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The recently introduced multisite tensor network path inte-
gral (MS-TNPI) method [Bose and Walters, J. Chem. Phys.,
2022, 156, 24101.] for simulating quantum dynamics of ex-
tended systems has been shown to be effective in studying one-
dimensional systems coupled with local baths. Quantum trans-
port in these systems is typically studied at a constant tem-
perature. However, temperature seems to be a very obvious
parameter that can be spatially changed to control this trans-
port. Here, MS-TNPI is used to study the “non-equilibrium”
effects of an externally imposed temperature profile on the
excitonic transport in one-dimensional Frenkel chains coupled
with local vibrations. We show that in addition to being im-
portant for incorporating heating effects of excitation by lasers,
temperature can also be an interesting parameter for quantum
control.

Quantum transport in extended open systems has been one
of the holy-grails of quantum dynamics. It combines the dif-
ficulty of treating extended quantum systems with the diffi-
culty of treating open quantum systems, both of which poten-
tially lead to exponential growth of computational complexity.
However, such systems are ubiquitous in nature, and hence of
great importance. From magnetic materials to molecular ag-
gregates, a vast variety of interesting physical phenomena lend
themselves to be modeled as extended one-dimensional quan-
tum systems interacting with open thermal environments. Wave
function-based methods such as density matrix renormaliza-
tion group1–6 (DMRG) and multi-configuration time-dependent
Hartree7–9 (MCTDH and ML-MCTDH) and related methods have
proven to be exceptionally useful in simulating the quantum dy-
namics of extended systems. However, due to their computational
complexity, these methods are typically less useful when it comes
to simulations pertaining to open systems.

Path integrals have often been presented as a viable solution
to the problem of calculating and storing the wave functions for
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open systems. With these methods, the main challenge is that the
number of paths considered in the path integral increases expo-
nentially with the number of time steps. However, this exponen-
tial proliferation of the system path list can be curtailed through
the use of an iterative procedure that exploits the rapid decay
of correlation between well-separated time points. Although the
computational complexity still increases exponentially with the
number of time points retained within memory (L), this is usu-
ally much smaller then the number of points in the simulation.
The quasi-adiabatic propagator path integral10–13 (QuAPI) meth-
ods, which are based on Feynman-Vernon influence functional,14

make simulations of general open quantum systems much more
approachable. Of late, the usage of tensor networks to facilitate
simulations with influence functionals has also become quite com-
mon.15–18 Ideas from these tensor network-based influence func-
tional methods have motivated a recent extension of DMRG to
simulating the dynamics of extended open quantum systems.19

This multisite tensor network path integral (MS-TNPI) method
has also been used to explore the dynamics and spectrum of the
B850 ring of the light harvesting subsystem20 and study the ef-
fects of phononic scattering on spin transport.21

Despite their utility, the application of traditional path inte-
gral methods to extended open quantum systems suffers hugely
from exponential scaling. The problem has two different sources.
First, the dimensionality of the system scales exponentially with
the number of “units” or “entities” involved. Suppose we have a
setup involving P units each with dimensionality d, then the to-
tal dimensionality of the system is dP . Additionally, the presence
of thermal environments renders the dynamics non-Markovian.
Consequently, there is an exponential scaling with respect to the
number of time steps within memory. The base of this exponen-
tial scaling is related to the dimensionality of the system. So, if
the memory length is L for this hypothetical problem, the com-

putational complexity would go as O
((
dP
)2L)

. This is the issue

that MS-TNPI addresses by using a DMRG-like decomposition of
the system along the various sites in addition to a decomposition
of the “paths” along the temporal dimension.

The present paper uses MS-TNPI to explore the effects of tem-
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Fig. 1 Schematic of a density matrix of an extended system represented
as an MPS.

perature differences on excitonic transport in extended open sys-
tems. Such temperature differences can be caused by an external
temperature gradient being applied across a molecular wire or
more commonly as a side-effect of heat generated during laser-
induced excitations. Thus, to accurately simulate such phenom-
ena, one would need to worry about spatially inhomogeneous
temperatures. In addition, we want to explore the possibilities
of using non-constant temperature profiles as a potentially useful
parameter for controlling and changing the characteristics of the
quantum transport.

