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Abstract

Resistance to carbapenem β-lactams presents major clinical and economical challenges for 

the treatment of pathogen infections. The fast hydrolysis of carbapenems by carbapenemase-

producing bacterial strains enables the effective deactivation of carbapenem antibiotics. In this 

study, we aim to unravel the structural features that distinguish the notable deacylation activity of 

carbapenemases. The deacylation reactions between imipenem (IPM) and the KPC-2 class A 

serine-based β-lactamases (ASβLs) are modeled with combined Quantum Mechanical/Molecular 

Mechanical (QM/MM) minimum energy pathway (MEP) calculations and interpretable machine-

learning (ML) methods. We firstly applied a dual-level computational protocol to achieve fast 

sampling of QM/MM MEPs. A tree-based ensemble ML model was employed to learn the MEP 

activation barriers from the conformational features of the KPC-2/IPM active site. The barrier-

predicting model was then unboxed using the Shapley Additive Explanations (SHAP) importance 

attribution methods to derive mechanistic insights, which were also verified by additional QM/MM 

wavefunction analysis. Essentially, we show that potential hydrogen bond interactions to the 

general base and the tautomerization states of the carbapenem pyrroline ring could concertedly 

regulate the activation barrier of KPC-2/IPM deacylation. Nonetheless, we demonstrate the 

efficacy of interpretable ML to assist the analysis of QM/MM simulation data for robust extraction 

of human-interpretable mechanistic insights.
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Introduction

β-Lactam-resistant bacterial strains challenge public health and sustainable economic 

development from various aspects. β-Lactamases have long been identified as the immediate cause 

of β-lactam antibiotic resistance encountered in most resistant strains. In particular, the resistance 

to carbapenems, a series of β-lactam drugs that are of great clinical importance, has also emerged 

due to their effective hydrolysis mediated by carbapenemases1–4.

Carbapenemases belonging to the class A Serine-based β-lactamases (ASβLs) family that 

hydrolyze the β-lactams substrates through a generally conserved acylation – deacylation 

mechanism5–7. The acylation half of the reaction is triggered by the nucleophilic attack of Ser70 

hydroxyl to the β-lactam carbonyl. Notably, while being highly conserved in ASβLs, the acylation 

pathways of the reaction have shown mechanistic flexibility on the residues acting as the general 

bases3. In the subsequent deacylation step, the deacylation water attacks the acyl-enzyme ester 

carbon while synergistically delivering one of its protons to the Glu166 carboxyl, which is the only 

viable general base for deacylation (Fig. 1)5. Relatedly, the mechanism of β-lactams hydrolysis 

differs in the class B zinc-based β-lactamases and the class D β-lactamases. In the case of class B 

β-lactamases, the zinc ions in the active site mediates the nucleophilic water attacks and the rapid 

ligand dissociation,8–12, while class D β-lactamases use a carboxylated lysine (Lys73-CO2) as the 

general base for both acylation and deacylation.13,14 
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Fig. 1. The crystal structure of KPC-2/IPM (PDB: 6XJ8)15 and the mechanisms of the deacylation 

step in KPC-2/IPM hydrolysis. The red bonds highlight the Δ1 and Δ2 tautomerization states on 

IPM pyrroline. 

The Klebsiella pneumoniae carbapenemases (KPC) family of ASβLs has been identified as a 

frequent cause of antibiotic drug resistance16. The KPC-2 variant of the KPC sub family has been 

investigated by pioneering experimental efforts. In particular, the kinetic study of Mehta et al.15 

reported that the carbapenem resistance driven by KPC-2 stems from the effective deacylation of 

the acyl-enzyme intermediate. In addition, changes of the local environment surrounding the 

general base (Glu166) were reported to impact the catalytic activity of KPC-2 and related 

carbapenemases17–22. Specifically, it was reported that the hydrogen bond between the general base 

Glu166 and Tyr72 in the KPC-2 Phe72Tyr (KPC-F72Y) variant reduces the basicity of Glu166 

and impede the deacylation reaction of carbapenemases.17 Extensive evidence have further 

demonstrated that the deacylation activity of carbapenemases is correlated with the 

tautomerization states of the conserved five-member pyrroline ring in the carbapenem scaffold.23–
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25 Computational efforts utilizing the combined Quantum Mechanical/Molecular Mechanical 

methods (QM/MM) have also been employed to derive mechanistic insights into various β-lactam 

hydrolysis by β-lactamases5,26–32. Recently, Chudyk et al.28 reported that the deacylation of 

meropenem catalyzed by ASβL-carbapenemases is also related to the orientation of the 6α-

hydroxyethyl groups on the substrate. While various structural and kinetic features have been 

proposed to impact deacylation activity in carbapenemases in general, the correlation between the 

local environment of Glu166 as the general base, the pyrroline tautomerization state, and the 

orientation of the carbapenem 6α-hydroxyethyl is yet to be clarified. 

In light of the on-going emergence of machine-learning (ML) techniques to approximate 

complex biophysical and chemical observables33–37, the explainability and interpretability of ML 

models has been a focus to understand the underlying mechanism basis of the studied problem. 

Machine-learning is data-driven approaches that can learn patterns from existing data without the 

a prior knowledge on the variable correlations.38,39 Among ML approaches, supervised learning 

methods40,41 such as linear regression42, decision trees43, random forest (RF)44, support vector 

machines (SVM)45, and deep learning (DL)46 have been widely used and have been applied in 

many aspects of chemistry47–49. Compared to other ML methods, the tree-based Extreme Gradient 

Boosting model (XGBoost)50 model is superior in both prediction performance and explainability. 

