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Despite extensive studies of supercooled water, it remains challenging to understand its peculiar dynamic 
anomalous properties. In this work, we integrated full atomistic simulations of supercooled water over the 
temperature range of room temperature to 200 K using quantum-mechanics-based polarizable force field with 
the dressed dynamics method that coupled fast collision events and slow reorganization dynamics of the 
hydrogen-bond networks. Our analysis unveils the salient multiscale features in transient relaxation dynamics 
of supercooled water. For instance, classical Langevin behavior dominates at fast timescales, while long-time 
relaxations unveil two different activation barriers in two temperature regions: below and above 230 K. The 
modulation of entropy spectrum by temperature is elucidated in terms of a three-state model underlined by 
the complexity of the water dynamics associated with a topological transition of strong hydrogen-bond 
network. This state-dependent network topology is quantitatively characterized by power-law exponents of 
inverse network connectivity from 200 to 298 K. The work provides valuable guidance for further studies on 
the transient relaxation dynamics of supercooled water. 

Keywords: supercooled water, transient relaxation dynamics, hydrogen-bond network, topological transition, 
inverse connectivity

I. INTRODUCTION
Water is famously different from an ideal simple liquid, 

showing anomalous properties at temperatures near and 
below standard ambient conditions, especially in the 
supercooled state1–5. These anomalies of supercooled water 
are manifested by various properties that depend on the 
changes in the fluid structure6–8. The self-diffusion in the 
liquid state is associated with relaxation of the microscopic 
structure, as quantitatively described by the Stokes-Einstein 
relation. However, the breakdown of Stokes-Einstein 
relation from room temperature to the deeply supercooled 
region, a key anomalous phenomena in liquid water, has 
been reported over decades, but the underlying physics based 
mechanism remains unclear9–12. Another puzzle is the 
anomalous transport property of supercooled water at the 
fragile-to-strong transition. The fragile-to-strong transition 
characterizes the change from a non-Arrhenius to an 
Arrhenius temperature dependence of viscosity and diffusion 
coefficient at the glass transition13. But in supercooled water, 
this transition is observed at around 230 K, much higher than 
the glass-transition temperature14. Recently, Xu et al.15 used 
a pulsed-laser-heating technique to measure the crystalline-
ice growth rate for the temperature range of 126 to 262 K 
from which they extracted the liquid-water diffusivity and 
also identified the fragile-to-strong transition at 230 K. 
Researchers have made substantial efforts to explain this 
phenomenon from various perspectives. For instance, 
statistical analysis based on a two-state model attributed this 

transition as a crossover of two separate Arrhenius relations 
of the long-term diffusion coefficient16. Furthermore, a 1D-
to-2D topological transition of the strong hydrogen-bond 
(HB) network has been discovered around 230 K, that 
provides microscopic insight into the dramatic decrease of 
the diffusivity and the fragile-to-strong transition in 
supercooled water17,18. However, the transient relaxation 
dynamics of water structure remains obscure.

One recent theoretical development of the dressed 
diffusion model greatly improved the understanding of the 
anomalous diffusive motion in a wide range of physical, 
chemical and biological systems19,20. The fundamental idea 
of the dressed diffusion is to generalize the classical 
diffusion theory of Langevin dynamics with a dynamic 
dressing field that characterizes inhomogeneity in the 
system. The coupling between the spatial motion of the 
particles and the transient relaxation dynamics of this 
effective field elucidates various anomalous diffusion 
behavior at different spatio-temporal scales, which sheds 
light on the diffusion anomaly in supercooled water. In 
addition, the molecular dynamics (MD) studies have been 
advanced with the RexPoN force field (FF)21 for which all 
components, including bond breaking (Rex), polarization 
(Po), and van der Waals (vdW) non-bonded (N) energy terms 
are based entirely on quantum mechanics with no empirical 
input. In comparison with other empirical FFs22,23, RexPoN 
is the first FF to quantitatively reproduce the experimental 
first peak in the O-O radial distribution function17,24. Thus 
RexPoN holds great promise to explain the detailed 
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dynamics of HB network in supercooled water 
structures17,18.

In this work, we use the MD simulations with RexPoN FF 
and the dressed diffusion model to explain the time-resolved 
relaxation dynamics underlying the anomalous diffusion 
property in supercooled water: this explicitly shows the 
coupled two-scale relaxation dynamics: 
 the fast relaxation process of barrierless collisional 

interaction and 
 the slow relaxation process of reorganization of HB 

network. 
Based on MD simulations with the RexPoN FF, we show 

that the anomalous behavior of the translational diffusion in 
supercooled water is manifested through the evolution of 
mean square displacement (MSD) over 6 orders of 
magnitude in time from femto- to nano-second. The fast 
relaxation dynamics follows a mechanism similar to 
classical Langevin dynamics, while the slow relaxation 
dynamics exhibits a notably strong temperature dependence. 
These slow dynamics lead to two distinct Arrhenius relations 
at separate temperature regions with a transition temperature 
at 228±3 K, in good agreement with both the measured 
fragile-to-strong transition and the 1D-2D topological 
transition of strong HB network at around 230 K. We extract 
the activation enthalpy and entropy for both temperature 
regions, finding a three-state model that provides a unified 
account for the physico-chemical dynamics of HB network 
from 298 K to 200 K. This model further correlates the 
different states with distinct HB-network motifs to explain 
the pivotal role of the underlying topological connectivity of 
strong HB network in the activation processes, leading to 
translational dynamic motions. In addition, inspired by the 
inverse participation ratio analysis25–27 and persistent 
homology28,29, we use the Laplacian-matrix-derived inverse 
connectivity to conduct a direct quantification of the 
temperature effect on the topological order of strong HB 
network.

II. MODEL, RESULTS AND DISCUSION

A.  Coupling Fast and Slow Dynamics 

   A dressed dynamics model has been recently developed to 
study the anomalous diffusive motion in the liquid system 
far from homogeneous equilibrium19. This model 
generalizes classical Langevin dynamics with the spatio-
temporal coupling between the probed particle and the 
environmental medium20. The tracked molecule is modeled 
as an ideal particle with no explicit internal degree of 
freedom, e.g., polarization, so its kinetic state is described by 
instantaneous spatial velocity . The state of the 𝒗(𝑡)
surrounding liquid medium is modeled as a coupling field 𝝓

 with explicit space-time dependence to characterize the (𝑥,𝑡)
nature of the many-particle system with bonding interactions 
that build the non-local spatial correlation, as illustrated in 

Fig. 1(a). Thus, the coupled particle-medium dynamics is 
formulated as follows:

