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Abstract

 The metabotropic glutamate receptors (mGluRs) play an important role in regulating 

glutamate signal pathways, which involves in neuropathy and periphery homeostasis. The 

mGluR4, which belongs to Group III mGluRs, is most widely distributed in periphery among 

all the mGluRs. It has been proved that the regulation of this receptor is involved in diabetes, 

colorectal carcinoma and many other diseases. However, the application of structure-based 

drug design to identify small molecules to regulate mGluR4 receptor is limited due to the 

absence of a resolved mGluR4 protein structure. In this work, we first built a homology model 

of mGluR4 based on a crystal structure of mGluR8, and then conducted hierarchical virtual 

screening (HVS) to identify possible active ligands for mGluR4. The HVS protocol consists of 

three hierarchical filters including Glide docking, molecular dynamic (MD) simulation and 

binding free energy calculation. We successfully prioritized active ligands of mGluR4 from a 

set of screening compounds using HVS. The predicted active ligands based on binding 

affinities can almost cover all the experiment-determined active ligands, with only one ligand 

missed. The correlation between the measured and predicted binding affinities is significantly 

improved for the MM-PB/GBSA-WSAS methods compared to the Glide docking method. 
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More importantly, we have identified hotspots for ligand binding, and we found that SER157 

and GLY158 tend to contribute to the selectivity of mGluR4 ligands, while ALA154 and 

ALA155 could account for the ligand selectivity to mGluR8. We also recognized other 5 key 

residues that are critical for ligand potency. The difference of the binding profiles between 

mGluR4 and mGluR8 can guide us to develop more potent and selective modulators. Moreover, 

we evaluated the performance of IPSF, a novel type of scoring function trained by a machine 

learning algorithm on residue-ligand interaction profiles, in guiding drug lead optimization. 

The cross-validation root-mean-square errors (RMSE) are much smaller than those by the 

endpoint methods, and the correlation coefficients are comparable to the best endpoint methods 

for both mGLURs. Thus, machine learning based IPSF can be applied to guide lead 

optimization, albeit the total number of actives/inactives are not big, a typical scenario in drug 

discovery project. 

 Keywords: Computer-Aided Drug Design; CADD; mGLU4; mGLU8; Virtual Screening; 

Homology Modeling; MM-PBSA-WSAS; MM-GBSA-WSAS; IPSF; Machine Learning
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Introduction

 G-protein coupled receptor (GPCR) is a major therapeutic drug target class in today’s 

drug discovery and development. Metabotropic glutamate receptors (mGluRs),(1-4) which 

belong to the Class C GPCRs, are widely distributed in both the central nervous system and 

periphery.(5) The mGluRs have been considered as predominant mediators of glutamatergic 

signaling in many cancers, and the abnormal expression level of mGluRs contributes to many 

diseases,(6) including Parkinson’s disease, Alzheimer’s disease and other brain disorder 

diseases.(7, 8)  There are three subgroups of mGluRs, termed Group I (mGluR1 and mGluR5), 

Group II (mGluR2 and nGluR3), and Group III (mGluR4, mGluR6, mGluR7, and mGluR8).(9) 

Among all the mGluRs,(5) mGluR4 is the most widely expressed in the periphery while both 

the inhibition and the activation of this receptor can trigger therapeutic effects. For example, 

the activation of mGluR4 may reduce glucagon production for patients with diabetes and 

reduce cell proliferation in medulloblastoma condition,(9, 10) whereas the inhibition of 

mGluR4 receptors can decrease cell survival and invasiveness as well as improve response to 

other chemotherapies for patients with colorectal carcinoma.(11, 12) Growing evidence has 

shown that the regulation of mGluR4 is of great therapeutic interest.(1, 4-6, 13-15) However, 

our availability of the active ligands targeting mGluR4 is relatively limited due to many factors 

including the absence of resolved mGluR4 protein structure. The availability of experimental 

structures for mGLURs is summarized in Table S1. 