The XGBoost method has been widely used in Quantitative Structure–Activity Relationships 

analysis51,52, prediction of reaction barriers 53, reaction yield54, and drug discovery55. 

Different explainable ML (XML) models, including anchor explanations56, counterfactual 

explanations57, integrated gradients58 and the Shapley Additive Explanations (SHAP) method for 

tree-based models59,60, have been proposed to facilitate ML explainability for various regression 

methods. The XGBoost model inherits the linear explainability from the tree-based models, 
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making the SHAP method for tree models as the optimal XML model to unveil the underlying 

mechanistic basis of KPC-2/IPM deacylation. In addition, the combined scheme of the XGBoost 

and SHAP methods has been commonly applied in different fields.61–63

In this computational study, we applied QM/MM minimum energy pathway (MEP) 

calculations and XML methods to unveil the structural features that control the deacylation activity 

of KPC-2 carbapenemases with the antibiotic imipenem (IPM). We focus on the deacylation 

reaction in four model systems: the wild-type KPC-2 and IPM-Δ2 tautomer (KPC-WT/IPM-Δ2), 

the wild-type KPC-2 and IPM-Δ1 tautomer (KPC-WT/IPM-Δ1), the Phe72Tyr mutant KPC-2 and 

IPM-Δ2 tautomer (KPC-F72Y/IPM-Δ2), and the Phe72Tyr mutant KPC-2 and IPM-Δ1 tautomer 

(KPC-F72Y/IPM-Δ1). We first present the computational QM/MM workflow that enables fast 

sampling of QM/MM MEPs. The XGBoost model was employed to learn the deacylation energy 

barriers from the conformational features selected from the acyl-enzyme reactant conformations. 

The impacts from essential structural factors to the deacylation barrier heights were quantified by 

the native feature importance of the XGBoost model and the SHAP methods59,60. Most importantly, 

we reveal the interplay between the major structural factors that regulate the KPC-2/IPM 

deacylation reactivity using our integrated computational schemes. 

Computational Methods

System setup

The KPC-2 crystal complex with a hydrolyzed IPM molecule (PDB: 6XJ8)15 was used as the 

starting structure and the mutant residue Ala170 was modified to Asn170 as in the wild type 

enzyme. The CHARMM General Force Field (CGenFF)64 parameters of the IPM ligand in its 

unbound form were generated using the CGenFF portal (https://cgenff.umaryland.edu). The 

protonation states on titratable amino acid residues were set as the default protonation states from 
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the CHARMM36 (C36) topologies65. Specifically, all Arg and Lys residues were protonated, all 

His residues were modelled as singly protonated on N1 position, while Asp and Glu residues 

were deprotonated. In addition, the Cys69 and Cys238 residues were connected as the disulfide 

bridge conserved in most ASβL-carbapenemases.66,67 The KPC-2/IPM complex was immersed in 

an 80 Å  80 Å  80 Å cubic box of TIP3P solvent molecules to ensure a minimum distance of 10 

Å between the enzyme complex and the boundary of the simulation box. Sodium and chloride ions 

were added to neutralize the total charge of the system. 300 steps of steepest descent minimizations 

using the classical potentials were firstly performed on the solvent molecules with the enzyme 

complex fixed in place. Then, 3,000 steps of adopted-basis Newton Raphson (ABNR) 

minimizations were performed on the simulation system with the following residues fixed in place: 

Ser70, Phe72, Lys73, Ser130, Asn132, Glu166, Asn170, IPM, and deacylation water (DW). Due 

to the inability of the CGenFF parameters to treat the covalent bond between Ser70 and the β-

lactam carbonyl, we switched to semi-empirical QM/MM method to further relax the model 

system. 

The single link atom scheme was used to partition the covalent bonds between the QM and 

MM region, which were defined as the Cα – Cβ bonds on the amino acid residues. The third-order 

Density Functional Tight Binding theory (DFTB3)36 was used as the QM Hamiltonian while the 

rest of the system was treated with the classical potentials. The acyl-enzyme complex (the reactant 

conformation for the KPC-WT/IPM-Δ2 deacylation pathway) was created by minimizing the 

QM/MM system with necessary distance-based quadratic bias potentials. We note that the IPM-

Δ2 tautomer was created by pulling the excess hydrogen on Ser70 hydroxyl (Ser70 Hγ) onto the 

IPM β-lactam nitrogen. The biased minimization creates the KPC-WT/IPM-Δ2 acyl-enzyme 

conformation, which was further relaxed for 5,000 ABNR steps with no bias potential or positional 
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constraint at the DFTB3/C36 level. From the optimized KPC-WT/IPM-Δ2 conformation, we 

created the KPC-WT/IPM-Δ1 states by imposing distance-based restraints to pull the proton on 

IPM N4 to IPM C2 on its S stereoisomer side with further minimizations. We note that the IPM-

(S)-Δ1 tautomer state has been reported in crystal structures in KPC-2/IPM acyl-enzyme complex17. 

The KPC-F72Y systems (KPC-F72Y/IPM-Δ1 and KPC-F72Y/IPM-Δ2) were then created by 

mutating Phe72 in the wild-type systems to Tyr72 (Fig. 2). 