                   (1)[𝑑𝒗
𝑑𝑡
∂𝝓
∂𝑡

] = ― [𝛾𝑣 0
0 𝛾𝜙][𝒗

𝝓] + [𝑹𝒗
𝑹𝝓] + 𝐹[𝒗

𝝓]

where  is the dissipative rate of the self-relaxation caused 𝛾𝑣
by friction or damping of the target particle and  is the 𝑹𝒗
associated fluctuation force. The operator  describes the 𝛾𝜙
intrinsic dynamic dissipation of the medium, and similarly,  

 is the fluctuation force of the liquid environment.  is the 𝑹𝝓 𝐹
coupling operator that gives the cross interaction between the 
particle and the medium. In the linear-response region, Eq. 
(1) can be written in a reduced form as follows:

                            (2)
𝑑
𝑑𝑡[𝑣

𝜙] = ― [ 𝛾𝑣 𝑁
―𝑀 𝛾𝜙][𝑣

𝜙] + [𝑅𝑣
𝑅𝜙]

where  and  are two cross-coupling parameters 𝑀 𝑁
quantifying the particle-medium interactions in a linear 
fashion, and  is the mean self-relaxation rate of the 𝛾𝜙
surrounding medium. In this simple formalism, the space-
correlated cross coupling described by  is integrated into  𝐹 𝑀
and  in an implicit manner, so these two parameters 𝑁
characterize the net effect of both local and non-local 
interactions between the particle and medium. The stochastic 
motion of the tracked particle is thus coupled to the 
fluctuation-dissipation dynamics of the simplified dressing 
field  through an exponential-decay memory kernel19. Eq. 𝜙
(2) has an exact analytical solution in the close form, which 
yields the MSD of the particle as:

   (3)MSD = 2⟨𝑣2⟩[𝑏1( 𝑡
𝑎1

―
1 ― 𝑒

― 𝑎1𝑡

𝑎2
1 ) + 𝑏2( 𝑡

𝑎2
―

1 ― 𝑒
― 𝑎2𝑡

𝑎2
2 )]

where  is the ensemble average of the square velocity, ⟨𝑣2⟩
 are the dressed 𝑎1,2 =

1
2[𝛾𝑣 + 𝛾𝜙 ± (𝛾𝑣 ― 𝛾𝜙)2 ― 4𝑀𝑁 ]

relaxation rates associated with different timescales and 𝑏𝑖

 are the associated amplitudes for each mode. The =
𝑎𝑖 ― 𝛾𝜙

𝑎𝑖 ― 𝑎3 ― 𝑖

general feature of time-dependent MSD of dressed diffusion 
is shown in Fig. 1(b) and compared with classical Langevin 
dynamics that explains the relaxation process from ballistic 
motion to Brownian diffusion. In dressed diffusion, the two-
scale relaxation mechanism leads to the continuous 
crossover among three distinct dynamic regimes: a fast 
relaxation process with the same scaling behavior of 
Langevin dynamics, an intermediate sub-diffusion regime 
where the spatial motion is temporarily confined, and an 
asymptotic long-time limit of Brownian diffusion where 
MSD increases linear with time. This general feature is 
widely observed in a diverse range of liquid and complex 
soft-matter systems9,12,19,30. From the MSD curve, it is clearly 
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shown that the theory of dressed diffusion is a minimal 
model for this continuous crossover, because it involves only 
four elementary parameters: , , , and . Although  ⟨𝑣2⟩ 𝛾𝑣 𝛾𝜙 𝑀𝑁

 and  are clearly defined as two separate coupling 𝑀 𝑁
parameters in Eq. (2), the effective coupling strength 
affecting the MSD behavior is their product , instead of 𝑀𝑁
their respective values, as shown in Eq. (3). Importantly, the 
dressed diffusion model provides the explicit account for the 
diffusion coefficient using these four parameters:  

                                             (4)𝐷𝐷𝐷 =
〈𝑣2〉𝛾𝜙

𝛾𝑣𝛾𝜙 + 𝑀𝑁

This description is better than the classical Stokes-Einstein 
relation where the diffusion coefficient is expressed with a 
single relaxation timescale. This improvement is helpful to 
provide the insight into the breakdown of the Stokes-Einstein 
relation in supercooled water, which will be further 
discussed in the following section.

 
Figure 1. (a) Schematic comparison between Langevin diffusion 
and dressed diffusion. The velocity of every particle is denoted by 
the attached arrow. The target particle is labeled in black. The 
bonding interaction between particles is denoted by dotted lines. 
The coupling field  is highlighted as the blue-shaded region. (b) 𝜙
The log-scale time-dependent MSD in dressed diffusion and 
Langevin diffusion. The dressed diffusion is shown by the blue 
solid line, and Langevin diffusion is shown by the green dashed 
line. 

B. Dressed Diffusion Behavior in Supercooled Water 

In supercooled water, the HB network at low temperature 
induces microscopic inhomogeneity with complex structural 
orders in the deeply cooled water18. The dynamic 
reorganization of the HB network strongly depends on 
temperature. The spatial translational motions of water 
molecules reflect delicate interactions among them in the 
non-innocent HB network. The dressed diffusion model19,20, 
as an extension of Langevin equation, is capable of taking 
into account the coupling between individual water 
molecules and HB network in the form of dressed interaction 
as illustrated in Fig. 1(a). In liquid water, the translational 
self-diffusion is measured by single-particle tracking, while 
the stochastic spatial motion of water molecules is described 
by the generalized Langevin dynamics based on the dressed 
diffusion model [Eq. (2)]. The translational dynamics is 
characterized by the continuous evolution of the velocity  𝑣
of the target water molecule, while the time-dependent 
dressing field  quantifies the dynamic heterogeneity 𝜙
involving the collective non-bonded and HB interactions 
from the surrounding water molecules in a dynamical mean-
field manner.

We conducted MD simulations with RexPoN FF of 
flexible water model at various temperatures. All 
supercooled simulations were carried out in the NVT-MD 
ensemble along the 1 atm density line. The experimental 
densities were used for temperatures above 240 K, while for 
temperatures below 240 K, we used the extrapolation of Kim 
et al31. To compute the MSD data, we ran the NVT-MD 
simulations with flexible water model after thermal 
equilibration (See Supporting Information). 

