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Multi-colour circularly polarized luminescence properties of chiral 
Schiff-base boron difluoride complexes
Masahiro Ikeshita,*a Takato Suzuki,a Kana Matsudaira,b Maho Kitahara,b Yoshitane Imai*b and

Takashi Tsuno*a

A series of chiral Schiff-base boron difluoride complexes was synthesized and their photophysical properties were examined. 
These complexes showed multi-colour (blue, yellow and red) photoluminescence in solution and in the solid state with good 
emission quantum yield (Φ) depending on the π-systems of the ligands. The chiral complexes exhibited circularly polarized 
luminescence (CPL) with an absolute luminescence dissymmetry factor (glum) of up to the 1.3 × 10−3 in solution and 1.9 × 10−2 
in the drop-cast film state. Density functional theory (DFT) and  time-dependent (TD) DFT calculations were conducted to 
further understand the photophysical properties.

Introduction
Circularly polarized luminescence (CPL)1 is receiving 
increasing attention in a wide range of fields owing to the huge 
potential for applications, such as information storage and 
processing,2 3D optical displays,3 circularly polarized lasers4 
asymmetric synthesis,5 as well as in biological probes.6 In the 
early stages of CPL research, chiral lanthanide complexes7 have 
been studied mainly because they exhibit CPL from magnetically 
allowed and Laporte-forbidden f-f transitions with high absolute 
luminescence dissymmetry factors (glum = 2ΔI/I = 2(IL – IR)/(IL 
+ IR), in which IL and IR are the intensity of left- and right-
circularly polarized luminescence).8 In recent years, there has 
been a growing interest in the study of  small organic molecules 
(SOMs) with CPL activity because of their ease of providing 
wavelength tunability and external stimuli responsiveness 
through derivatization.9 Various examples of CPL-SOMs with 
chiral frameworks such as helicenes,10 binaphthyls,11 
cyclophanes,12 have been reported. However, most of them show 
CPL with glum in the range of 10−4–10−3, which is much smaller 
than that of chiral lanthanide complexes. On the other hand, the 
CPL of SOM has been found to be enhanced by the emergence 
of supramolecular chirality in aggregation systems,13 and it has 
been reported to increase in various aggregation states such as 
gels,14 liquid crystals15 and films,16 some of which have glum 
exceeding 10-1.15a-d,16b

Organoboron complexes have been extensively studied as 
promising materials for organic light-emitting diodes (OLEDs) 

owing to their efficient luminescence properties and high carrier 
mobility.17 The photophysical properties of such complexes can 
be tuned mainly through ligand functionalization which 
influences the colour and emission quantum yield (Φ).18 CPL can 
also be induced by incorporating a chiral skeleton into 
organoboron complexes,19 and has been applied to circularly 
polarized organic light-emitting diodes (CP-OLEDs).20 Among 
them, boron difluoride complexes have been recognized as 
promising CPL materials due to their tunable emission and high 
Φ values. Representative examples of CPL-active boron 
difluoride complexes with conjugated π-systems including axial 
chirality,19i helical chirality19j and planar chirality19k are shown 
in Fig. 1a.

As part of our program aimed at the creation of novel 
functional materials, we have been investigating luminescent 
organic and organometallic complexes bearing Schiff-base 
ligands.21 Previously, we have reported that phosphorescent 
Pt(II) complexes with chiral Schiff-base ligands exhibit tunable 
CPL properties in the poly(methyl methacrylate) (PMMA) 
f i l m -  

Fig. 1 (a) Previous report of CPL-active boron difluoride complexes 
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with chiral conjugated π-systems. (b) Multi-colour CPL-active boron 
difluoride complexes studied in this work.

dispersed state.21b In the present work, we focused on boron 
difluoride complexes22 with chiral (N,O)-bidentate Schiff-base 
ligands as CPL emitters (Fig. 1b). These complexes are readily 
synthesized by the reaction of the corresponding Schiff-base 
ligands with boron reagents, and their photoluminescence 
properties can be tuned by modification of the π-systems of the 
ligands. Notably, the chiral complexes exhibited multi-colour 
(blue, yellow and red) CPL with moderate glum values (up to 1.3 
× 10−3) in dilute solution state, and their CPL intensities were 
considerably enhanced by formation of aggregates as in the drop 
cast film state (up to glum = 1.9 × 10−2). Theoretical calculations 
revealed a relationship between their structures and the 
photophysical properties including CPL ability. Herein we 
describe the synthesis, structure and photophysical properties of 
a series of chiral Schiff-base boron difluoride complexes with a 
focus on their multi-colour CPL properties.