Computer-aided drug design (CADD) has exerted great influence as technologies 

evolve. Among the widely used CADD methods, some possess the advantages of high 

efficiency, such as molecular docking, and some can predict protein-ligand binding affinity 

with high accuracy, such as the free energy-based methods in conjunction with molecular 

dynamics (MD) simulation. Thus, employing different types of scoring functions for virtual 

screening in a hierarchical way can greatly balance computational efficiency and accuracy. Our 

hierarchical virtual screening (HVS) scheme consists of two types of scoring functions. First 

of all, Glide docking,(16) a popular molecular docking program implemented in the 

Schrodinger software package, is utilized to screen a large compound library effectively. After 

the tree is pruned, the hits of docking screening are further prioritized by the MM-PB/GBSA 

(molecular mechanics Poisson-Boltzmann/Generalized Born surface area) filter.(17, 18) Prior 

to MM-PB/GBSA free energy calculation, MD simulation is usually performed to confirm the 

stability of protein-ligand binding and to sample the conformations of a ligand residing in the 

binding pocket of the drug target. The MD simulation step is necessary when a ligand binding 
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triggers significant conformational change. In this study, we conducted an HVS study for 

mGluR4 using a compound library with various measured activities. Homology modeling 

technique will be first utilized to build the structural model of mGluR4 with a crystal structure 

of mGluR8 as the template. Recently, the structure of mGluR4 has been published for the first 

time with the resolution of 4.00 Å (PDB ID: 7E9H).(19) The structure difference between the 

published one and the one we built reports a root-mean-square-deviation (RMSD) value of 2.03 

Å (435 residues aligned and 3304 atoms compared). The small RMSD value indicates the 

reliability of our homology modeling result. Besides the endpoint MM-PBSA-WSAS and MM-

GBSA-WSAS methods, we will explore the possibility of applying interaction profile scoring 

function (IPSF),(20) recently developed by us in drug lead optimization procedure for a typical 

drug target. IPSF has been successfully applied in drug lead identification procedure for 

multiple drug targets.(20) The findings of this work will not only facilitate the discovery of 

novel inhibitors selectively target a mGLUR by providing the structures of receptors and an 

adequate screening protocol, but also demonstrate the potential of applying IPSF in drug lead 

optimization. 
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Method

Homology modeling. Both mGluR7 and mGluR8 in the group III mGluRs have available 

crystal structures, which might be adopted as a template for building a homology model of 

mGluR4. However, so far in the ChEMBL database (https://www.ebi.ac.uk/chembl/, accessed 

on 08/01/2020) there is only one ligand with the reported Ki value < 100,000 nM targeting 

mGluR7.(21) On the contrary, mGLuR8 protein has a series of ligands with the Ki values 

ranging from 61 nM to over 300,000 nM. Given the fact that mGluR4 shares 78.98% secondary 

structure similarity with mGluR8 (Fig. S1), it is expected that a high-quality homology model 

of mGluR4 can be generated using the mGluR8 structure as a template. The protein sequence 

of mGluR4 was downloaded from Uniprot (https://www.uniprot.org) and sequence alignment 

between mGluR4 and mGluR8 was conducted using the PROMALS3D webserver 

(http://prodata.swmed.edu/promals3d/promals3d.php).(22, 23) After a crystal structure of 

mGluR8 (PDBID: 6BT5, resolution: 2.92 Å) was downloaded from Protein Data Bank 

(https://www.rcsb.org/),(24) we used Modeller 9.20 to build the homology model of mGluR4 

in this study.(25, 26) Among the 1000 homology models of mGluR4 generated by Modeller, 

both the Discrete Optimized Protein Energy (DOPE) scores and the main chain root-mean-

square deviations (RMSDs) between the template and models were taken into consideration to 

select a set of top models.(27) Among these top-ranked models, the homology model of which 

the experimental binding free energies and Glide docking scores of mGluR4 ligands had the 

best correlation was selected for further studies. (28, 29)

Molecular docking. Molecular docking was performed to preliminarily identify high-

affinity ligands from a compound library. The flexible-ligand docking simulations were 

performed using the Glide docking module in the Schrodinger software suite with the standard 

precision (SP) version of the Glide docking scoring function.28 The correlation between the 

predicted docking scores and the experimental binding affinities for the ligands being 

successfully docked to the binding pocket is utilized to evaluate the performance of the scoring 

function in docking screening. The experimental binding free energy  is converted ∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔

from reported Ki data according to the following equation: 

     (1)∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  ― 𝑅𝑇𝑙𝑛𝐾𝑖

 Where R is the gas constant (8.314 ) and T is the room temperature with the 𝐽 ∙ 𝑚𝑜𝑙 ―1 ∙ 𝐾 ―1

value of 298.15 K. We first downloaded all the ligands for both mGlurR4 and mGluR8 from 

ChEMBL database and built the ligand libraries for each receptor respectively. The Ligprep 
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module of Schrodinger software (Maestro version 11.2)(30) was utilized for ligand preparation: 

generating possible ligand states at target pH ranging from 5.0 to 9.0, determining chirality 

from the 3D structure, and writing out at most 32 states per ligand. Next, we used the Protein 

Preparation Wizard module to prepare protein receptors with default settings including 

hydrogen adding, water and co-crystallized solvents removing, and energy minimization for 

hydrogen atoms of the receptors. The selected top-ranked mGluR4 homology models and 

mGluR8 crystal structure was prepared at this step. The refined mGlur4 models were aligned 

to the refined mGluR8 model so that the binding pockets of both receptors are well overlapped. 