Method: In this work, we use the well-known Frenkel form with
nearest neighbor couplings to explore the effects of non-constant
temperature profiles on exciton transport. The Hamiltonian for a
system with P units is given by

Ĥ0 = ε

P∑
j=1

∣∣ej〉〈ej∣∣+ h̄J

P−1∑
j=1

(∣∣ej〉〈ej+1
∣∣+ ∣∣ej〉〈ej+1

∣∣) , (1)

where h̄J is the excitonic coupling between the neighboring sites,
ε is the excitation energy of the sites and lastly,

∣∣ej〉 is the many-

body wavefunction with just the jth site excited. In terms of the

one-body ground,
∣∣∣φgj〉, and excited,

∣∣φej〉, wavefunctions,
∣∣ej〉=∣∣φej〉⊗∏k 6=j

∣∣φgk〉.
Typically, for simulations of extended systems, DMRG and

DMRG-like methods proceed by decomposing the system along
the spatial dimension. By exploiting the lack of correlation be-
tween distant sites, the resulting matrix product state (MPS) can
be an extremely compact and efficient representation of the sys-
tem. The reduced density matrix after the nth time step can ex-
pressed in the form of an MPS as follows

ρ̃(S±n ,n∆t) =
∑
{α(j,n)}

A
s±

1,n
α(1,n)A

s±
2,n
α(1,n),α(2,n) · · ·A

s±
P,n
α(P −1,n) , (2)

where αj,n is the index connecting the jth site at time-step n to
the (j+ 1)th site at the same time step. Figure 1 gives a graph-
ical representation of this structure. In this work, the forward-
backward state of the jth site at the nth time point is denoted
by s±j,n and the states of all the sites at this time step are collec-

tively represented by S±n . (Here, the forward-backward state is
a combination of the forward, bra, and backward, ket, states of
the density matrix.) When the density matrix is represented as an
MPS, the forward-backward propagator, which evolves it in time,
must be represented as a matrix product operator (MPO). The
forward-backward propagator MPO corresponding to the Hamil-
tonian in Eq. 1 can be obtained using a second-order time-evolved
block decimation scheme.19

With this setup, it is possible to obtain the time-dynamics of the
isolated system through a series of MPO-MPS applications. How-
ever, often the individual sites interact with separate dissipative
environments. These environments can, under Gaussian response
theory, be mapped onto baths of Nosc harmonic oscillators, yield-
ing the full system-environment Hamiltonian as:

Ĥ = Ĥ0 +
P∑
j=1

Nosc∑
l=1

p2
jl

2mjl
+ 1

2mjlω
2
jl

(
xjl−

cjlŝj

mjlω
2
jl

)2

, (3)

where Ĥ0 is the Hamiltonian corresponding to the isolated ex-
tended system with P units or particles, Eq. 1. The lth harmonic
oscillator of the jth system unit interacts with it through the op-
erator ŝj with a strength of cjl. For excitonic applications, ŝj is

defined as ŝj
∣∣φej〉=

∣∣φej〉 and ŝj
∣∣∣φgj〉= 0. The combination of a

Frenkel system with vibrations as in Eq. 3 is often referred to as
the Frenkel-Holstein model in the literature. The frequencies and
couplings of the baths are given in terms of the spectral density,

Jj(ω) = π

2

Nosc∑
l=1

c2
lj

mljω
2
lj

δ
(
ω−ωlj

)
. (4)

This can be related to the energy gap autocorrelation func-
tion,22,23 which can be approximated through classical trajectory-
based methods.24,25 These dissipative baths, most commonly, en-
code the effects of the phonons on the excitonic dynamics.

In the presence of the dissipative environment, the time evolu-
tion of the reduced density matrix can be described as

ρ̃(S±N ,N∆t) =
∑
S±

0

∑
S±

1

· · ·
∑
S±

N−1

ρ̃(S±0 ,0)PS±
0 ···S

±
N

(5)

=
∑
S±

0

∑
S±

1

· · ·
∑
S±

N−1

ρ̃(S±0 ,0)P (0)
S±

0 ···S
±
N

F
[{
S±n
}]
.

(6)

Here, P (0)
S±

0 ···S
±
N

is the bare path amplitude tensor, which contains

the full information of the isolated system, and F is the Feynman-
Vernon influence functional,14 which depends on the temperature
and the spectral density, and encodes the system-environment in-
teraction. Lastly, PS±

0 ···S
±
N

is the path amplitude tensor, which

describes the system in the presence of the solvent. For the prob-
lems with temperature gradients explored here, the bare path am-
plitude tensor, being independent of temperature, does not cause
the difference in dynamics. The Feynman-Vernon influence func-
tional is the only thing that changes with the sites because of the
gradient. The system dynamics gets affected as a consequence.
Since the dimensionality of the path amplitude tensor grows ex-
ponentially with the number of particles and time steps, it can
only be explicitly constructed in a very small number of cases.