Fig. 2. Active site configurations for the four modeling systems.  (a) KPC-WT/IPM-1. (b) KPC-

WT/IPM-2; (c) KPC-F72Y/IPM-1; (d) KPC-F72Y/IPM-2. The carbon atoms of residues for 

QM region are colored as grey, and the carbon atoms of IPM ligand are colored with cyan. All 

hydrogen link-atoms, nitrogen, oxygen, sulfur, hydrogen atoms are colored in pink, blue, red, 
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yellow, and white, respectively. The extra hydrogen bond between Tyr72 and Glu166 in KPC-

F72Y systems is presented as a dashed green line.

 To effectively sample the external configurations, we returned to the pure MM treatment of 

the four systems. The link atoms were temporarily removed from the simulation box and the MM 

host Cα atoms were rescaled to its atomic unit mass. The key reacting atom groups (the Ser70 

hydroxyl, the Lys73 amino, the Ser130 hydroxyl, the Glu166 Oε2, the IPM bicyclic rings, and the 

deacylation water, DW) were fixed in place to retain their QM optimized orientations. The four 

system was gradually heated from 110 K to 310 K in 50 ps with explicit velocity scaling. 

Isothermal and isobaric (NPT) equilibration dynamics was then performed for 350 ps with the 

system temperatures maintained at 310 K using the Hoover thermostat and pressure at 1 atm with 

the Langevin piston method69. Each simulation system was subjected to 100 ns NVT dynamics 

sampling with positional constraints on the aforenoted key reacting groups. Conformational 

snapshots were collected at a 500 ps interval, leading to a total number of 800 sampled 

configurations from the four systems (200 snapshots per system). 

In this study, all molecular dynamics (MD) simulations were integrated at 1 fs time steps. The 

SHAKE algorithm70 was applied to constrain the solvent molecules as rigid bodies. The 

nonbonding part of the classical interactions were treated explicitly within 12 Å. The Van der 

Waals interactions were smoothed to zero at 16 Å. The long-range electrostatic interactions were 

treated with the particle mesh Ewald (PME)71 summation under periodical boundary conditions. 

All MD simulations were performed with CHARMM41 and OpenMM74. 
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QM/MM MEPs 

For each of the sampled 800 configurations, we first rebuilt the QM/MM partitioning scheme. 

Each configuration was first minimized with the DFTB3/C36 level of theory with the MM residues 

beyond 4 Å of the QM region fixed in place, which produces the reactant acyl-enzyme states. The 

initial product states were obtained from minimizations with 500 kcal mol-1 Å-1 restraining forces 

on the atoms involved in the deacylation reaction (catalytic water, Lys73 H1, Ser70 O, Ser70H, 

and IPM C7). The final product states were created by further minimizing the initial product 

configurations without restraints. 

The chain-of-states Reaction Path with the Holonomic Constraints (RPwHC) method of 

Brokaw et al.75 was applied for the calculation of the DFTB3/C36 MEPs. The initial guess of the 

MEPs was obtained from linearly intercepting the Cartesian space between each pair of the acyl-

enzyme reactant and the deacylated product configurations with 36 replicated structures (replicas). 

A kinetic energy potential force of 0.05 kcal mol-1 Å-1 was adopted for all MEP calculations. While 

the RPwHC method enforces equal mass-weighted root-mean-square distances between adjacent 

replica images, the masses of reacting hydrogen atoms (Water H1, H2 and Lys73 H1) were scaled 

by a weighting factor of 50 to capture their continuous displacement along the MEPs. The MEPs 

were considered to converge when the energy change of the whole chain between each 

minimization step was lower than 0.01 kcal mol-1. The DFTB3/C36 optimized replicas along each 

MEP were subjected to single point calculations at Density Functional Theory level to obtain 

accurate energetic profiles. The B3LYP hybrid functional76,77 with the 6-31++G** basis set78 plus 

the Becke-Johnson damped version of the D3 dispersion correction79 was used as the high-level 

counterpart for the single point energy refinement(B3LYP-D3(BJ)/6-31+G**/C36). All QM/MM 
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calculations were performed with the DFTB3 module of CHARMM80,81 and the CHARMM/Q-

Chem interface82. 

Machine Learning 

While the potential energy barriers on the sampled MEPs can be regarded as dependent on the 

acyl-enzyme conformations, the high dimensionality of the conformational space of the QM active 

site prevents the effective identification of key structural factors that regulate the height of the 

activation barriers. We selected the key reaction coordinates and potential hydrogen bonds in all 

reactants (acyl-enzyme) conformations as the input features (Fig. 3). The key reaction coordinates 

were selected as the bond formation distances during the deacylation. The potential hydrogen 

interactions were identified with the donor – acceptor conformations that satisfied the Baker-

Hubbard criteria in at least one of the acyl-enzyme structures. The features for the potential 

hydrogen interactions were extracted as the hydrogen – acceptor distances. The postprocessing of 

the molecular conformations used the MDAnalysis package83. 

Fig. 3. Features selection scheme, all green dashed lines are potential hydrogen bond in the active 

site (except d1 in the KPC-WT systems and d9). Residue Tyr72, only existing in the KPC-F72Y 

systems, is colored as red. Feature d1 (green) is the distance between atom Phe72 H and atom 
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Glu166 O2 in the KPC-WT systems. Feature d1 (red) is the distance between atom Tyr72 H and 

Glu166 O2 in the KPC-F72Y systems. All hydrogen bonds involving with IPM 6 hydroxyl are 

colored as blue. Feature d9 is the distance between deacylation water O atom and IPM C7 atom, 

which is assumed to be critical for the deacylation step of carbapenem hydrolysis.