For each receptor, the grid file was generated using the Receptor Grid Generation module with 

the center of the binding grid being located at the geometric center of the co-crystallized 

binding ligand (Residue Name E7P) of mGluR8 and the default values of other parameters 

being kept unchanged. There were no other constraints and rotatable groups defined at this 

step. Flexible docking simulation was performed with the Glide Docking module, with the 

scaling factor of van der Waals radius and partial charge cutoff value of 0.80 and 0.15, 

respectively, and intramolecular hydrogen bonds being rewarded. At most 10 poses per ligand 

were written out. For each compound, the docking pose with the best docking score was 

selected to enter the next stage of HVS. 

System setup for MD simulations. Because our flexible docking method only calculates 

the docking score of a ligand to a static receptor, we conducted MD simulations to study the 

conformational change of the receptor triggered by ligand binding. The collected MD snapshots 

were then applied to calculate the protein-ligand binding free energy using an endpoint method. 

MD simulation is a method to mimic the dynamics of ligand binding under the sub-cellular 

environment. For this reason, the prediction results of MD simulation, which were reflected by 

the calculated binding free energy values, are closer to the real state. During the MD simulation 

process, the protein-ligand complexes are immersed in NaCl solvent and finally come to a 

dynamic balance governed by the AMBER forcefields. 

 Each MD system consists of one copy of the mGluR4 or mGluR8 receptor and one docked 

ligand within a rectangular box with approximately 9,000 TIP3P water molecules and about 50 

Na+ and Cl- ions depending on the charge state of the ligand.(31) The whole system was 

neutralized. The starting conformation of the ligand in the corresponding receptor-ligand 

complex was from the selected best docking pose. For the force field parameters, the partial 

atomic charges of ligands were derived using the RESP program to fit the HF/6-31G* 

electrostatic potentials generated using the Gaussian 16 software package,(32, 33) and the other 
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force field for ligands is the General Amber force field (GAFF) in AMBER 18.(34, 35) The 

Antechamber module was utilized to generate residue topologies of ligands.(36) The AMBER 

FF14SB force field was employed to model protein receptors.(37) 

Molecular dynamics (MD) simulation.  MD simulations were performed to produce 

isothermal-isobaric ensembles by the PMEMD.mpi and PMEMD.cuda modules in the 

AMBER 18 package.31 The pressure was set to 1 atm, regulated by the Berendsen barostat.(38) 

Five steps of energy minimization were performed with the mainchain atoms of the receptor 

and the bound ligand being restrained, using the harmonic restraint force constraints decreased 

from 20 to 10, 5, 1, and finally 0 kcal/mol/Å2 progressively. After minimizations, the 

temperature of each system was heated from 50  K to 298.15 K within 3 ns, and then kept at 

298.15 K, which was regulated by Langevin dynamics with a collision frequency of 5 ps-1,(39) 

to simulate the physiological environment. After undergoing the equilibrium phase for 50 ns, 

each system was kept running MD simulation for another 150 ns for sampling. In total, a 203 

ns MD simulation was performed on each ligand with a time step of 2 fs. The trajectories were 

saved every 10 ps for post-analysis, including the calculations of MM-PB/GBSA binding free 

energy and Root-Mean-Square Deviation (RMSD) fluctuations of ligands and receptors. 

MM-PB/GBSA binding free energy calculations. Molecular mechanics-Poisson 

Boltzmann/Generalized Born surface area (MM-PB/GBSA) is a widely used endpoint method 

in solvent binding free energy calculations.(39-46) In this study, MM-PB/GBSA binding free 

energy of each ligand was calculated with the following equations:

Δ𝑮𝑴𝑴-𝑷𝑩/GB𝑺𝑨 = ΔH – 𝑻Δ𝑺 = Δ𝑬MM + ΔGsol – 𝑻Δ𝑺 (2)

Δ𝑬MM = Δ𝑬𝒗𝒅𝒘 + Δ𝑬𝒆𝒍𝒆+ Δ𝑬inter (3)