In Fig. 2(a), the MSD of dressed diffusion model [Eq. (3)] 
is fitted to the trajectories from the MD simulation with 
RexPoN FF. With the explicit multiscale formalism in a 
simple analytical close form, the dressed diffusion accurately 
reproduces the time-dependent MSD of water molecules 
with the overall relative deviation less than 1% across all the 
timescales from femto- to nano-second for the broad 
temperature window from above room temperature to the 
deeply supercooled region at 200 K.  This quantitative 
consistency elucidates the mechanism of the dynamic 
crossover between three distinct regimes: Langevin-
relaxation, sub-diffusion, and Brownian diffusion. Within 
100 fs, the time-dependent evolution of MSDs shows a 
continuous shift from a quadratic relation (MSD ) ∝ 𝑡2

toward a linear relation (MSD ). This process is ∝ 𝑡
explained by Langevin equation describing the continuous 
particle motion with both frictional force and random force. 
In classical Langevin dynamics, the instantaneous velocity 
of the particle loses autocorrelation due to stochastic 
fluctuation-dissipation interactions, resulting in a transition 
of the particle’s spatial kinetics from ballistic motion 
towards Brownian motion32,33. In the intermediate sub-
diffusion regime, ranging from several pico-seconds to 
around nano-second as temperature drops, the increase of 
MSD is strongly hindered as the water molecules are locally 
confined in the polymeric cages formed by HB network. At 
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timescales beyond the HB lifetime, the HB network 
dynamically reorganizes through breaking and rebuilding of 
the HBs, leading to alterations in the caging structure that 
allows delocalization of the water molecules. Since the 
velocity autocorrelation has mostly decayed at the fast 
timescale before the cages diminish, this relaxation process 

at the slow timescale results in the long-time crossover from 
sub-diffusion to Brownian regime where MSD grows 
linearly with time. Here we define the dynamic power 
exponent  to characterize the time-dependent MSD 𝛼(𝑡)
scaling for quantitative description of the crossover between 
these three regimes:
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Figure 2. The diffusion dynamics in supercooled water is captured by the dressed diffusion model. (a) Time-resolved MSDs of water at 
temperatures from 200 K to 308 K.  MSDs from MD simulation and dressed diffusion model are shown by dashed and solid lines, respectively. 
The red dotted line denotes the ballistic limit, and the green dotted line denotes the long-time Brownian limit. The continuous crossover from 
10 to around 100 fs shows a Langevin-relaxation process, followed by the sub-diffusion regime spanning over different orders of time at 
various temperatures. (b) The dynamic power exponent  at 210 K, 250 K, and 298 K. The red arrows denote the deviation of minimum  𝛼 𝛼
from 0.5.

   

                                                            (5)𝛼 =
𝑑log MSD

𝑑log 𝑡

At tens of femtoseconds, the ballistic motion of water 
molecules is retrieved with the MSD proportional to the 
square of time, i.e., . As time reaches 100 fs,  𝛼 = 2 𝛼
gradually decreases to 1, indicating the end of Langevin-
relaxation regime. As time goes above the pico-second scale, 
the diffusive motion transforms into the sub-diffusion with 

. As time further increases, the diffusion evolves into 𝛼 < 1
Brownian type as  approaches 1. The dynamics of  𝛼 𝛼
strongly depends on the temperature: when the temperature 
drops from 298 to 200 K, the spanned time domain of the 
sub-diffusion regime increases by two orders of magnitude 
and the minimum value of  decreases from 0.7 to 0.15, as 𝛼

shown in Fig. 2(b). At around 200 K,  reduces to 0.15, 𝛼
which is much smaller than 0.5 as predicted by the reptation 
polymer model34. Clearly, the peculiar translational 
dynamics of supercooled water, which was beyond the scope 
of previous theoretical models, is now resolved by the recent 
advancement of the insight from the dressed dynamics.

    In addition to the characterization of the overall 
diffusion dynamics of supercooled water, the dressed 
diffusion model also unveils the detailed mechanism of the 
coupled relaxation processes. This is achieved by applying 
Eq. (3) to analyze the time dependent MSD simulated by MD 
with RexPoN FF to obtain values of , , , , and  ⟨𝑣2⟩ 𝑎1 𝑎2 𝑏1 𝑏2
from 200 K to room temperature. 

     is the ensemble average of the instantaneous ⟨𝑣2⟩
velocity of a water molecule. From 200 to 298 K, it increases 
from 322,000 m2/s2 to 501,800 m2/s2. This 1.56-fold increase 
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nicely corresponds to the 1.49-fold increase in temperature 
(within ±5% tolerance). This agreement reveals the 
equipartition principle of the kinetics in supercooled water, 
which establishes a linear relation between  and the ⟨𝑣2⟩
temperature  as shown in Fig. 3(a):𝑇

                                (6)〈𝑣2〉 =
𝑑𝑘𝐵𝑇

𝑚
where  denotes the degrees of freedom for individual water 𝑑
molecule,  is the mass, and  is the Boltzmann constant. 𝑚 𝑘𝐵
To quantify the value of d explicitly, we computed the slope,

Figure 3. Two dressed relaxation modes of supercooled water extracted by dressed diffusion model. (a) The ensemble average of square 
instantaneous velocity  follows the equipartition law. The solid line shows the equipartition relation fitted from the extracted  data 〈𝑣2〉 〈𝑣2〉
(blue boxes). (b) Two dressed relaxation rates  and  explicate the two-step relaxation at different timescales. (c) The temperature 𝑎1 𝑎2
dependence of the relative intensity  shows that the slow -relaxation strengthens at low temperatures. (d) The coupling strength |𝑏1/𝑏2| 𝑎2
increases by around 3 folds as temperature decreases from 298 K to 200 K. The dashed lines are plotted as a guide to the eye.

i.e., . The value of slope in the least-square fit analysis ⟨𝑣2⟩/𝑇
was 1.64×103 m2∙s-2∙K-1 with an overall relative standard 
deviation of 1.85% based on data from 200 to 298 K. Thus, 
the value of  is 3.15 (within ±5% uncertainty from 3.0) 𝑑
which reveals the individual water molecule motion in three 
dimensions in Langevin dynamics region.
     and  are the dressed relaxation rates of two separate 𝑎1 𝑎2
modes. As shown in Fig. 3(b), the corresponding relaxation 
timescales are well separated by a one-order-of-magnitude 
gap. The associated intensities of two relaxation modes are 
measured by  and , which are dimensionless and have 𝑏1 𝑏2
opposite signs. The relative ratio between them is depicted 
in Fig. 3(c). The slow relaxation mode becomes more 
significant at low temperatures and the fast relaxation mode 

dominants at high temperatures. The coupling of two 
different relaxations in the dressed diffusion explains the 
translational dynamics of water molecules in a 
comprehensive way, and it broadens the scope of the 
extended jump model that resolves the rotational relaxation 
of water molecules as the combination of the concerted HB 
jump and molecular reorientation35,36. Although Eq. (3) gives 
a simple expression for the two-step relaxation process, the 
complexity induced by the coupling interaction makes the 
underlying physico-chemical mechanism obscure, as the 
dressed relaxation rates  and  do not provide direct 𝑎1 𝑎2
insight into the distinct elementary dynamics. As a result, to 
clarify the fundamental physics mechanism of the two 
different relaxations, it is essential to further analyze the 
decoupled self-relaxation processes at different scales 
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corresponding to  and . From the temperature-dependent 𝛾𝑣 𝛾𝜙
analysis, we found that  and  describe two self-𝛾𝑣 𝛾𝜙
relaxation dynamics with distinctive character. 
  describes Langevin-type relaxation of water 𝛾𝑣

molecule at the timescale of fast relaxation dynamics of 
strong hydrogen bonds37–39. 

  describes the reorganization dynamics of HB 𝛾𝜙
network, which might help to solve the fragile-to-strong 
transition of supercooled water from a dynamic 
perspective14–16. 