All reactants leading to reaction pathways with various reaction barriers were used as the 

training data due to the following considerations. The large number of reactant conformations were 

used in the training dataset to ensure the generality of the conclusions about the importance of the 

features used for model development. Reaction pathways with higher barriers also provide 

additional information on the correlation between geometric features and the reaction barriers, 

which is helpful for identifying the features that are strongly correlated with the high reaction 

barriers. 

Four ML methods, linear regression, the XGBoost method, SVM, and neural networks, were 

applied to learn the correlation between the acyl-enzyme (reactant) conformational feature vectors 

and deacylation barriers. 720 conformations were included in the training set and the remaining 

80 conformations as the validation set by using the stratified splitting which prevents sample 

unbalance. High performance was observed not only on training set but also on the validation set 

based on the XGBoost, SVM, and neural network models (Fig. 6 and Fig. S1-S7). The kernel 

function in the SVM model makes it hard to interpret, and the nonlinear activations of the neural 

network also complicates its explanation. Therefore, XGBoost was chosen as the machine learning 

model in this study. The hyperparameters of the XGBoost model were selected via a grid search 

strategy which minimizes the square-error between the QM/MM barrier energy and the predicting 

barrier energy by XGBoost model (Table 1, and Fig. S9-S11). The best learning rate for all cases 

is 0.1. The grid search shows that the max_depth parameter plays a significant role in the 
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performance of the training model. The Mean Absolute Error (MAE) between the barrier energy 

calculated by the QM/MM method and the predicted barrier energy by the XGBoost method ranges 

from 2.70 to 0.24 kcal/mol on the training set with max_depth varying from 1 to 9. We chose 

max_depth as 3 as a balance between overfitting and underfitting. We selected 0.6 for subsample 

and 1 for min_child_weight since the model has a good MAE (2.37 kcal/mol) on the validation 

set. The linear regression, XGBoost and SVM models are implemented in scikit-learn package84, 

and neural network model is carried out in Tensorflow85 and Keras86, while the SHAP method are 

performed with SHAP package59.

Table 1. The grid search of optimal hyperparameters for the XGBoost model

Hyperparameters Range Optimal value
Learning rate(𝜂) 0.01,0.1,1 0.1

Max depth 1-9 3
Subsample ratio 0.5-0.9 0.6

Min_child_weight 0-9 1

The SHAP method60 was used to interpret the ML model and explore the mechanism of KPC-

2/IPM hydrolysis. The SHAP method attributes feature importance for each sample as the feature’s 

contribution to the deviation between the sample output and the expectation of the model outputs. 

In brief, the resulting feature importance from the SHAP method on one input sample accounts for 

the contribution of the feature to the difference between the predicted output and the expectation 

of the overall model outputs. The assigned SHAP values are also additive for each data sample: 

the SHAP values from each feature sum up to the total deviation of the corresponding output and 

the expectation of the model output. By determining the SHAP values of all features on all the 

training examples, one could quantify the impact of the input feature on the model predictions. 

Results and discussion
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Deacylation Barriers

The deacylation barriers of the four simulated systems are listed in Fig. 4. The exponential 

averaged barriers ( ) were calculated as:∆𝐸𝐸𝐴

∆𝐸𝐸𝐴 = ―𝑅𝑇ln (1
𝑁

𝑁

∑
𝑖 = 1

exp ( ―
∆𝐸𝑖

𝑅𝑇))#(1)

with R being the ideal gas constant; T being the temperature,  being the potential energy barrier ∆𝐸𝑖

on the i-th MEP, and N being the total number of MEPs. Accordingly, we rank the deacylating 

activity of the four systems as: KPC-WT/IPM-2 (18.32 kcal mol-1) > KPC-WT/IPM-1 (19.65 

kcal mol-1) > KPC-F72Y/IPM-2 (21.93 kcal mol-1) > KPC-F72Y/IPM-1 (31.60 kcal mol-1). 

Although the general hypothesis suggests that a tetrahedral intermediate may exist during the 

deacylation process leading to two transition states, only one transition state was observed along 

MEPs in all four systems without the tetrahedral intermediates as energy minima. Attempts to 

characterize tetrahedral intermediates did not lead to stable structures as local minimum using the 

level of theory employed in this study, suggesting that the tetrahedral intermediates may not be 

sufficiently stable to carry mechanistic significance. In addition, due to the similarity between the 

IPM-1 and IPM-2 systems, the TSs observed in these two systems are structurally similar. 

However, the chemical distinction between these two systems governs that these the TSs from 

these two systems are chemically distinct from each other despite the structural similarity. Machine 

learning methods are superior in capturing subtle yet meaningful differences and producing 

classification models with these meaningful differences encoded and are employed in the 

subsequent study using these MEPs as training data.
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Fig. 4. The distribution of the deacylation barriers of the four modeled systems at B3LYP-

D3(BJ)/6-31+G**/C36 level of theory. (a) KPC-WT/IPM-Δ1; (b) KPC-WT/IPM-Δ2; (c) KPC-

F72Y/IPM-Δ1; and (d) KPC-F72Y/IPM-Δ2. Min, Expo, Mean, Med, and std refers to the 

minimum, the exponential average, the mean average, the median, and the standard deviation of 

the barrier energies, respectively.
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Fig. 5. Active site structure of MEPs with lowest barrier energy for KPC-WT/IPM-1(pink) and 

KPC-WT/IPM-2 (cyan).  TS refers to transition state (TS). Three important distances (Glu166 
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O2 - Water H1, IPM C7 - Water O, Lys73 H1- Ser70 O), which involves the proton transfer, 

and nucleophilic attack, are marked as the black dashed line with Å unit. The carbon atoms are 

colored as pink in KPC-WT/IPM-1 and cyan in KPC-WT/IPM-2. The hydrogen, nitrogen, 

oxygen, and sulfur atoms are colored as white, blue, red, and yellow respectively. The minimum 

MEPs pathway is number 100 for KPC-WT/ IPM-2 and number 37 for KPC-WT/ IPM-1.