Results and Discussion
Chiral boron difluoride complexes 1a–e were prepared by the 
reaction of BF3‧OEt2 with the corresponding optically pure 
Schiff-base ligands in 1,2-dichloroethane according to the 
literature procedure (Scheme 1).22d Obtained complexes were 
successfully characterized by 1H and 13C nuclear magnetic 
resonance (NMR) spectroscopy (Fig. S1–5), infra-red (IR) 
spectroscopy, high-resolution mass spectrometry (HRMS). 
Single crystals suitable for X-ray diffraction analysis were 
obtained by recrystallization from CH2Cl2/EtOH and the 
molecular structures of (S)-1a–d were unambiguously elucidated 
by X-ray crystallographic analysis. Unfortunately, due to the low 
crystallinity of compound 1e, single crystals could not be 
obtained by recrystallization from any of the organic solvents. 
The details of the crystal data and the structure refinement are 
presented in Table S1, including intermolecular interactions 
(Fig. S9–S12). ORTEP23 drawings of (S)-1a–d are presented in 
Fig. 2. In all complexes, boron atoms adopt typical tetrahedral 
geometry.

Scheme 1. Synthesis of chiral boron difluoride complexes 1a–e.
Circular dichroism (CD) spectra of (R)-1a–e and (S)-1a–e were 

recorded in CH2Cl2 solution at room temperature (Fig. 3a and S13). 
The complexes (R)-1a–e and (S)-1a–e showed mirror image CD 
spectra, meaning that they are enantiomers (Fig. S13). Complexes 
(S)-1a–d exhibited a negative Cotton effect around 350–450 nm, 
which can be assigned to the π–π* transition in the UV-vis spectra 
showing π–π* bands in the same region (Fig. 3b). On the other hand, 
complex (S)-1e showed opposite positive Cotton effect in the same 
r e g i o n ,  

Fig. 2. ORTEP drawings of (a) (S)-1a, (b) (S)-1b, (c) (S)-1c and (d) 
(S)-1d. Thermal ellipsoids are shown at 50% probability level. 
Hydrogen atoms and solvent molecules are omitted for clarity.
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Fig. 3 (a) CD and (b) UV-vis spectra of 2.0 × 10-4 M solutions of (S)-1a–
e in CH2Cl2 at 298 K.

and the π–π* transition band in the UV-vis spectra was red shifted 
compared to those of (S)-1a–d.

The luminescence intensity and colour of the boron 
complexes were found to vary significantly depending on the π-
extension of the ligands. Photophysical data of (S)-1a–e are 
presented in Table 1. Quantum efficiencies (Φ) were determined 
using the absolute method with an integrating sphere accessory. 
Fig. 4 shows photographs of solutions and crystals of (S)-1a–e 
under UV irradiation at 298 K. 2.0×10–4 M solutions of (S)-1a–d 
in CH2Cl2 exhibit intense blue to yellow emission, while (S)-1e 
shows weak red emission under the same conditions (Fig. 4a). The 
low quantum efficiency of (S)-1e (Φ = 0.01) might be attributed 
to the increase of non-radiative deactivation in accordance with 
the energy gap law.24 Similarly, all complexes exhibit blue to red 
emission in crystalline state (Fig. 4b). In particular, the crystal of 
(S)-1a shows a rather high Φ value exceeding 0.99. The 
enhanced luminescence quantum yields in the aggregated state, 
except for (S)-1d, are considered to be based on the 
immobilization of molecules through multiple CH-π and H-F 
interactions observed in the crystal packings (Fig. S9–11).

The emission spectra of the boron complexes measured in 
CH2Cl2 are shown in Fig. 5a, in which the wavelengths of the 
emission peak maxima (max) increase in the order of 1b (432 
nm) < 1a (460 nm) ≈ 1d (459 nm) < 1c (541 nm) < 1e (623 nm). 
These results indicate that it is possible to control the emission 
colour in the range of approximately 200 nm by simple π-
extension of the ligands. In addition, the emission peak maxima 
in the crystalline state show the same trend as in the dilute 
solution state [1b: (max = 477 nm) < 1a (max = 483 nm) ≈ 1d 

Fig. 4 Photographs of (a) CH2Cl2 solutions (2.0 × 10-4 M) and (b) 
crystals of (S)-1a–e at 298 K under UV illumination at 365 nm.

Fig. 5 (a) Normalized emission spectra of (a) CH2Cl2 solutions (2.0 × 
10-4 M) and (b) crystals of (S)-1a–e (1a, 1b, 1d: ex = 350 nm, 1c: ex 
= 400 nm, 1e: ex = 480 nm). The insets show the CIE colour 
coordinates of the emissions.

(max = 487 nm) < 1c (max = 519 nm) < 1e (max = 618 nm); 
Table 1]. The CIE colour coordinates plotted on the CIE1930 
chromaticity chart (Fig. 5, inset) indicate that the emission colour 
of (S)-1a–e varies in each complex.