The detailed analysis and discussion of the relaxation of 
these two distinct physico-chemical processes will be 
addressed in the next sections. Here, we examine the 
diffusion coefficient of dressed diffusion  at different 𝐷𝐷𝐷
temperatures. A quantitative agreement between the dressed 
diffusion coefficient and the long-time MSD evolution of 
MD simulation is achieved, as shown in Fig, 2(a). However, 
the diffusion coefficient described by the Stokes-Einstein 
relation, , where  is the classical viscosity 𝐷𝑆𝐸 =

𝑘𝐵𝑇
4𝜋𝜂𝑆𝐸𝑅 𝜂𝑆𝐸

proportional to the relaxation time of liquid structure, and  𝑅
is the radius of the tracked particle, fails to explain the 
correct diffusion property of supercooled water. The 
deviation between the Stokes-Einstein relation and the 
supercooled water diffusion has been reported in both 
simulation and experiment works10,11, and the relative 
difference grows several fold as the temperature decreases 
towards the deeply supercooled region40,41. The temperature-
dependent decoupling of translation motion and the Stokes-
Einstein viscosity is explained by the dressed diffusion 
coefficient  in Eq. (4). From 298 K to 200 K, the 𝐷𝐷𝐷
coupling strength  increases by around 3 folds, as shown 𝑀𝑁
in Fig. 3(d), which results in the temperature-dependent 
coupling between  and . At high temperatures where 𝛾𝑣 𝛾𝜙

, the -relaxation plays the dominant role. As 𝑀𝑁 < 𝛾𝑣𝛾𝜙 𝛾𝑣
the temperature drops, the increase of  reflects the net 𝑀𝑁
effect of both enhanced HB interactions and enlarged 
coupling domain of the dressing field . Thus, at low 𝜙
temperatures where , the -relaxation 𝑀𝑁 > 𝛾𝑣𝛾𝜙 𝛾𝜙
dominates the long-time diffusion. The transition between 
these distinct scenarios as temperature changes manifests the 
breakdown of the Stokes-Einstein relation. Since this 
abnormal phenomenon has been reported in other liquid or 
soft-matter systems42, the dressed diffusion should enlighten 
the broader theoretical understanding in a wide range of 
anomalous dynamic phenomena beyond the diffusion 
anomaly in supercooled water. 

C. Collision-mediated Langevin Relaxation 

The random collision was erstwhile among the key topics 
about the relaxation mechanism in particle diffusion, as it 
successfully explained Brownian motion and provided 
insight for Langevin dynamics and the fluctuation-
dissipation theorem. However, it has been largely missed in 

the study of supercooled water, partially because of the 
difficulty in direct ultrafast measurement of the self-
diffusion of water molecules at low temperature. In this 
study, the theoretical analysis based on the dressed diffusion 
model and MD simulation reveals the important role of this 
fundamental mechanism in the fast kinetic relaxation of 
supercooled water molecules.

The classical concept of the collision mechanism is based 
on the ideal model of a many-particle system at 
thermodynamic equilibrium. In a single-component system, 
every particle is modeled as a hard-sphere particle without 
any long-range interaction and only two-body collisions are 
taken into account. The velocity of the particles follows 
Maxwell-Boltzmann distribution, and the mean square 
velocity follows the equipartition law. In the thermodynamic 
limit, no boundary or surface effect is considered. With these 
assumptions, the particles always follow ballistic motions 
except the instants of the collision events. As a result, the 
collision frequency  is the inverse of the mean free time 𝑓
between two successive collisions: the root-mean-square 
velocity divided by the mean free length path:

                               (7)𝑓 =
3 〈𝑣2〉

𝑙

where  is the mean free path and 3 indicates the dimension 𝑙
of the system. The exact expression of  depends on the 𝑙
specific physical condition of the system. In a dilute 
homogeneous system where the mean inter-particle distance 
is much larger than the particle diameter ,  is the inverse of 𝑑 𝑙
the product of the particle number density  and the 𝑛
scattering cross section43,44:

                                   (8a)𝑙1 =
1

𝑛𝑑2

On the other hand, the inhomogeneity of microscopic liquid 
structure has been widely addressed and the free volume 
theory was developed to explain the transport properties45–48. 
From the free-volume-theory point of view, the total volume 
of the liquid system consists of the free volume and hard-
sphere volume taken by particles, which is different from the 
dilute homogeneous system where the particle volume is 
ignored. In such a disordered hard-sphere system, the free 
volume expands linearly with the increase of temperature, so 
the mean free path follows a simple 1/3-power law with 
temperature:

                                 (8b)𝑙2 =
𝑇

1
3

3 𝑛0𝑇0

where  and  are the reference number density and 𝑛0 𝑇0
reference temperature. However, water is famous for its 
significant density anomaly and especially in supercooled 
water, the HB network preserves the long lifetime of local 
structural order. The mean free path in supercooled water is 
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thus calculated directly from the measured mass density as 
follows:

                                    (8c)𝑙3 = 3 𝑚
𝜌

where  is the mass density. We use the measured mass 𝜌
density of water from supercooled region to above room 
temperature31, then conduct polynomial extrapolation for a 
continuous  function substituted into Eq. (8), and get the 𝜌(𝑇)
temperature-dependent mean free path under different 
circumstances as shown in Fig. 4(a).