ΔGsol =  +  (4) Δ𝐺𝑠𝑜𝑙
𝑝 Δ𝐺𝑠𝑜𝑙

𝑛𝑝

Where Δ𝑬𝒗𝒅𝒘 and Δ𝑬𝒆𝒍𝒆 are the changes of van der Waals energy and electrostatic energy, 

respectively. Δ𝑬inter is the change of internal energy (bond, angle, and dihedral energies) upon 

ligand binding. The gas phase MM energy change, Δ𝑬MM, is the sum of the above three energy 

terms. ΔGsol, the solvation free energy, is the sum of electrostatic solvation energy  and  Δ𝐺𝑠𝑜𝑙
𝑝

the non-electrostatic solvation energy . , the polar component of solvation free Δ𝐺𝑠𝑜𝑙
𝑛𝑝 Δ𝐺𝑠𝑜𝑙

𝑝

energy, is calculated by solving the Poisson Boltzmann or the Generalized Born equations.   

, the nonpolar component of the solvation free energy is usually estimated using solvent-Δ𝐺𝑠𝑜𝑙
𝑛𝑝

accessible surface area (SASA). 𝑻Δ𝑺, the change of entropy upon ligand binding, can be 
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predicted by normal mode analysis. However, in this work, we applied a weighted solvent 

accessible surface (WSAS) model to estimate the Δ𝑺 term.(43) As such, this free energy 

method is called MM-PB/GBSA-WSAS. The contribution from internal energies Δ𝑬inter 

cancels out in the “Single Trajectory” protocol,(40, 47) and the Δ𝑬𝒗𝒅𝒘, Δ𝑬𝒆𝒍𝒆, and 𝑻Δ𝑺 are the 

same in MM-PBSA and MM-GBSA binding free energy calculation.  

Δ𝑮𝑴𝑴-𝑷𝑩/GB𝑺𝑨 = Δ𝑬𝒗𝒅𝒘 + Δ𝑬𝒆𝒍𝒆 +  +  – 𝑻Δ𝑺 (5) Δ𝐺𝑠𝑜𝑙
𝑝 Δ𝐺𝑠𝑜𝑙

𝑛𝑝

450 snapshots were evenly collected from the MD sampling phase of each system for the 

subsequent MM-PBSA binding free energy calculation. 

Machine learning (ML)-based IPSF scoring functions. To develop interaction profile (IP) 

based scoring functions, the first step is to accurately calculate the ligand-residue interaction 

energies. We calculated the MM-GBSA free energies between the ligand and all receptor 

residues for 4000 snapshots collected in the sampling phase of MD simulations. An internal 

program was applied to analyze the outputs of Sander decomposition jobs and conduct 

statistical analysis on each component of the MM-GBSA free energy. The regression learner 

module in MATLAB software (version R2020b) was used for constructing regression models. 

The applied ML algorithms include linear regression models, regression trees, support vector 

machines (SVM), gaussian process regression models, and ensembles of trees. Five-fold 

validation and ten-fold validation were both considered with or without principal component 

analysis (PCA) of IP data. For PCA, two modes were investigated, one set the explained 

variance to be 95%, the other explicitly specified the number of principal components, X, 

where X ranged from 1 to 5. 

Results and Discussion

1 Molecular docking and MD simulation of mGluR8. 

The molecular docking result of mGlur8 showed a weak correlation between the 

docking score and the experimental ΔG. We first evaluated the practicability of a crystal 

structure of mGluR8 in VHS study, as this structure was applied by us to construct the 

homology models of mGluR4. To uncover the preliminary correlation between the 

experimental ΔG and predicted binding affinity using the Glide docking scoring function for  

mGluR8 and its ligands, we built the ligand library of mGlur8 consisting of 20 ligands, which 

include all available compounds from the ChEMBL database with reported experimental Ki 

values (Table S1). The experimental ΔG calculated from the reported Ki value and the docking 
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score of each ligand in the library docked to the mGlur8 receptor are listed in Table 1. The 

correlation between docking scores and experimental ΔG of ligands has been shown in Fig. 

1A, with a correlation coefficient R of 0.30. Interestingly, there were 2 ligands, 

CHEMBL39338 and CHEMBL40123, achieved very low docking scores, which mean high 

predicted binding affinity, actually had rather large Ki values (low experimental binding 

affinity). Both compounds possess benzene rings in their chemical structures. After excluding 

these two ligands, the R-value was increased to 0.45. This phenomenon further showed the less 

accuracy of the molecular docking method in ligand-protein affinity prediction. Nevertheless, 

molecular docking is an efficient screening method and is suitable for screening large 

compound libraries at the early stage of VHS. All the 20 ligands for mGluR8 in the library 

were further evaluated using the following more accurate screening filters. 