Experimental enzyme kinetic studies15,17 have shown that the deacylation rates (k3) for the 

wild type and Phe72Tyr mutant KPC-2 for IPM are 56 s-1 and 0.02 s-1, which approximates 

deacylation free energy barriers of 15.05 kcal mol-1 and 19.77 kcal mol-1, respectively. In our 

calculations, the minimum deacylation barriers on the IPM-Δ2 states are 15.25 kcal mol-1 for the 

KPC-WT systems and 18.67 kcal mol-1 for KPC-F72Y systems. Moreover, the exponential 

averaged barriers of the KPC-WT MEPs are lower than those of the KPC-F72Y systems, which is 

in agreement with the experimental observations.

Additionally, the minimum barrier energy heights of the IPM-Δ2 states are lower than those 

of the IPM-Δ1 states (16.72 kcal mol-1 and 28.65 kcal mol-1). The IPM-2 systems have a smaller 

exponential averaged barrier compared to the IPM-1 systems MEPs. Notably, the significant 

reaction barrier difference between the IPM-1 and IPM-2 pathways in the KPC-F72Y system 

demonstrates that the 2 form is preferentially hydrolyzed, agreeing with observations for other 

Class A -lactamases.23–25 In contrast, the barrier energy difference between the IPM-1 and IPM-𝛽

2 pathways in the KPC-WT system seems trivial. We also carried out free energy calculations 

using a thermodynamic integration (TI) method to estimate the free energy difference between the 

complexes with IPM-Δ1 and IPM-Δ2, for the wild type and mutant, respectively. Our calculations 

show that the complexes with IPM-Δ1 are slightly lower than the complexes with IPM-Δ2 for both 
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wild type and mutant, in agreement with an experimental finding that the free energy difference 

between these two tautomeric states is small87 (See Supporting Information for details).

Machine Learning and Model Interpretation

The XGBoost model predicts the deacylation barrier heights with the coefficient of 

determination (R2) above 0.9 and MAE lower than 1.3 kcal mol-1 (Fig. 6). The SHAP method is 

employed to analyze the impact of every element in the feature vector on the deacylation reaction 

(Fig. 7). For the hydrogen bonds represented by the features d2 (Lys73 H𝜁2 – Glu166 O𝜀2), d3 

(DW H1 – Glu166 O𝜀2), d4 (DW H1 – Glu166 O𝜀1), d5 (Asn170 H𝛿2 – Glu166 O𝜀1), d6 (DW 

H2 – Asn170 O𝛿), d8 (Lys73 H𝜁2 – Asn132 O𝛿), d12 (IPM 6𝛼OH – Asn132 O𝛿), d13 (IPM 6𝛼OH 

– Glu166 O𝜀1), and d14 (IPM 6𝛼OH – Glu166 O𝜀2), their SHAP values distributions show that 

the formations of these hydrogen bonds, which are indicated by the blue points (the shorter 

hydrogen – acceptor distances and therefore stronger hydrogen bonding interactions),  contributes 

negatively to the deacylation barrier (Fig. 7). On the other hand, the hydrogen bonding features d7 

(Lys73 H𝜁1 – DW O), d11 (IPM 6𝛼OH – DW O), and d15 (Lys73 H𝜁1 – Ser130 O𝛾) have SHAP 

values distributions opposite to those of the above-mentioned features, implying that the hydrogen 

bonds related to features d7, d11, and d15, lead to increase of the barrier energy. As for the key 

reacting coordinates, the positive SHAP values of the nucleophilic attack of DW on IPM β-lactam 

carbonyl (d9, DW O – IPM C7) on the samples with longer distance (red points) demonstrate the 

increase of the reaction barrier.
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Fig. 6. The XGBoost model performances on four systems. (a) Model performances on the KPC-

WT/IPM-1 system; (b) the KPC-WT/IPM-2 system; (c) the KPC-F72Y/IPM-1 system; (d) the 

KPC-F72Y/IPM-2 system. R2, MAE, RMSE, nsamples refer to the coefficient of determination, the 

mean absolute error, the root-mean-squared error, and the number of samples, respectively. 
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Fig. 7. The SHAP values obtained from the XGBoost model.  The SHAP values on each structural 

feature of the conformation data from (a) the KPC-WT/IPM-1 system, (b) the KPC-WT/IPM-2 

system; (c) the KPC- F72Y /IPM-1 system; and (d) the KPC-F72Y/IPM-2 system. The x-axis 

is the SHAP values attributed to each sample. The values of the atomic distances (the structural 

features) are noted by the color scheme of the scatter plots: from the shorter (blue) to longer (red) 

values of the distances. 
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Noteworthily, the SHAP values for feature d1 (Phe72 H𝜁– Glu166 O𝜀2) in the KPC-WT 

systems are all negative for all sampled distances (Fig. 7.a and Fig. 7.b). In contrast, the SHAP 

values of d1 are all positive for the KPC-F72Y systems (Fig. 7.c and Fig. 7.d). This observation 

suggests that the extra hydrogen bond represented by d1 in the KPC-F72Y systems leads to an 

increase of the barrier energy and slows the deacylation rate. On the other hand, the feature d16 

(Ser130 H𝛾 – IPM N4) has a similar SHAP values distribution regardless of their distance. 