To decipher the role played by the collision mechanism 
addressed above, we focus on the fast relaxation step of the 
diffusion trajectory of supercooled water. The transient 
kinetics of self-diffusion in supercooled water within 100 fs 
is consistent with Langevin dynamics which well explains 
the stochastic dynamic relaxation at short times. According 
to Langevin equation, the scaling exponent of MSD with 
time decreases from 2 to 1 as the ballistic-diffusion transition 
caused by the decay of velocity autocorrelation, which has 
been discovered in ideal liquids. There are two key quantities 
that characterize the dynamics during Langevin process, the 
mean square instantaneous velocity  and the intrinsic 〈𝑣2〉
damping rate . As the temperature dependence of  𝛾𝑣 〈𝑣2〉
reveals consistence with the thermodynamic equipartition 
law, the temperature-dependent analysis also provides 
quantitative evidence for the relaxation mechanism induced 
by barrierless particle collision. From 200K to 298K,  𝛾𝑣

varies from  to  s-1. This increase of less 4.3 × 1013 5.0 × 1013

than 15% indicates that there is no explicit chemical 
activation process taking place at the related timescale. This 
relaxation rate is confirmed by room-temperature 
experiments that measured the self-diffusion coefficient of 
liquid water49–51. At room temperature, the coupling effect is 
relatively small, so we can neglect the coupling term and 
estimate the value of  by Eq. (4) with the experiment data. 𝛾𝑣

The result shows  to be around  s-1, which is only 𝛾𝑣 5.2 × 1013

slightly higher than the value extracted from the complete 
MD simulation trajectories [Fig. 4(b)], because the direct 
measurement for the temperature-dependent coupling 
strength was limited by the experimental technique.

Furthermore, a direct comparison is made between the 
collision frequency , derived from the classical ideal 𝑓
collision model, and the fast relaxation rate . We apply the 𝛾𝑣
equipartition relation for , substitute , , and  from 〈𝑣2〉 𝑙1 𝑙2 𝑙3
Eq. (8) as the mean free path  under three different 𝑙
modelling conditions and compute the corresponding , , 𝑓1 𝑓2
and  from Eq. (7). The scaling of temperature dependence 𝑓3
demonstrates good agreement as shown in Fig. 4(b). The 
value of the collision frequency  based on the collision 𝑓
theory are denoted by solid lines, and the extracted value of 

 from MD simulation is marked by black box with error 𝛾𝑣
bars. Despite the qualitative consistence of the temperature-

dependent pattern, there exists a 7-to-8 folds difference 
between  and . This is mainly caused by two factors: 𝑓 𝛾𝑣
 first, the classical collision theory applies a hard-sphere 

particle model, but the water molecule has a non-trivial 
configuration and a complex interaction including Van 
der Waals force and HB, which means the relaxation 
starts before the two water molecules ideally ‘collide’. 

 Second, the collision model assumes thermodynamic 
equilibrium without velocity correlation between water 
molecules. Thus  is the timescale for the particle 𝑓 ―1

velocity fully loses its autocorrelation, and this process 
requires several rounds of basic relaxation steps, i.e., 
multiple times of . 𝛾 ―1

𝑣
The temperature-dependent scaling indicates a systematic 

agreement between the classical theory of barrierless 
collision and the fast relation process in the diffusion 
dynamics of supercooled water. The scaling feature of  is 𝛾𝑣
generally consistent with  and  for all temperatures, but 𝑓1 𝑓3
the consistence is only valid at high temperatures for . This 𝑓2
result not only supports the general collision mechanism 
against detailed model settings but also enlightens the 
understanding of the anomalous property of the water from 
the nature of the fast relaxation step. For  and , the 𝑓1 𝑓3
temperature-dependent number and mass density reflects the 
essence of the underlying structure order, but  misses the 𝑓2
complexity of this factor with the ideal disorder assumed. As 
the complexity of the water structure has been widely 
addressed with the two states with distinct densities, the low-
density state and the high-density state, which account for 
the anomaly in the water density and the potential phase 
transition at the supercooled region. Recently, the 1D-2D 
transformation of the strong HB-network was found around 
230 K18. Because of the topological transformation at 230 K, 
the structure order of supercooled water changes when 
temperature drops below 230 K, leading to failure of the  𝑓2
model. When temperature is lower than 230 K, the water 
molecules in the system are linked through a connected 
strong HB network of 2D topological order. If the 
temperature is above 230 K, the strong HB network breaks 
into multiple disconnected clusters of disordered polymeric 
chains. Under such circumstances, the  model stays valid. 𝑓2
Moreover, we computed the evolution of the translational 
component of the kinetic entropy of water molecule ( ) at 𝑆𝑡𝑟
various temperatures with the two-phase thermodynamics 
(2PT) 52–54 method (See Supporting Information). The 
kinetic entropy is calculated from the vibrational density of 
states averaged over collections of transient trajectories with 
different time intervals. The entropy production process is 
illustrated in Fig. 4(c), which is consistent with the collision 
timescale of the inverse of the collision frequency. This 
transient process helps confirm that the underlying physics 
mechanism of the fast relaxation dynamics of supercooled 
water diffusion is due to collision-mediated relaxation as 
captured by classical Langevin equation.
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D. Slow Relaxation Dynamics of HB Network

The long-time diffusion behavior of supercooled water has 
been extensively studied by both theoretical and 
experimental methodology. In addition to the renowned 
violation of the Stokes-Einstein relation that we address in 
the previous section, another important phenomenon is the 
fragile-to-strong transition at the deeply supercooled region, 
which can be characterized by the abrupt change of the 
temperature dependence of the diffusion coefficient15. When 

 is higher than the transition temperature around 230 K, the 𝑇
diffusion coefficient decreases as the temperature drops in a 
non-Arrhenius fashion, but below a temperature of 230 K it 
follows an Arrhenius relation that describes the strong 
decrease of diffusion coefficient at low temperatures, as 
shown in Fig. 3(d). A recent theoretical advance aimed at 
explaining the temperature dependence of supercooled-
water diffusion, especially the fragile-to-strong transition, 
uses a two-state thermodynamic model where water is 
modeled as a mixture of two components each contributing 
to a distinct Arrhenius relation at separate temperature 
region16. However, the diffusion dynamics at various 
timescales and the underlying physico-chemical dynamics of 
HB network have remained elusive, which is essential to 
resolve the diffusion anomality of supercooled water12. 

In supercooled water, the sub-diffusion regime acts as the 
intermediate in the crossover from transient Langevin-
relaxation to long-time Brownian motion [Fig. 2(a)]. 
Particularly, the power exponent  and temporal span of the 𝛼
sub-diffusion regime are directly associated with the long-
time behavior of the diffusion coefficient, with strong 
temperature dependence [Fig. 2(b)]. To elucidate the 
dynamic mechanism of the diffusion of supercooled water, 
we extracted the temperature dependent slow relaxation rate 

 of the coupling field , by the dressed diffusion model. 𝛾𝜙 𝜙
The time-dependent dressing field  describes the collective 𝜙
interactions between single water molecule and its liquid 
environment made of multiple water molecules linked by the 
extended HB network to promote spatial correlations and 
cooperative motions between connected water molecules. 
The dynamic heterogeneity within supercooled water is thus 
quantified in a dynamical mean-field manner.  represents 𝛾𝜙
the reorganization dynamics of supercooled-water HB 
networks, which plays the key role in determining the long-
time diffusion coefficient [Eq. (4)]. The  decreases by over 𝛾𝜙
2 orders of magnitude as the temperature drops from 298 K 
to 200 K, while the temporal span of the sub-diffusion 
regime increases from a few picoseconds to around a 
nanosecond, accordingly. The temperature dependence of  𝛾𝜙
does not demonstrate a unified single-Arrhenius activation 
behavior from 298 to 200 K, which could be explained by 
the topological transformation in the deep supercooled 
region18. However, we identify two distinct Arrhenius 
relations when separating the complete temperature domain 
into two regions with a transition temperature of 228 ± 3 K 

in the middle. These two Arrhenius laws are denoted by the 
different linear  relations in Fig. 5(a). log 𝛾𝜙 ― 𝑇 ―1