MS-TNPI19 avoids this exponential scaling by performing a spa-
tial decomposition of the bare system and combining it with a
temporal decomposition of the influence functional to produce a
compact two-dimensional tensor network representation of the
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(a) 2D MS-TNPI tensor network. (b) Incorporation of influence func-
tional.

Fig. 2 Schematic of MS-TNPI tensor network. (Schematics reproduced
from Ref. 20.)
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Fig. 3 Unit dependent excited state population, P̄ exc
j (t), when no tem-

perature gradient is applied.

path amplitude tensor,

PS±
0 ···S

±
N

=
∑
{βn}

TS
±
0
β0
· · ·TS

±
n

βn−1,βn
· · ·TS

±
N

βN−1
. (7)

Here, βn is the index connecting the tensors at time-point n to the
ones at n+ 1, and each T is a matrix product representation de-
composed along the site axis. The resulting two-dimensional ten-
sor network is shown in Fig. 2 (a). Each of the columns roughly
contains the state of the full system at any point of time. There-
fore, when contracting the network along the columns, we get
the full reduced density matrix corresponding to the extended
system. Naïvely speaking, the number of columns in the MS-TNPI
network corresponds to the total length of the simulation. How-
ever, an iterative procedure can be employed that effectively re-
duces the number columns to the length of the memory induced
by the baths. The rows represent the path amplitude correspond-
ing to the individual sites or units of the system. This allows both
the incorporation of the Feynman-Vernon influence functional in
a transparent manner as MPOs acting on the rows as shown in
Fig. 2 (b) and the truncation of memory.

Numerical Examples: As our first example, we consider a P = 31
site system with h̄J = 1 and ε = 100. (The sites are numbered
from 1 to 31.) We are interested in the effects of thermal inhomo-
geneities and not the differences in the structure of the vibronic
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Fig. 4 Plot of δP exc
j (t) in presence of a temperature gradient of

0.05h̄J/kB per site.

couplings. Therefore, in this work, the spectral densities, which
characterize the interaction between the vibrational bath and the
electronic system, are taken to be site independent. For the cur-
rent example, the spectral density is

Jj(ω) = 2πh̄ξω exp
(
− ω

ωc

)
, (8)

where ωc = 8J is the cutoff frequency and the dimensional Kondo
parameter, ξ = 0.075. We start the discussion by considering
the dynamics of the exciton under a constant temperature of
kBT = h̄J . Consider an initial state where the middle monomer is
excited, ρ̃(0) = |e16〉〈e16|. The excited state population dynamics,
P̄ exc
j (t) =

〈
φej
∣∣ρ̃(t)

∣∣φej〉, is demonstrated in Fig. 3. Because the
middle unit is initially excited, the dynamics is completely sym-
metric, that is the populations of the units equidistant from the
edges are identical. (A short explanation of the notation used:
we use P̄ exc when denoting the dynamics in absence of a temper-
ature gradient. When a temperature gradient is applied, we refer
to it as P exc.)

Now, consider applying a temperature gradient of 0.05h̄J/kB
with an average temperature of kB T̄ = h̄J . The temperature is
lowest at the bottom end where the units have lower numbers,
and rises as we move up. The application of this temperature gra-
dient breaks the symmetry discussed in the previous paragraph.
To explore this deviation numerically, we introduce the following
measure:

δP exc
j (t) =

P exc
j (t)− P̄ exc

j (t)
P̄ exc
j (t)

×100. (9)

Here, P̄ exc is the same dynamics as discussed in the previous para-
graph and shown in Fig. 3. The deviation from the zero-gradient
dynamics is shown for this particular case in Fig. 4. For the linear
ramp considered, the transport process seems to preferentially
move the exciton to the colder monomers. The deviations are
quite significant with an upper limit of around ±75%. (These cal-
culations took roughly 2.5 hours on an Intel Xeon Gold CPU with
32 cores.)