Specifically, for the KPC-WT/IPM-1 and KPC-F72Y/IPM-1 systems, the major distribution of 

d16 has negative SHAP values (Fig. 7.a and Fig. 7.c). For the KPC-WT/IPM-2 and KPC-

F72Y/IPM-2 systems, the major distribution of d16 has positive SHAP values (Fig. 7.b and Fig. 

7.d ). This suggests that the hydrogen bond between IPM N4 and Ser130 O𝛾 represented by feature 

d16 in the IPM-1 systems leads to an increase of barrier energies. On the other hand, the weaker 

forms of this hydrogen bond in the IPM-2 systems, indicated by longer distances of d16 (Fig. 

8.a), leads to decrease of barrier energies.

Mean absolute SHAP values were calculated to quantify the overall feature contributions and 

to determine the dominant structural factors for the deacylation reaction (Fig. S8). The features d9 

(DW O – IPM C7), d1 (Phe72 H𝜁 (Tyr72 H𝜂) – Glu166 O𝜀2), d11 (IPM 6𝛼OH – DW O), d2 

(Lys73 H𝜁2 – Glu166 O𝜀2), d4 (IPM 6𝛼OH – Glu166 O𝜀2), and d16 (Ser130 H - IPM N4) are 

the top 6 most important features to the barrier energy in all four systems. Interestingly, these six 

features contain the three most important structural factors regulating the deacylation reaction of 

KPC-2/IPM hydrolysis: the local environment of Glu166, IPM pyrroline tautomerization, and the 

IPM 6 hydroxyethyl orientation.  

Page 21 of 34 Physical Chemistry Chemical Physics



22

Fig. 8.  Distance distribution of the selected features and the atomic charge of Glu166 carboxyl 

oxygen atoms. (a) The distance distribution for the selected features for the four systems. Labels 

on the x-axis represent the selected features. (b) The CHELPG charges for two oxygen atoms in 

the Glu166 carboxyl.

The impact of local environment around Glu166

The general base residue for the deacylation, Glu166, could accept hydrogen bonds from 

multiple neighbor residues, including Lys73 and Asn170, as well as Tyr72 in the KPC-F72Y 

system. These hydrogen bonds can be divided into two classes based on their effect on the 

deacylation step of KPC-2/IPM hydrolysis: favorable or unfavorable to the deacylation reaction. 

The existence of a potential hydrogen bond donated from Tyr72 to Glu166 in the KPC-F72Y 

system was proved by the less than 2 Å distance distribution of feature d1 (Tyr72 H𝜂 – Glu166 

O𝜀2) (Fig. 8.a). The effect of deacylation inhibition of the additional hydrogen was first confirmed 

by the QM/MM MEPs barrier energy profile (Fig. 4). The negative SHAP values for feature d1 in 

the KPC-WT system and all positive SHAP values of this feature in the KPC-F72Y system show 

that this hydrogen bond hinders the deacylation reaction in the KPC-F72Y system (Fig. 7). Further 
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analysis utilizing the CHELPG charge populations88 for the Glu166 carboxyl was performed to 

investigate how the additional hydrogen bond affects the Glu166 residue. The atomic charge 

analysis shows that the Glu166 carboxyl oxygen atoms have less negative charge in the KPC-

F72Y systems (Fig. 8.b). This indicates that the hydrogen bond between Glu166 and Tyr72 reduces 

the basicity of Glu166 as the general base, which not only aligns with the work of Furey et al.17, 

but also is consistent with the Hirvonen et al. finding that the hydration of the general base in the 

active site reduces the deacylation efficiency20,21. 

On the other hand, the features d2 (Lys73 H𝜁2 – Glu166 O𝜀2), d3 (DW H1 – Glu166 O𝜀2), 

and d4 (DW H1 – Glu166 O𝜀1) are shown to favor the deacylation. Hata et al.89 proposed that the 

Glu166 – Lys73 – Ser70 hydrogen bond network plays an important role in the proton migration 

in the deacylation step, where the hydrogen bond between Glu166 and Lys73 helps the deacylation 

reaction. In this study, the effect of deacylation assistance for the hydrogen bond donating from 

Lys73 to Glu166 is indicated by the negative SHAP values (the decrease of barrier energies) for 

the blue points (stronger hydrogen bonding interaction) of the feature d2. The features d3 (DW H1 

– Glu166 O𝜀2) and d4 (DW H1 – Glu166 O𝜀1) also favor the deacylation reaction as they reduce 

the proton migration distance between the catalytic water and Glu166. 

Table 2. Average distance (Å) between atoms involving in the deacylation step.

System KPC-
WT/IPM-∆1 

KPC-
WT/IPM-∆2

KPC-
F72Y/IPM-∆1 

KPC-
F72Y/IPM-∆2 

IPM 6 – DW O (d11) 3.47 3.25 2.87 2.74
DW O – Lys73 H1 (d7) 2.82 3.11 2.92 3.16

DW O – IPM C7 (d9) 2.87 2.80 2.95 2.83
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The impact from the tautomerization states of the IPM pyrroline 

The IPM pyrroline ring could undergo tautomerization during the formation of acyl-enzyme 

and generates two potential tautomers IPM-1 and IPM-2 for the deacylation. The barrier heights 

based on the QM/MM MEPs calculations show that the IPM-2 system is more active than the 

IPM-1 system in KPC-F72Y mutant, while the deacylated products in both tautomer states can 

be produced in the KPC-WT system. 