The CPL spectra of enantiomeric samples of (R)-1a–e and (S)-
1a–e in dilute CH2Cl2 solution showed mirror image spectra (Fig. 
6), and emission wavelengths of CPL signals correspond well 
with those of emission spectra taken under the same 
measurement conditions (Fig. 5a). In these spectra, complexes 
(S)-1a–d exhibited negative CPL sign (Fig. 6a–d), whereas 
complex (S)-1e showed opposite positive CPL sign (Fig. 6e). 
These results indicate that π-extension of the ligands affects the 
direction of optical polarization, as will be discussed in more 
detail in a later section. The |glum| values around the maximum 
emission wavelength are 6.9 × 10−4 (461 nm) for 1a, 4.3 × 10−4 
(434 nm) for 1b, 7.9 × 10−4 (541 nm) for 1c, 6.6 × 10−4 (461 nm) 
for 1d and 1.3 × 10−3 (627 nm) for 1e, respectively. Fortunately, 
we successfully prepared clear homogeneous thin films of 
complexes (R)-1a,c and (S)-1a,c by the drop-cast method and 
measured their CD and CPL properties. Photophysical data of 
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film samples of (S)-1a,c are presented in Table 2. In both film 
samples, mirror-image Cotton effects were observed in their CD 
spectra (Fig. S14). The CPL and total luminescence spectra 

measured for (R)-1a,c and (S)-1a,c in the drop-cast film state at 

298 K are shown in Fig. 7. The thin films of complexes (R)-1a,c 
and (S)-1a,c showed intense blue and yellowish green emission 

Fig. 6 CPL spectra of 2.0×10–4 M solutions of (R)- and (S)- (a) 1a, (b) 1b, (c) 1c, (d) 1d and (e) 1e in CH2Cl2 (1a, 1b, 1d: ex = 350 nm, 
1c: ex = 400 nm, 1e: ex = 480 nm).

Fig. 7 CPL (upper plot) and total emission (lower plot) of (R)-
and (S)- (a) 1a and (b) 1c in drop-cast film state (1a: ex = 350 
nm, 1c: ex = 400 nm). The insets show the photograph of films 
under UV irradiation (365 nm).

with high Φ values (1a: Φ = 0.61 and 1c: Φ = 0.40) as in the 
crystalline state. The emission peak maxima of the films are 

Table 1. Photophysical data for complexes (S)-1a–e.

Solution[a] Crystal

Compound abs [nm] max [nm][b] [b,c] CIE (x, y)[b] glum
[d] max [nm][b] [b,c] CIE [x, y][b]

(S)-1a 392, 411 460 0.81 0.15, 0.14 6.9 × 10−4 483 >0.99 0.14, 0.35

(S)-1b 375, 392 432 0.15 0.16, 0.06 4.3 × 10−4 477 0.17 0.14, 0.26

(S)-1c 416 541 0.78 0.37, 0.54 7.9 × 10−4 519 0.82 0.29, 0.61

(S)-1d 397, 413 459 0.16 0.15, 0.13 6.6 × 10−4 487 0.10 0.19, 0.39

(S)-1e 465 623 0.01 0.61, 0.39 1.3 × 10−3 618 0.02 0.62, 0.39

[a] Data were obtained from a 2.0×10–4 M solution in CH2Cl2 at 298 K. [b] ex = 350 (1a, 1b and 1d), 400 (1c), 480 nm (1e). [c] Luminescent quantum efficiencies measured using 

the absolute method with an integrating sphere. [d] The |glum| values around emission peak maxima are listed.

Table 2. Photophysical data for complexes (S)-1a,c in the drop-cast film state.

Compound max [nm][a] [a,b] CIE [x, y][a] glum
[c]

(S)-1a 446, 461 0.61 0.15, 0.22 1.9 × 10−2

(S)-1c 504 0.40 0.29, 0.55 8.2 × 10−3

 [a] ex = 350 (1a), 400 (1c) nm. [b] Luminescent quantum efficiencies measured 

using the absolute method with an integrating sphere. [c] The |glum| values around 

emission peak maxima are listed.
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446, 461 nm for 1a and 504 nm for 1c, which are blue shifted 
compared with those measured in solution (1a: max = 460 nm 
and 1c: max = 541 nm). These results suggest that complexes 
1a and 1c formed H-type aggregates in the condensed film 
state.25 The CPL spectra of both film samples showed clear 
mirror image signals. Their maximum emission |glum| values are 
calculated to be 1.9 × 10−2 (460 nm) for 1a and 8.2 × 10−3 (488 
nm) for 1c, which is more than 10 times higher than the value 
measured in solution. This improvement of chirality in the 
drop-cast films is considered to be due to the emergence of 
supramolecular chirality caused by H-aggregate formation.