Transition state theory is applied in each region to 
calculate the activation enthalpy and activation entropy from 
the temperature dependence of  as follows55:𝛾𝜙

                         (9)𝛾𝜙 = 𝑘exp ( ―
Δ𝐻 ∗

𝑘𝐵𝑇 +
Δ𝑆 ∗

𝑘𝐵 )
where  is the activation enthalpy,  is the activation Δ𝐻 ∗ Δ𝑆 ∗

entropy,  is the Boltzmann constant, and  is the pre-𝑘𝐵 𝑘
exponential factor. We conducted a linear regression to 
extract the slopes and the intercepts from the  log 𝛾𝜙𝑣𝑠 𝑇 ―1

plot in two temperature regions:
 the low-temperature region from 200 K to 225 K and
 the high-temperature region from 235 K to 298 K.
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Figure 4. The characterization of Langevin-relaxation mechanism 
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of the barrierless collision at fast timescale. (a) The mean free path 
in different collision models: 1, a dilute homogeneous system; 2, a 
free-volume-based system; 3, a condensed system. (b) Comparison 
between the fast relaxation rate  from dressed diffusion theory 𝛾𝑣
(black boxes from MD extraction and purple box from experiment 
with reference to the left  axis) and the collision frequency, , 𝛾𝑣 𝑓1

, and  (solid lines with reference to the right  axis), based on 𝑓2 𝑓3 𝑓
three collision models as in (a). (c) Production of kinetic entropy 
associated with translation motion of water molecule within 1 ps at 
different temperatures.

From 200 to 225 K, the linear regression gives a slope of -
1725 K with an intercept of 18.91 with a residual of 0.00104. 
From 235 to 298 K, the linear regression gives a slope of -
649 K with an intercept of 14.22 with a residual of 0.01456. 
These two linear relations are further confirmed with the 
relative standard deviations: the relative standard deviation 
is 0.152% in the low temperature region from 200 to 225 K; 
the relative standard deviation is 0.417% in the high 
temperature region from 235 to 298 K. The extrapolation of 
these two linear relations shows an intersection at the 
temperature of 229.4 K, identical to the reported transition 
temperature around 230 K24,31. A flexible transition 
temperature window was employed to determine the 
transition temperature by the intersection of the two linear 
extrapolations. Different temperature regions were selected 
and tested to confirm the transition temperature at 228±3 K. 
We also conducted a sensitivity analysis for the related 
activation enthalpy and activation entropy. (Fig. S1.) 
        Next, we interpret the slope and intercept for the 
activation enthalpy and activation entropy at each region, 
based on Eq. (9). In the region below 230 K, the average 
activation enthalpy , and in the Δ𝐻 ∗

2 = 7.86 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙
region above 230 K, . The increase of Δ𝐻 ∗

1 = 2.95 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙
the activation enthalpy from high to low temperatures agrees 
with the enhanced strong HB network due to the 1D-2D 
topological transition when temperature drops below 230K. 
Meanwhile, the two linear relations have an intercept 
difference as , where  is ΔΔ𝑆 ∗

21log 𝑒/𝑘𝐵 + log (𝑘2/𝑘1) ΔΔ𝑆 ∗
21

the difference between the activation entropy of the low-
temperature state and that of the high-temperature state. 
When the system approaches the transition temperature, the 
pre-factors , so the difference of the intercepts around 𝑘1 ≈ 𝑘2
the transition zone is contributed by the activation entropy 
gap during topological transition, . This also ΔΔ𝑆 ∗

21 = 10.8𝑘𝐵
agrees with the transformation of the topological order of 
strong HB network at 230 K. Because the 2D order has more 
HBs and enhanced network connectivity, the correlated 
water structure is more ordered and preserved with a lower 
equilibrium entropy than the 1D state. As a result, the 
activation entropy of 2D state is larger than 1D state, 
consistent with the sign of .ΔΔ𝑆 ∗

21

    As a result, in the region between 200 to 225 K, the slow 
relaxation dynamic process experiences an activation 
enthalpy of about 7.8 kcal/mol, as compared to 2.9 kcal/mol 
in the region between 235 to 298 K. The increment of  Δ𝐻 ∗

in lower temperature region corroborates the increase of HB 
number at the presence of 2D topological connectivity. The 
activation enthalpy extracted by our analysis varies from 2.9 
to 7.8 kcal/mol across the whole temperature domain, 
indicating that multiple HBs are involved in this relaxation 
step induced by bond-breaking and re-bonding reactions. 
This emphasizes the importance of the direct measurement 
of the reaction dynamics of HBs, since the Van de Waals 
interaction and local density fluctuation of water could not 
explain such a high activation enthalpy. Besides, the 
activation entropy in the lower temperature region is 10.8  𝑘𝐵
higher than that in the higher temperature region. This also 
originates from the better ordered supercooled water with 2D 
strong HB network. 
    To investigate the thermodynamic mechanism of the 
discontinuous shift of  and  at the transition Δ𝐻 ∗ Δ𝑆 ∗

temperature, we build a three-state model as shown in Fig. 
5(b). In general, the mean free energy decreases as 
temperature increases. In particular, the whole water system 
is a mixture of three molecular states, and each of them has 
different intrinsic enthalpy and entropy. One of the states has 
the highest free energy  in the supercooled region from 𝐺0
200 to 273 K. So, it is a rare and transient state of a small 
fraction and a short lifetime due to its fast decay into the 
other states with lower free energies. This state is 
characterized with the highest intrinsic enthalpy  and 𝐻0
entropy , indicating its potential dominance at even higher 𝑆0
temperatures. It represents the group of water molecules that 
have transiently broken HBs (Trb); these are transient 
isolated water molecules or small molecule clusters, such as 
dimers or trimers, which promote the transportation 
dynamics. The other two states have relatively low free 
energies due to contributions from the connected HB 
networks. Due to the different orders of HB-network 
connectivity, one state has lower enthalpy  and lower 𝐻2
entropy , making it favored in the low temperature region 𝑆2
(200 K to 230 K), while the other has higher enthalpy  and 𝐻1
higher entropy  in the high temperature region (230 K to 𝑆1
298 K). These two groups of water molecules associated 
with different strong HB network motifs are consistent with 
the characterization of the 1D and 2D topological orders of 
strong HB network from network connectivity analysis18. 
This picture provides a mixture model that sheds light on the 
temperature-dependent partition of water molecules in three 
different states. From a statistical-mechanics point of view, 
the relative partition between three states is determined by 
their intrinsic free energy: , where 𝑃𝑖 ∝