MD simulations and MM-PB/GBSA-WSAS binding free energy calculation for 

mGluR8 showed an elevated correlation with the experimental ΔG. The RMSDs of the 

ligand and the mGluR8 receptor during the simulation process are shown in Figures S2-S3, 

and the predicted binding free energy by different PB or GB models of each ligand is listed in 

Table 1. The 7 experimental top-ranked ligands (experimental Ki ＜10,000 nM, ΔG ＜ -6.8 

kcal/mol) were considered as active ligands, whereas the rest ligands with Ki equal or larger 

than 10,000 nM were regarded as inactive ones. 6 out of the 7 active ligands were predicted 

very low binding free energy (thus high binding affinity) during MM-PB/GBSA binding free 

energy calculation under different PG/GB models except for CHEMBL277475. The binding 

stability of a ligand is evaluated using the time courses of root-mean-square deviations 

(RMSDs) in MD simulations for atom subsets including mainchain atoms of the receptor, the 

ligand w/wo least-square fittings. To calculate the RMSD of a ligand without least-square 

fitting, we first conducted least-square fitting for the main chain atoms of the receptor, and the 

resulting translation and rotation matrixes were applied to the ligand, and the RMSD was 

calculated directly. As such, a No-Fit RMSDs measure not only the conformational change of 

a ligand, but its translational and rotational movement in the binding pocket. All the 6 active 

ligands had all types of RMSDs smaller than 6 Å and came to a stable state for at least half of 

the simulation time. The small fluctuation of the RMSDs of the active ligands demonstrates 

the stable binding of the ligands to their receptor protein. Among those considered inactive 

ligands, some of them tended to have extremely unstable binding conformations in the binding 

pocket, thus caused very large RMSD fluctuation. In an extreme scenario, some inactive 

ligands which include CHEMBL1672288 and CHEMBL88553 even drifted out of the protein 
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binding site, leading to extremely large values of the ligand’s Non-Fit RMSDs. All inactive 

ligands were predicted to have higher binding free energy, although some of them may seem 

to remain stable in the ligand-protein binding complexes, with a lower RMSD fluctuation of 

each subject, suggesting the MD simulation filter itself cannot screen out all the inactive 

compounds in HVS. 

The last filter in our HVS is endpoint binding free energy calculations. We found that the 

predicted MM-PBSA-WSAS binding free energies and experimental ΔG of the total 20 ligands 

showed an improved correlation with R of 0.55, compared to R of 0.3 for the docking screening.  

Interestingly, all the three MM-GBSA-WSAS scoring functions achieved a better correlation 

than MM-PBSA-WSAS for this system. The correlation coefficients are 0.60, 0.66, and 0.67 

for MM-GBSA1 (igb=1),(48) MM-GBSA2 (igb=2),(49) and MM-GBSA5 (igb=5),(49) 

respectively. The correlation analysis graphs between the predicted versus the measured 

binding affinities for different PB/GB models are shown in Fig. 2. The above results show that 

our HVS method has a high practicability in identification of active ligands for the mGluR8 

structure, thus laying a solid foundation for us to identify active ligands of mGLUR4 with a 

homology model constructed using the mGLUR8 structure as the template. 

2 Homology modeling, molecular docking and MD simulation for mGluR4

Evaluation of homology models of mGluR4 and selection of ligands for the subsequent 

VHS study. We collected 76 ligands from the CHEMBL website to build the library of 

mGluR4 ligands. Among the 1000 homology models generated for mGluR4, three models with 

the best DOPE scores, three models with the smallest RMSDs and three models with both top-

ranking DOPE and RMSE scores were selected as top-ranked models. Among these nine 

models, the one leading to the best correlation between predicted docking scores and 

experimental ΔG of mGluR4 ligand library (R = 0.15) was selected for the subsequent study. 