We performed density functional theory (DFT) and time-
dependent (TD) DFT calculations on the B3LYP/6-31+G(d,p) 
level, using the Gaussian 16 program, to clarify the relationship 
between the molecular structures and the photophysical 
properties of these complexes. The frontier orbitals of (S)-1a–e 
and their eigenvalues were estimated by using DFT calculations 
based on the optimized structure both in the S0 (ground state) 
and S1 (excited state) states (Figs. 8 and S15). The HOMOs of 
all complexes are principally ligand (), whereas the LUMOs 
are in the ligand (*) (Fig. 8). The energy levels and electronic 
configurations of the singlet states of these complexes were 
estimated from TD-DFT calculations (B3LYP/6-31+G(d,p)) 
(Tables S2 and S3). The major electronic configuration of the 
S1 states is the HOMO-to-LUMO transition, which implies that 
the present emission is principally attributable to –* 
transition. The upward S0-to-S1 transition energies were 
calculated to be 3.22 eV (385 nm) for (S)-1a, 3.41 eV (364 nm) 
for (S)-1b, 2.83 eV (439 nm) for (S)-1c, 3.15 eV (394 nm) for 
(S)-1d, and 2.26 eV (549 nm) for (S)-1e, which is consistent 
with the order of the absorption wavelengths of the –* 
transition band for (S)-1a–e observed in CH2Cl2 solution [(S)-
1b (375, 392 nm) < (S)-1a (392, 411 nm) ≈ (S)-1d (397, 413 
nm) < (S)-1c (416 nm) < (S)-1e (465 nm); Table 1]. Similarly, 
the downward S1-to-S0 transition energies estimated to be 2.82 
eV (440 nm) for (S)-1a, 3.10 eV (401 nm) for (S)-1b, 2.16 eV 
(574 nm) for (S)-1c, 2.74 eV (453 nm) for (S)-1d and 1.67 eV 
(740 nm) for (S)-1e, are in accord with the emission maxima in 
CH2Cl2.

In order to obtain further insight into the origin of the 
structure-dependent chiroptical properties observed for (S)-1a–
e, we estimated transition dipole moments of upward S0-to-S1 
and downward S1-to-S0 transitions by using TD-DFT 
calculations (B3LYP/6-31+G(d,p)). The validity of the 

Fig. 8 Molecular orbitals (overhead views) and eigenvalues 
[eV] for the frontier orbitals of (S)-1a–e estimated from DFT 
calculations (B3LYP/6-31+G(d,p)) on the basis of the optimized 
geometries in the ground states.

Fig. 9 Electric (e, orange) and magnetic (m, purple) dipole 
moments of the S1→S0 transition for (a) (S)-1a, (b) (S)-1b, (c) 
(S)-1c, (d) (S)-1d and (e) (S)-1e calculated at the B3LYP/6-31+G 
(d,p) level. Calculated values of transition dipole moments 
(|e|, |m| and e,m) and glum are given under each structure.

calculation was confirmed by comparison between theoretical 
and experimental CD and CPL spectra of (S)-1a–e (Fig. 3a, 7, 
S16, and S17), showing that the structure-dependent changes in 
the experimental values are well reproduced by our theoretical 
simulations. The dissymmetry factors gabs and glum are 
calculated with the equation g = 4(|e||m|cosθ)/(|e|2 + |m|2), 
where |e|, |m| and θe,m are the electric transition dipole 
moments, magnetic transition dipole moments and the angles 
between two vectors e and m, respectively.26 Fig. 9 illustrates 
the electric and magnetic dipole moments |e| and |m|, 
calculated for the downward S1-to-S0transition of (S)-1a–e in 
the excited state geometry. The corresponding moments in the 
ground state are shown in Fig. S18 in the supporting 
information. In all complexes, calculated glum values are of the 
order 10–4–10–3 which is consistent with experimental CPL 
results. The θe,m values were obtuse in complexes (S)-1a–d. The 
θe,m values was acute in (S)-1e despite the fact that all the 
complexes had the same S chirality. These results were 
consistent with the experimental CPL sign for (S)-1a–e, 
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suggesting that modification of the ligands induces a slight 
difference in the direction of the transition dipole moments 
leading to the CPL sign inversion.

Conclusions
In summary, we have reported the synthesis and chiroptical 
properties of chiral Schiff-base difluoride boron complexes. 
These chiral compounds exhibited multi-colour CPL in the 
solution state. The CPL intensity was considerably enhanced in 
the drop-cast film state with glum value up to 1.9 × 10−2. DFT 
and TD-DFT calculations of the structures and electronic 
configurations of (S)-1a–e revealed the relationship between 
molecular structure and photophysical properties.
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