As a more realistic example of exciton transfer, consider a chain
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Fig. 5 Spectral density describing the thermal environment of the bac-
teriochlorophyll molecules. It was obtained by using Eq. 10 on the bath
response function reported in Ref. 26

of 31 bacteriochlorophyll (BChl) units. The intermonomer elec-
tronic coupling, h̄J , is taken to be 156.5cm−1 and the excita-
tion energy of a BChl unit, ε, is taken to be 12390cm−1. The lo-
cal spectral density was calculated from the molecular dynamics-
based (MD) bath response function, CMD(t), reported in Ref.26

using the following relation:

Jj(ω) = h̄ωβMD
2

∫ ∞
0

CMD(t)cos(ωt)dt . (10)

The resultant spectral density is shown in Fig. 5. (Note that the
inverse temperature used here, βMD, corresponds to MD simula-
tion setup. In addition, the relation between the spectral density
and the MD correlation function used here, Eq. 10, and the one
reported in Ref.26 are different. It has been shown that Eq. 10
is better at preserving the temperature invariance of the spectral
density.27)

The spectral density, Eq. 10, is independent of the tempera-
ture of the path integral simulations done here. So, just as in
the previous example, all the monomer units have identical spec-
tral densities here as well. We want to understand the changes
brought about in the dynamics through an external temperature
gradient of 10K/unit. The average temperature of the chain is
held at 300K. Figure 6 shows the difference caused in the exci-
tonic population dynamics by the externally imposed temperature
gradient. Note that despite having a structured spectral density,
the trends here are identical to the model example, Fig. 4. Even
in this case, population preferentially moves towards the colder
end of the chain.

Till now, we have considered the impact of a linear external
temperature gradient on the dynamics. To use temperature dif-
ferences as a parameter for quantum control, one would like to
impose non-trivial temperature profiles as well. For the model
Ohmic bath, Eq. 8, consider two such non-linear temperature pro-
files:

1. The temperature rises as a Gaussian at the point where the
initial excitation is located (16th site for instance). This
would be called the heating profile.
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Fig. 6 Plot of δP exc
j (t) for a chain of BChl molecules caused by an

external temperature gradient of 10K/unit.
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Fig. 7 Different temperature profiles.

2. The temperature decreases as an inverted Gaussian at the
point where the initial excitation is located. This would be
called the cooling profile.

These are shown in Fig. 7. Temperature profile (1), the heating
profile, is closely related to what would happen if a laser was
used to cause the initial excitation. In this case, along with the
electronic excitation, heat would also be dumped into the vibra-
tional degrees of freedom of the middle and nearby monomers.
The deviations in excitonic population corresponding to these two
temperature profiles is shown in Fig. 8.

The drop in temperature associated with the cooling profile
seems to force a faster excitonic transfer away from the cold mid-
dle site. The reverse happens when the initially excited site is
at a higher temperature. The heating profile allows the middle
monomers to hold on to the exciton longer than when no temper-
ature profile is imposed. It is interesting to note that this behavior
seems to go against the movement of excitons to colder regions in
presence of linear temperature ramps that we previously demon-
strated. One may hypothesize that the second derivative of the
temperature profile with the units is what affects the change. Fur-
ther research investigating this phenomenon will be conducted in
the future.
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Fig. 8 Plots of δP exc
j (t) corresponding to different temperature profiles.

Concluding Remarks: We have demonstrated a noticeable
change in the quantum transport of excitons in the presence of an
externally imposed temperature profile. When the temperature
increases linearly with the units, the excitonic population seems
to travel preferentially to the colder end of the chain. This trend is
consistent between model spectral densities and structured ones
derived from molecular dynamics simulations. Thus, the hope is
that one may be able to control aspects of the transport using the
temperature profile. We have demonstrated that when we locally
heat or cool the Frenkel chain, the rate of transfer of the exciton
changes. Future work would look into the impact of the shape
of the temperature profile. Is it enough to heat or cool particular
parts of the chain or does the exact function mapping the units to
their corresponding temperature also matter? Investigations on
the effect of temperature differences on spectra and other prop-
erties will also be undertaken in the future. We noted how the
behavior of the exciton changes from a constant gradient tem-
perature profile to a non-constant gradient temperature profile.
This has potential for being exploited in vibrationally trapping
excitons in certain regions of space. This feature would also be
an important aspect of our explorations in the future. In addi-
tion, it has recently been shown that the presence of phononic
scattering in the closely-related XXZ spin chain makes transport
diffusive.21 We are also going to explore of the effect of temper-
ature gradients on diffusion constants for the quantum transport.
Ultimately, what has been shown in this communication seems to
indicate that temperature might be a useable control for quantum
dynamics. Further exploration to this end would be done in the
future.
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