)

with the matrices

Mi+1 =

(
eκi+1bi e−κi+1bi

κ̂i+1eκi+1bi −κ̂i+1e−κi+1bi

)
, Ni =

(
eκibi e−κibi

κ̂ieκibi −κ̂ie−κibi

)
,

(42)
and then in terms of the transfer matrix

Ti = M−1
i Ni−1 (43)

=
1

2κi

[
(κi +κi−1)e−(κi−κi−1)bi−1 (κi −κi−1)e−(κi+κi−1)bi−1

(κi −κi−1)e(κi+κi−1)bi−1 (κi −κi−1)e(κi−κi−1)bi−1

]
,

we have for the amplitude in the last intermediate slab

ψ±
n = TnTn−1Tn−2 · · ·T2ψ±

1 , ψ+
1 =

(
1
0

)
, ψ−

1 =

(
0
1

)
. (44)

This multiplicative structure makes it easy to go from the result
for n layers to that for n+ 1 layers. Using this machinery, let’s
write down the basis function in the 3rd intermediate slab for the
five-layer system:

ein,−(z) =
κ̂1 + κ̂2

2κ̂2

κ̂2 + κ̂3

2κ̂3
eκ1b1 eκ2(b2−b1)

{[
1+ r12r23e−2κ2(b2−b1)

]

×eκ3(z−b2)+
[
r23 + r12e−2κ2(b2−b1)

]
e−κ3(z−b2)

}
, b2 < z < c, (45a)

ein,+(z) =
κ̂1 + κ̂2

2κ̂2

κ̂2 + κ̂3

2κ̂3
e−κ1b1 eκ2(b2−b1)

{[
r12 + r23e−2κ2(b2−b1)

]

×eκ3(z−b2)+
[
r23r12 + e−2κ2(b2−b1)

]
e−κ3(z−b2)

}
, b2 < z < c. (45b)

We can check these results by noting that if r23 = 0 and κ3 = κ2

this reduces to the formula (30b) for the two intermediate slab
situation.

We can now readily compute the ∆E
sub from the Wronskians in

Eq. (37). The denominator that appears is precisely cancelled by
multiplying the 4-slab ∆ given in Eq. (32), with suitable notation
changes. The result ∆E = ∆E

sub∆E
ref is actually very simple, and can

be readily interpreted:

∆E = 1+ rE
L1rE

12E−2κ1(b1−a)+ rE
12rE

23e−2κ2(b2−b1)+ rE
23rE

3Re−2κ3(c−b2)

+rE
L1rE

23e−2κ1(b1−a)e−2κ2(b2−b1)+ rE
12rE

3Re−2κ2(b2−b1)e−2κ3(c−b2)

+rE
L1rE

12rE
23rE

3Re−2κ1(b1−a)e−2κ3(c−b2)

+rE
L1rE

3Re−2κ1(b1−a)e−2κ2(b2−b1)e−2κ3(c−b2). (46)

We can check this result by verifying that this gives the correct
pressure across the interfaces. For example, the pressure on the
b2 interface is

pb2 = Tzz(b2−)−Tzz(b2+) =− ∂
∂b2

T
∞

∑
m=0

′ ∑
s=E,H

∫ d2k
(2π)2 ln∆s, (47)

where, for example,

∂
∂b2

ln∆E =
2κ2

DE
2
− 2κ3

DE
3
, (48)

with

DE
2 =

1
rE

23rE
21

e2κ2(b2−b1)−1, (49a)

DE
3 =

1
rE

3RrE
32

e2κ3(c−b2)−1, (49b)

where the multiple scattered reflection coefficients are

rE
23 =

rE
23 + rE

3Re−2κ3(c−b2)

1+ rE
23rE

3Re−2κ3(c−b2)
, (50a)

rE
21 =

rE
21 + rE

1Le−2κ1(b1−a)

1+ rE
21rE

1Le−2κ1(b1−a)
, (50b)

rE
32 =

rE
32 + rE

21e−2κ2(b2−b1)

1+ rE
32rE

21e−2κ2(b2−b1)
. (50c)

This agrees with the results of Ellingsen46 and Buhmann.50 Anal-
ogous results hold for the TM modes. These results are used in the
calculations in this paper after a simple replacement: b1 −a → d1,
b2 −b1 → d2, and c−b2 → d3.

On the other hand, by regarding the regions 1, 2 and three as
a single inhomogeneous medium, then we obtain the interaction
Casimir free energy between L-1 and 3-R surfaces FLR

FLR =
T
2

∞

∑
m=−∞

∫ d2k
(2π)2 ln∆E

LR∆H
LR, (51)

in which ∆s
LR, s = E,H is written as

∆s
LR = 1+

rs
L1(1− rs2

12)(1− rs2
23)r

s
3R

∆s
L123∆s

123R
e−2(κ1d1+κ2d2+κ3d3). (52)

The total Casimir free energy of this five-layer system F can be
expressed as F = FLR +FL123 +F123R −F123, in which FLR results
from the pure five-layer interaction.
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Interpretation of nonhomogeneous Lifshtz theory