Three structural features d7 (Lys73 H𝜁1 – DW O), d9 (DW O – IPM C7), and d16 (Ser130 

H𝛾 – IPM N4) are shown to be correlated with the IPM pyrroline tautomerization states. Among 

them, the feature d9 (DW O – IPM C7) is the most significant factor in the deacylation reaction of 

KPC-2/IPM hydrolysis due to its largest mean absolute SHAP values.  The feature d9 in the IPM-

2 systems leads to more decrease of barrier energy than in the IPM-1 systems, which is 

demonstrated by that the d9 in the IPM-2 systems have more samples with negative SHAP values 

than those in the IPM-1 systems (Fig. 7). The comparison of feature d9 also reveals the effect of 

pyrroline ring tautomerization on the nucleophilic attack distance. The mean nucleophilic attack 

distance (d9) is 2.80 Å and 2.83 Å for the KPC-WT/IPM-2 and KPC-F72Y/IPM-2 systems, 

respectively, which are smaller than those in the KPC-WT/IPM-1 (2.87 Å) and KPC-F72Y/IPM-

1 (2.95 Å) systems (

Table 2). 

Besides the nucleophilic attack distance, feature d7 (Lys73 H𝜁1 – DW O) is another important 

factor which behaves differently in the IPM-1 and IPM-2 systems. More positive SHAP values 

appear in the IPM-1 states than in the IMP-2 states (Fig. 7). The values of feature d7 in the 

IPM-1 systems (2.82 Å and 2.92 Å for the KPC-WT/IPM-1 and KPC-F72Y/IPM-1 systems, 
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respectively) are also smaller than those in the IPM-2 systems (3.11 Å and 3.16 Å for the KPC-

WT/IPM-2 and KPC-F72Y/IPM-2 systems respectively), indicating a stronger interaction 

between Lys73 and the catalytic water in the IPM-1 systems (

Table 2). This shorter interacting distances consequently lead to an increase of barrier energy 

for the deacylation reaction. These results reveal the different contributions from feature d7 to 

activities of KPC wild type and mutant against imipenem in different tautomerization states.

Feature d16, the distance between IPM N4 and Ser130, is yet another feature influenced by 

the pyrroline ring tautomerization. Observation of d16 distances shows that the hydrogen bond 

between Ser130 O and IPM N4 is stronger in the IPM-1 systems. This hydrogen bond hinders 

the deacylation reaction as most samples of the feature d16 have positive SHAP values in the IPM-

1 systems (Fig. 7.a and Fig. 7.c). 

Fig. 9. Orientations of the 6α-hydroxyethyl group in KPC-2/IPM acyl-enzyme conformations. 1). 

The blue, yellow, red, and green histograms represent the density distribution of the C7-C6-C6α-
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O6α dihedral angle in KPC-WT/IPM-1, KPC-WT/IPM-2, KPC-F72Y/IPM-1 and KPC-

F72Y/IPM-2, respectively. The dashed blue, dashed yellow, solid red, and solid green lines are 

the density distribution of this dihedral angle in KPC-WT/IPM-1, KPC-WT/IPM-2, KPC-

F72Y/IPM-1, and KPC-F72Y/IPM-2 systems, respectively. 2). The panel of conformation I 

represents the C7-C6-C6α-O6α dihedral angle of 200. In this state, the IPM 6 hydroxyethyl 

group forms hydrogen bonds with solvent molecules. The carbon, nitrogen, hydrogen, and oxygen 

atoms are colored as cyan, blue, white, and red, respectively. The panel of conformation II 

represents the C7-C6-C6α-O6α dihedral angle of 280. In this state, the IPM 6 hydroxyethyl 

group serves as a hydrogen bond donor to the deacylation water. The color scheme of panel 

conformation II is the same as the panel conformation I. 3). The IPM structure is shown with the 

dihedral of C7-C6-C6α-O6α highlighted in red.

The impact from the orientation of IPM 6α hydroxyethyl

The IPM 6 hydroxyethyl has been proposed to play an important role in regulating the 

deacylation step of carbapenem hydrolysis21,28. Recently, Chudyk et al.28 reported that the acylated 

carbapenem in ASβL-carbapenemases adopts two main 6α hydroxyethyl orientations in the acyl-

enzyme complex. Accordingly, both orientations of IPM 6 hydroxyethyl group were observed 

for all four systems. These two orientations were represented by the dihedral angle values of C7-

C6-C6-O6 around 200 and 280, respectively, referred to as conformations I and II (Fig. 9). 

In conformation I, the IPM 6 hydroxyethyl group adapts an orientation, donating a hydrogen 

bond to solvent molecules. In conformation II, the IPM 6 hydroxyethyl group mainly hydrogen 

bonds with the catalytic water. It also forms hydrogen bonds with Glu166 and Asn132 in some 
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snapshots in the MD simulation as conformation II. Note that those two conformations were also 

observed in our previous work32, the IPM hydrolysis by GES-5, in which  Conformation I with 

dihedral of C7-C6-C6α-O6α resting at 210 was found to be the preferred state. Interestingly, more 

conformation II states with the hydrogen bond to catalytic water mentioned above are observed in 

the acyl-enzyme reactant of the KPC-F72Y systems than in the KPC-WT systems. The observation 

reveals that the mutation of Phe72Tyr in the KPC-F72Y systems leads a tight interaction between 

the IPM 6 hydroxyethyl group and the catalytic water through a hydrogen bond.