For this selected mGluR4 model, we ranked the ligands by their docking score from low to 

high, and selected the first half which includes most of the real active ligands for further MD 

simulation experiment. Such a strategy is commonly adopted in real scenarios of virtue 

screening, i.e., selecting top-ranked ligands from docking for further studies, either 

experimental measurement or virtual screening by more accurate CCAD methods. The R value 

between the measured binding affinities and docking scores of the selected ligands is only 0.02 

(Fig. 1B), suggesting more accurate methods are needed to discriminate those ligands. 
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MD simulation results and MM-PB/GBSA-WSAS binding free energy calculation 

results for mGluR4. The plots of the RMSD time courses for every ligand binding to mGluR4 

protein are shown in Figures S4-S5. It is observed that 29 ligands have all RMSD values lower 

than 6 Å, the cutoff (Fig. S4), while 8 ligands have some values of their No-Fit ligand RMSDs 

larger than the cutoff (Fig. S5). All ligands with reported Ki value larger than 10,000 nM were 

considered as inactive ligands. All the four experimental top-ranked ligands with Ki values 

smaller than 10,000 nM (ΔG < -6.80 kcal/mol, considered as active ligands) have only mild 

RMSD fluctuations and the predicted MM-PBSA binding free energies are very low, indicating 

predicted high affinities between ligands and the protein. The correlation between predicted 

MM-PBSA binding free energies and experimental ΔG is higher than that of the docking 

method, with the R-value equals to 0.45. Meanwhile, the correlation between experimental ΔG 

and the calculation MM-GBSA binding free energies have R-values of 0.31, 0.50, and 0.57 for 

MM-GBSA1, MM-GBSA2, and MM-GBSA5 models, respectively. Therefore, all the endpoint 

MM-PB/GBSA-WSAS models achieved a higher correlation between the experimental and 

predicted binding affinities compared to the Glide docking scoring function. The predicted 

binding affinities of ligands using different models are listed in Table 2. It is indicated that the 

most active ligands which have the lowest measured Ki all have very low predicted binding 

free energies under different MM-PB/GBSA-WSAS models. The performance of each model 

revealed by correlation analysis is shown in Fig. 3.

During MM-PB/GBSA-WASA binding energy calculation, we tried different energy scales 

such as setting the inner dielectric constant up to 4 considering that the binding site can partially 

be accessed by solvent and some polar residues exist.(41) However, the correlations between 

predicted MM-PBSA-WSAS binding free energies and experimental ΔG did not have 

significant improvement compared to the result with the inner dielectric constant equal to 1 for 

both mGluR8 and mGluR4 receptor-ligand system. Consequently, we kept the default 

dielectric constant during binding energy calculation.

3 The performance IPSF-based scoring functions on predicting binding affinities for 

mGluR8 and mGluR4 proteins.

For one ligand binding to mGluR4 or mGluR8, we calculated its IP descriptor using 4000 

snapshots collected during the sampling phase of MD simulations.  We then applied the 

“Regression Learner” module implemented in Matlab to construct regression models. The 

performances of all regression models to predict ligand binding affinity to the receptors are 
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summarized in Table 3. For mGluR8, all the models which have reported cross validation R-

square equal or larger than 0.25 are listed in the table. There are a series of models for mGluR8 

protein, including SVM, Gaussian process regression and Linear regression models, appeared 

in both the five-fold and ten-fold cross-validation categories, might suggest SVM and Gaussian 

prcess are good ML algorithms for this problem. The best-perofrmed model using five-fold 

cross validation is a squared exponential gaussian process regression model without conduction 

PCA (R-square = 0.63, RMSE=1.2066), while the best-performed model using ten-fold cross-

validation is a cubic SVM model with PCA (R-value = 0.63, RMSE=1.2173), with PCA for 

dimensional reduction (the explained variance equals to or larger than 95%). However, for the 

mGluR4 protein, there are only three models with their R-squares equal or larger than 0.2 

combining all the models trained under five-fold and ten-fold cross-validation categories, 

which are much fewer than the models for mGluR8. Two models are medium gaussian SVM 

models and the best model is a boosted tress model (R-square = 0.51, RMSE = 1.0293). The 

reason that mGluR4 protein has fewer predictable models lies that mGluR4 has more inactive 

ligands than active ones, leading to the unbalanced training data. With more inactive ligands 

identified for mGluR4, it is expected that the model performance can be improved. Overall, for 

both mGluR8 and mGluR4, the predicted RMSE of cross-validations are smaller than those by 

MM-PB/GBSA-WSAS, while the correlation coefficients are compariable.

4 The structure-activity relationship of predicted active ligands for both mGluR8 

protein and mGluR4 protein.