Although the energy forms are quite simple, they are not quite so
obvious from a geometrical point of view. The interpretation of
the force expressions are quite simple, in contrast, because of the
locality of the stess tensor. We can follow the multiple reflection
argument given in Ref.80 to write down the form of the reduced
Green’s function (for a given frequency and wavenumber) in the
ith slab for a given scalar mode, for bi−1 < z,z′ < bi:

g(z,z′) =
1

2κi

{
e−κi|z−z′|+

[
e2κi(bi−bi−1)− ri,i+1ri,i−1

]−1

×
[

2ri,i−1ri,i+1 coshκi(z− z′)

+ ri,i+1eκi(z+z′−2bi−1)+ ri,i−1e−κi(z+z′−2bi)

]}
. (53)

(This multi-layer Green’s function was first obtained by Tomaš.45

See also the book by Chew.81) The reduced stress tensor is given
by

tzz =
1
2
(∂z∂z′ −κ2)

1
i

g(z,z′)
∣∣
z=z′ , (54)

which annihilates all but the hyperbolic cosine, and yields imme-
diately for Euclidean frequencies

tzz(bi−) =−2κi

Di
, tzz(bi+) =−2κi+1

Di+1
, (55)

where

Di =
1

ri,i+1

1
ri,i−1

e2κi(bi−bi−1)−1. (56)

which implies Eq. (47).

As for the effective reflection coefficients appearing here, in
terms of reflection and transmission coefficients we see by con-
sidering multiple reflections from the right, (di+1 = bi+1 −bi)

ri,i+1 = ri,i+1 + ti,i+1e−κi+1di+1 ri+1,i+2e−κi+1di+1 ti+1,i

+ ti,i+1e−κi+1di+1 ri+1,i+2e−κi+1di+1 ri+1,ie−κi+1di+1 ri+1,i+2

×e−κi+1di+1 ti+1,i + . . .

= ri,i+1 + ti+1,iti,i+1
1

ri,i+1

1
1− 1

ri+1,i

1
ri+1,i+2

e2κi+1di+1
. (57)

Here, the transmission coefficients are related to the reflection
coefficients by ti j = 1+ ri j, so because for the primitive reflection
coefficients, ri j =−r ji, ti+1,iti,i+1 = 1− r2

i,i+1 and so

ri,i+1 =
ri,i+1e2κi+1di+1 + ri+1,i+2

e2κi+1di+1 + ri,i+1ri+1,i+2
. (58)

Similarly, for the reflection coefficients on the left:

ri,i−1 =
ri,i−1e2κi−1di−1 + ri−1,i−2

e2κi−1di−1 + ri,i−1ri−1,i−2
. (59)

Here, for the first and last slabs, the distinction between r and r

disappears:

rn,R = rn,R, r1,L = r1,L. (60)

Thin-thickness limits

Suppose the thickness of one of the intervening layers, say
medium i as depicted in Fig. 13, vanishes (di = 0), then ri+1,i

can be expressed as

ri+1,i =
ri+1,i(e2κi−1di−1 + ri,i−1ri−1,i−2)+ ri,i−1e2κi−1di−1 + ri−1,i−2

e2κi−1di−1 + ri,i−1ri−1,i−2 + ri+1,i(ri,i−1e2κi−1di−1 + ri−1,i−2)

=
ri+1,i−1e2κi−1di−1 + ri−1,i−2

e2κi−1di−1 + ri+1,i−1ri−1,i−2
≡ ri+1,i−1, (61)

and similarly ri−1,i takes the form

ri−1,i =
ri−1,i(e2κi+1di+1 + ri,i+1ri+1,i+2)+ ri,i+1e2κi+1di+1 + ri+1,i+2

e2κi+1di+1 + ri,i+1ri+1,i+2 + ri−1,i(ri,i+1e2κi+1di+1 + ri+1,i+2)

=
ri−1,i+1e2κi+1di+1 + ri+1,i+2

e2κi+1di+1 + ri−1,i+1ri+1,i+2
≡ ri−1,i+1. (62)

Here, we have defined for the vanishingly thin slab the effective
reflection coefficients

ri+1,i−1 =
ri+1,i + ri,i−1

1+ ri+1,iri,i−1
, ri−1,i+1 =

ri−1,i + ri,i+1

1+ ri−1,iri,i+1
. (63)

Therefore, in this limiting case, the pressures on other interfaces
are obtained just as though the medium i has never existed. The
only subtleties come from the vanishing layer, which will typically
give rise to divergences in its own Casimir-Lifshitz free energy and
corresponding pressure. We will not go deeper into the interpre-
tation of this vanishing layer at this point.

We can subtract the effects of the vanishing layer from the
Casimir-Lifshitz free energy. To be more specific and relevant,
consider the four- and five-layer cases as in the main text. For the
1-2-3-4 structure as described by Eq. (32), when the medium 2
has vanishing thickness (d2 = b−a → 0), the total Casimir-Lifshitz
free energy can be subtracted, leaving for the remaining parts
Fr = F −F123, which means the corresponding "renormalized" fac-
tor ∆s

reg is

∆s
reg =

∆s
1234

∆s
123

= 1+ rs
43rs

32e−2κ3(c−b), (64)

which means that, with b− a = 0 and rs
32 = rs

32, this four-layer
structure is reduced to the well-known three-layer case. For the
five-layer case L-1-2-3-R, with the thickness of medium 1 being
zero, the regularized factor is just that of the four-layer case L-2-
3-R, ∆s

reg = ∆s
L123R/∆L12 = ∆s

L23R.
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