1
𝑍exp ( ―

𝐺𝑖

𝑘𝐵𝑇) 𝐺𝑖 = 𝐻𝑖

, denotes the free energy of each state and  is the ―𝑇𝑆𝑖 𝑍
partition function. The partition reflects the transition 
dynamics between the states in the equilibrium. When 
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detailed balance is reached, the forward transition balances 
the reverse transition. As a result, the rare state has a faster 
transition rate toward the dominant state compared to the 
reverse process, clarifying the transient nature of the state 
with highest free energy . This picture provides two 𝐺0
different scenarios at 200-230 K and 230-298 K. From 200 
K to 230 K, the 2D state has the lowest free energy and is 
thermodynamically favored, and from 230 K to 298 K, the 
1D state starts to dominate the whole system. Based on the 
transition state theory, the activation barrier depends on the 
free energy gap between the initial and final states, i.e., Δ𝐺1

 at high temperature and  at low = 𝐺0 ― 𝐺1 Δ𝐺2 = 𝐺0 ― 𝐺2
temperature. As a result, two different scenarios at diverse 
temperature regions are clarified. When a water molecule 
transiently breaks its associated HBs to escape from 2D or 
1D state for a long-time movement, there exist two different 
Arrhenius relations for this activation process, which is 
consistent with the distinct behaviors of  at the 𝛾𝜙
corresponding temperatures. This three-state model is 
further supported by the statistical analysis of the distribution 
of transient kinetic entropy of water molecules. The 
conspicuous feature in the entropy spectrum appears when 
applying the 2PT52–54 method to compute entropy associated 
with the translational dynamic motions (See Supporting 
Information). As presented in Fig. 5(c), there exist three 
types of entropies associated with three distinct Gaussian 
curves. The mean value of each Gaussian curve remains 
unchanged throughout the whole temperature region studied 
in this work. When temperature changes, only the height of 
each Gaussian curve varies. For instance, when decreasing 
temperature, the intensity of the lowest entropy increases 
while intensities of the rest two entropy components 
decrease. At temperatures below 230 K, the Gaussian curve 
with the lowest entropy has the dominate share of the whole 
translational entropy in supercooled water. 
    From the calculated kinetic entropy of each molecule, we 
obtain the time-resolved entropy that characterizes the 
translational motion and rotation motion. We collect the 
translational part of the kinetic entropy for every water 
molecule as  and plot the entropy spectrum in the 𝑆𝑡𝑟
histograms [Fig. 5(c) and Fig. S2]. We evaluate the 
probability density function for all temperatures from 200 to 
308 K, with the kernel-density estimate based on Gaussian 
kernels by Scott’s method56,57. From the continuous 
distribution density curve, we found there exist three distinct 
components with different entropies: a low-entropy 
component centered around 10 J/K/mol, a medium-entropy 
component centered around 32 J/K/mol, and a high-entropy 
centered around 53 J/K/mol. The intrinsic entropy as the 
mean value or the peak value of each component remains 
stable as the temperature varies. In contrast, the partition of 
the three components significantly changes at different 
temperatures: when the temperature reduces, the percentage 
of the component with lower entropy increases while that 
associated with higher entropy decreases. Based on these 

features, we decompose all translational entropy 
distributions into three distinguishable components with 
Gaussian distributions. Following this strategy, the three 
components are separated, and the relative partition 
associated with each state is denoted by the peak height of 
each Gaussian component. To further validate this three-
component behavior, we conducted the calibrated 
Silverman’s test to confirm this multi-modality of the 
entropy distribution58,59 (See Supporting Information). This 
three-state model provides an explanation for the two-
Arrhenius behavior of -relaxation process at different 𝛾𝜙
temperature regions, with the microscopic statistics of 
supercooled water molecules, and helps to resolve the 
thermodynamic mechanism of the topological transition in 
the deep supercooled region. 

E. Temperature Effect on HB-Network Topology

The transition-state-theory based analysis of the slow 
relaxation process unveils the mechanism of HB network 
activation. And the three-component distribution of the 
kinetic entropy further supports the three-state model that 
explains the slow relaxation dynamics with the state-
dependent enthalpy and entropy. A recent study has reported 
that different states of water show distinct transient 
topological motifs with knots and links formed by entangled 
rings60. Besides, a scale-dependent persistent-homology 
analysis also shed light on the entangled rings in complex 
fluids29. In this section, the systematic quantification and 
direct characterization of strong HB network topology is 
made from a graph-theory point of view. We apply the graph 
theory method based on the Laplacian matrix to describe the 
topological connectivity of the strong HB network. Each 
node represents one water molecule. Each edge denotes the 
two bonded water molecules by one HB. Thus, the Laplacian 
matrix is constructed to quantify the HB network as 
follows61,

                               (10)𝐿𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 ― 𝐴𝑖𝑗

where  is the number of the bonded neighbors of the node 𝐾𝑖
, and  is the adjacency matrix. The eigenvalues and 𝑖 𝐴𝑖𝑗

eigenvectors of the Laplacian matrix are solved as  and . 𝜆𝑖 𝑽𝒊
The number of the zero eigenvalues reveals the disconnected 
components of the whole HB networks: the disconnection 
consistently increases when the temperature increases, i.e., 
high temperature facilitates the process of breaking the HB 
network into more separate pieces. Here, the inverse 
connectivity ( ) as a conjugate of inverse participation ratio 𝐶
for individual node is employed to address the topological 
measure of the associated HB network of every water 
molecule as follows27:

                                (11)𝐶𝑗 = ∑
𝑖𝑉

4
𝑖𝑗
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where  is the -th node-based component of the -th 𝑉𝑖𝑗 𝑗 𝑖
eigenvector. This term is inspired by the inverse 
participation ratio that describes the localization of a certain 
state25,26, whereas  characterizes the -th node’s 𝐶𝑗 𝑗
disconnectivity strength. The distribution of  is plotted in 𝐶
the log-log scale as shown in Fig. 6(a). A stable region with 
low numerical uncertainty is selected from the peaks of the 
distribution curves towards , while most of the water 𝐶 = 0.3

molecules in the system are included. Within this region, a 
power-law relation is clearly identified for all different 
temperatures. A linear fitting is applied in the log-log 
distribution data to extract as a power exponent  that we 𝛽
define as follows:

                                 (12)𝑃~𝐶 ―𝛽

where  is the distribution probability of , and  is the𝑃 𝐶 𝛽

G
(k

ca
l/m

ol
)

T (K)
230

Three-State Model
Trb
1D
2D

T-1 (10-3 K-1)

(s
-1

)

1010

1011

1012

2.9 kcal/mol

7.8 kcal/mol

228 ± 3 K

1D
2D

3.53.25 3.75 4.0 4.25 4.5 4.75 5.0

T (K)
298 273 230 200(a)

(b)

(c)

Str (J/K/mol)
-20

0

273 K

0 20 40 60 80

0.01

0.02

0.01

0.02

0.01

0.02

0.01

0.02

0.03

0.04

298 K

240 K

200 K

Intensity 1D2D Trb

Figure 5. The temperature dependence of the slow relaxation and the three-state model explaining the underlying mechanism. (a) The 
temperature dependence of slow relaxation rate demonstrates the transition between two Arrhenius relations (shown by solid lines) at 228±3 
K. In the low-temperature region, it shows a higher activation enthalpy and activation entropy than the high-temperature region. (b) The 
three-state model for this transition. The two-Arrhenius-relation activation process is explained by modeling the dressing field  as a mixture 𝜙
of the water molecules associated with transiently broken HBs (Trb), 1D, and 2D HB networks. (c) The systematic distribution of molecular 
translational kinetic entropy is decomposed into three groups each with distinctive intrinsic entropy across all temperatures. 

power exponent describing the characteristic scaling of the 
network connectivity. 
    Moreover, the temperature dependence of the scaling 
exponent  reveals the transformation of the topological 𝛽
order of the strong HB network from 200 K to 308 K. When 
the temperature is below 230 K (from 200 to 225 K),  is 𝛽

around 3.6, and a continuous decrease from 3.6 to 2.1 is 
found when the temperature increases from 232 to 308 K as 
shown in Fig. 6(b). The related error bar denotes the standard 
deviation calculated from random sampling of all strong HB 
network at different snapshots. The crossover of  provides 𝛽
a quantitative description for the temperature-dependent 
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topology of strong HB network. This is first revealed by the 
RexPoN-FF MD simulation in this work, because other 
empirical FFs have reported an average HB number of 4 per 
molecule at room temperature, which could not show the 
growth of HB network connectivity when temperature 
decreases17. The continuous change of  is consistent with 𝛽
the continuous shift of the partition of the different water 
components by the kinetic-entropy statistics. This implies 
that there is no discontinuous liquid-liquid critical point 
around 230 K in our simulation at 1 bar. Instead we found a 
transformation with a continuous temperature-dependent 
free energy profile18. These studies were generally consistent 
with the smooth transition reported in other simulations22.
    To directly depict the topological features of the strong 
HB networks, we build a rectangular lattice graph to simulate 
the topological order of strong HB network in supercooled 
water [Fig. 7(a)]. The lattice system consists of 15×15 
vertices randomly connected by horizontal and vertical 
undirected edges. The probability of this bonding is set as 
0.8 for horizontal and 0.3 for vertical connections to 
illustrate the 1D order, and 0.8 for both directions for the 2D 
order. The different probabilities along the two directions 
reflect the asymmetry induced by the 1D-order network 
topology embedded in the rectangular lattice system, and the 
systematic geometric symmetry could be preserved by 
combining it with a transposed copy of the identical 
topology. This setting provides a simplistic manner to mimic 
and visualize the strong HB network motifs. The rectangular 
lattice graph shares the same coordination number of 4 as 
water and allows the same 6-member-ring topology as the 
hexagon structure of water. So, it plays the role of a 
simplistic model to denote the topological feature of HB 
network. The probability parameters are set to ensure the 
average length of connected edges at different directions to 
agree with the distinct topological motifs. The probability of 
0.8 corresponds to an average length of connected edges of 
1.6, which means the linked HBs tend to reach over the first 
shell. On the other hand, the probability of 0.3 indicates that 
the HB within 1D network is unlikely to be formed between 
the neighboring pair in the vertical direction. Based on this 
lattice graph, the
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Figure 6. The graph-theory-based characterization of the strong 
HB-network topology. (a) The distribution of the inverse 
connectivity is denoted by the markers, and the power-law relations 
are denoted by solid lines. (b) The temperature-dependent 
transformation of strong HB-network topology is quantified by the 
measure of .𝛽

stochastic simulation is conducted and the power exponent 
 is extracted from the  distribution with 1D and 2D 𝛽 𝐶

topologies [Fig. 7(b)]. The quantitative agreements of  𝛽
values between the MD results and the rectangular lattice 
graph confirm the topological feature of  with visualizable 𝛽
insight. At low-temperature limit below 230 K, the strong 
HB network is dominated by the 2D topological order of  𝛽
= 3.6, and the 1D order of  = 2.1 becomes obvious when  𝛽 𝑇
approaches room temperature. As a result, the temperature-
dependent power-law scaling of  provides a quantitative 𝐶
description for the topological transition of strong HB 
network from 1D order to 2D order when water is cooled 
from room temperature to the deep supercooled region below 
230 K. 
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Figure 7. The topological feature of the strong HB network in water 
revealed by a rectangular lattice graph. (a) The schemes of two 
rectangular lattice graph settings for the 1D and 2D order. (b) The 
comparison of probability distributions of inverse connectivity 
between the HB network at 298 K and 200 K and the lattice graph 
of 1D and 2D order.

III. CONCLUSION 
In conclusion, there exists a fast relaxation involving 

collisional relaxations that follow classical Langevin 
dynamics, and a slow relaxation governed by activation 
processes involving reorganization of the HB network. The 
breakdown of the Stokes-Einstein relation in supercooled 
water problem was resolved by dressed diffusion theory, 
where the abnormal diffusive motion results from dynamic 
coupling of multiple relaxation steps at fast and slow 
timescales19. At fast timescale, we identify the collision-
mediated transient relaxation process with the relaxation 
time  shorter than the lifetime of single HB. The 𝛾 ―1

𝑣
temperature-dependent analysis of the slow relaxation rate 

 quantitatively characterizes the activation enthalpy and 𝛾𝜙
entropy associated with the HB-network reorganization1,5,16. 
Moreover, a three-state model is proposed to account for the 
temperature modulated entropy spectrum. With the graph-
theory methodology, the topological order of the strong HB 
network is unveiled by the power-law distribution of the 
inverse connectivity. Further simulation and experimental 
studies will provide more clues to advance our understanding 
of supercooled water. 
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