The predicted ligands with high binding affinities for both mGluR8 and mGluR4 proteins 

are shown in Fig. 4. Because of the high homology between mGluR8 and mGluR4 proteins, it 

is not a surprise that some compounds (CHEMBL33567 and CHEMBL575060) are predicted 

as active ligands for both protein targets. CHEMBL575060 is the glutamic acid, which can be 

considered as the endogenous ligand of both mGluR8 and mGluR4. Other ligands in Fig. 4 

possess structures that are analogous to the glutamic acid, which explains why those 

compounds have high predicted binding affinity. To understand the structure-activity 

relationship (SAR) of these ligands, we collected the representative conformations of those 

ligands and showed them in Fig. 5. Three aggregations of ligand functional groups in the 

binding pocket of mGluR8 and mGluR4 proteins can be identified: carboxyl groups (-COO-) 

and amino groups (-NH3+) tend to overlap at the left and the top of the binding pocket, and 

another negatively charged center, represented by functional groups of -COO-, -SO3
-, -HPO3

-, 

shows up at the right side of the binding pocket (Fig. 5).
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CHEMBL33567, which not only serves as the native ligand of the mGluR8 crystal structure 

but also is the ligand with the lowest Ki value in our datasets for both mGluR8 and mGluR4. 

Encouragingly, this compound was predicted as the most active ligand for both receptors under 

each endpoint free energy model. The reason for the outstanding potency of CHEMBL33567 

compared with other glutamic acid analogs can be speculated from Fig. 6 and 7, which show 

the binding modes of CHEMBL33567 and CHEMBL575060 correspondingly using their 

representative conformations collected during MD simulation. The representative 

conformation for a receptor-ligand complex has the least RMSD value of mainchain atom 

coordinate compared to the average coordinate of the mainchain atom during the sampling 

phase. All functional groups within three regions shown in Fig. 5 can form H-bonds with 

surrounding residues. However, at the right side of the binding pocket, the negatively charged 

functional group of CHEMBL33567, -HPO3
- has more polar interactions with surrounding 

residues than that of CHEMBL575060, -COO-. Overall, there are more H-bonds for mGluR8 

than mGluR4 for both ligands, consistent with the observation that both ligands bind more 

tightly to mGluR8 than to mGluR4. We also observed that CHEMBL33567 forms more H-

bonds with the surrounding residues than CHEMBL575060, also consistent with the 

experimental finding that CHEMBL33567 is more potent than CHEMBL575060. 

Besides, we have also compared our findings with literatures.(50) According to the research 

investigating the structure-activity relationship of ligands serving as agonists and antagonists 

of mGluRs, the agonists and antagonists identified during in vitro tests for mGluR4 all have 

accordance structure pattern with our findings. To summarize their structural feature, favorable 

ligands are all amino acid analogs. The pseudo side-chains consist of Cα (alpha carbon), Cβ 

(beta carbon), Cγ (gamma carbon), and the Δ (delta) position either has a -COO- or a -HPO3
-. 

As a result, the functional groups at the top, right and left side of the ligand binding pocket tend 

to interact with surrounding residues. For example, at the left side of the binding pocket, the-

COO- of an amino acid analog can form H-bounds with SER178 (mGluR8)/SER157 (mGluR4). 

At the top part of the binding pocket, ALA177 (mGluR8)/ALA180 (mGluR4) can form H-

bond with the -NH3+ functional group of the amino acid analog. The ASP309 

(mGluR8)/ASP312 (mGluR4) at the right side of the binding pocket can also have H-bond 

interaction with the functional group at the Δ (delta) position of the ligand pseudo side-chain.            

Though the above preliminary speculation is useful in novel drug development, it is still 

unclear how to develop highly potent, and selective modulators for mGluR8 or mGluR4. To 

further understand the mechanisms which govern the binding potency and selectivity between 
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the two receptors, we conducted binding free energy decomposition using MM-GBSA2. 

Although the correlation between predicted binding free energy and experiment report Ki value 

of MM-GBSA5 shows the best result under different prediction models, the calculated energies 

also pose the highest standard errors (SD) (Table S2-S9), and that’s the reason we chose MM-

GBSA2 model, the runner-up scoring function in correlation analysis, to conduct energy 

decomposition analysis. 

According to the MM-PB/GBSA binding free energy calculation results, we selected 7 

ligands which are experimentally reported most active as well as predicted with high binding 

affinity for both mGluR8 and mGluR4 for analyzing hotspot residues. For each receptor-ligand 

complex, 4000 snapshots were collected from the sampling phase during MD simulation to 

conduct MM/GBSA free energy decomposition calculation. The mean values of the interaction 

energy between receptors and ligands were calculated from the snapshots and hotspot residues 

were identified with the cutoff value of -0.3 kcal/mol. All the hotspot residues that have ligand-

residue interaction energy no larger than -0.3 kcal/mol are shown in Fig. 8 and Fig. 9 for 

mGluR8 protein and mGluR4 protein, respectively. 