Four features (d11, d12, d13, and d14) were selected to represent the interactions between the 

IPM 6 hydroxyethyl group and the residues in the active site. The feature d11 (IPM O6𝛼 – DW 

O) was selected as the representative interaction due to its larger mean absolute SHAP values than 

the other three features in all four systems. Positive SHAP values for blue points and negative 

SHAP values for red points of the feature d11 indicate that the existence of this hydrogen bond 

between the IPM 6 hydroxyethyl group and the catalytic water deactivates the catalytic water 

and slows the deacylation rate with the increased barrier energy (Fig. 7). This finding is consistent 

with the work of Hirvonen et al. 21, that the formation of the hydrogen bond between the catalytic 

water and the 6α-hydroxyethyl group of carbapenem is unfavorable for carbapenem hydrolysis by 

the OXA-48 β‑lactamase. Additionally, there are more negative points of the d11 feature in the 

KPC-WT systems than those in the KPC-F72Y systems, suggesting the mutation of Phe72Tyr in 

the KPC-F72Y systems increase the barrier energy contributed by the feature d11 compared with 

those in the KPC-WT systems.

The impact of local environments around the catalytic water 

Two groups of features representing the interaction between catalytic water and residues in 

the active site were found with different impact. Features d3 (DW H1 – Glu166 O𝜀2), d4 (DW H1 
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– Glu166 O𝜀1), and d6 (DW H2 – Asn170 O𝛿) favor the deacylation reaction given their SHAP 

values distribution. The interactions between catalytic water and Glu166, Asn170 are suggested to 

reduce the barrier energy with their negative SHAP values for short distances and positive values 

for long distances (Fig. 7). On the other hand, features d7 (Lys73 H𝜁1 – DW O), d9 (DW O – IPM 

C7), and d11(IPM 6𝛼OH – DW O) could inhibit the deacylation due to the opposite SHAP values 

distribution. Features d7 and d11 represent hydrogen bonds with catalytic water as acceptor and 

hinder the deacylation reaction. On the contrary, features d3, d4, and d6 represent hydrogen bonds 

with catalytic water as donor and are beneficial to the deacylation reaction. Therefore, it is 

suggested that the hydrogen bond interactions with catalytic water as acceptor impair the 

nucleophilic attack to the tetrahedral intermediate and slow the deacylation reaction rate. 

Conversely, the hydrogen bonds with catalytic water as the donor help the proton migration and 

favor the deacylation reaction. 

Conclusions

In this study, we investigate the deacylation reaction of KPC-2/IPM hydrolysis using QM/MM 

calculations. 800 QM/MM MEPs of deacylation reactions for four systems (KPC-WT/IPM-1, 

KPC-WT/IPM-2, KPC-F72Y/IPM-1 and KPC-F72Y/IPM-2), were calculated. Our QM/MM 

calculations show that not only the Phe72Tyr mutation but also the IPM tautomerization leads to 

a higher barrier energy for the KPC-2/IPM deacylation (though the IPM-1 hydrolysis is still 

energetically favorable in the KPC-WT). 

We further applied the XGBoost model assisted by the SHAP method to analyze the barrier 

energies using conformational features of the acyl-enzyme reactant states in order to provide 

insight into the mechanism of the deacylation reaction of KPC-2/IPM. The effect of specific 

features and the dominant factors of the deacylation reaction could be determined by the mean 
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absolute SHAP values as well as their distributions. We identified three factors highly impacts the 

deacylation reaction of KPC-2/IPM hydrolysis based on the ML model. First, Tyr72 forms an 

additional hydrogen bond with Glu166 in the mutant KPC-F72Y system. This hydrogen bond is 

shown to inhibit the deacylation step by reducing the basicity of the general base. Second, the 

tautomerization states on the ligand pyrroline rings is correlated with the hydrogen bonding 

interactions between Lys73 and the DW. The IPM-Δ2 tautomer has been previously proposed to 

stabilize the tetrahedral intermediate during the deacylation32. Meanwhile, the hydrogen bonding 

donated by Lys73 (as in IPM-Δ1 states) would decrease the nucleophilicity of the DW. Both effects 

would synergistically contribute to the deacylation inefficiency observed in the IPM-Δ1 systems, 

especially in the KPC-F72Y mutant. Third, the IPM 6α-hydroxyethyl group adapts two 

orientations. In one orientation, the hydrogen bond to catalytic water hampers the deacylation step 

by causing a longer nucleophilic attack distance. In additional, this orientation is more often 

observed in the KPC-F72Y systems showing that the local environment changes of Glu166 also 

have significant impacts on the orientation of IPM 6 hydroxyethyl group. Hydrogen bonds 

formed between the catalytic water and the IPM 6α-hydroxyethyl group as well as Lys73 

collectively regulate the catalytic water behaviors. 

Lastly, in this study, we showed that the combination of the XGBoost model and the SHAP 

method could effectively assist the analysis of KPC-2/IPM hydrolysis QM/MM MEPs and provide 

the mechanistic insights into different interactions in the active site. Finally, our study 

demonstrates the potential of explainable Machine Learning for understanding the mechanism of 

enzyme catalysis.  

Data availability 
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All data and codes reported in the current study are publicly available at DOI: 

10.5281/zenodo.7114981. 
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