From the heatmaps for both receptors, the key residues of mGluR8 and mGluR4 share a high 

similarity as expected. ARG75 (mGluR8)/ARG78 (mGluR4), SER156 (mGluR8)/SER159 

(mGluR4), ASP309 (mGluR8)/ASP312 (mGluR4), LYS314 (mGluR8)/LYS317 (mGLuR4), 

and LYS401 (mGluR8)/LYS405 (mGluR4) show very strong interaction energy with each 

ligand, reflected by a darker color. These shared hotspot residues can explain why mGluR8 

and mGluR4 protein share many binding ligands. Besides, among the hotspot residues not 

recognized by both receptors, ALA154 and ALA155 of mGluR8, and SER157 and GLY158 

of mGluR4 show outstanding interaction with ligands, demonstrating that these residues may 

be the most important hotspot residues responsible for the selectivity between mGluR8 and 

mGluR4. Therefore, the binding free energy decomposition analysis can quantitively identify 

hotspot residues that contribute most to the potency and selectivity of ligand binding. The 

binding profile resulted from MM-GBSA decomposition analysis can guide us to develop 

potent and selective ligands targeting mGluR4 or mGluR8.  

5 The application of homology modeling-docking-MD simulation-binding free energy 

prediction protocol and machine learning prediction.  

In this study, we applied a three-step HVS method to screen the active ligand for mGluR4, 

which does not have a resolved crystal structure, and which has only limited number of ligands 
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with experimental binding affinities. By comparing the prediction result and the reported 

experimental ΔG value of ligands ranging from high binding affinity to low, along with the 

correlation level reflected by the R-value, we demonstrated that flexible docking and MD 

simulation followed by MM-PB/GBSA-WSAS analysis can both predict binding affinity for a 

ligand, with MD simulation and subsequent binding free energy prediction and decomposition 

coming up more precise prediction results.  The experimentally reported active ligands can be 

successfully identified by this hierarchical screening protocol, which demonstrates the 

practicability of applying HVS in searching for potential hits or leads of mGluR4 through 

larger-scale screening study. We are in a process of conducting HVS using druglike screening 

libraries for the mGluR4 target and the result will be reported elsewhere.

For the three-step HVS method, Glide docking can be performed first to make the 

preliminary selection of active ligands from an extremely large library which contains even 

millions of small molecules within days and followed by MD simulation for more accurate 

calculations of binding free energies for the top hits. The final yielded active ligands with 

predicted high affinities should be very promising to be developed into drug leads and 

candidates. Besides, although this study is aimed at developing a virtual screening method for 

ligands targeting at mGluR4, this method may also be applied to study another pair of Group 

III mGluRs,  mGluR6 and mGluR7, for which there is a high homology between them and 

mGluR6 has no experimental structure available while mGluR7 has two PDB entries (Table 

S1). Furthermore, this modeling protocol, which consists of homology modeling, fast docking 

simulations, MD simulations for testing ligand-protein binding stability, and endpoint free 

energy calculations using MM-PB/GBSA-WSAS can be applied to other proteins for which no 

resolved crystal structures are available. 

Molecular docking is an efficient method which can be much quicker but less accurate than 

MD to predict possible binding poses of a ligand binds to the receptor with docking scores to 

measure its binding affinity. Unlike MD simulations which study the dynamics of ligand-target 

interaction in an aqueous solution which mimics the physiological condition of human body, 

docking usages only static conformations to predict a ligand’s binding affinity to the protein. 

Literatures have shown that docking methods can successfully predict near-native binding 

poses, but the binding affinities predicted by the corresponding docking scores are much less 

satisfactory.(51-53) However, with the docking poses generated from Glide docking as the 

starting conformations of the MD processes, the unfavorable ligands will be filtered out 
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through post-MD trajectory analysis and binding free energy calculation. The final simulation 

result from MD is thus reliable.

IPSF is an advanced technique which can address the heterogeneity issue of protein-ligand 

binding using a machine learning algorithm. However, its limitation lies that a large number of 

active and inactive ligands with measured binding affinities must be known to construct the 

drug target-specific IPSF. This requirement may limit the usage of IPSF for a new drug target 

which typically does not have a large number of active and inactive ligands. In this work, we 

have demonstrated that for a typical drug target like mGluR4 or mGluR8 which has tens ligands 

with relatively diverse binding affinities, high-quality target-specific IPSF can be constructed 

to identify new binders through virtual screenings.    

After validated IPSF scoring functions in drug lead identification for six drug targets,(20) we 

evaluated the potential application of IPSF in a typical drug lead optimization project as 

mGluR4 or mGluR8. Unlike the endpoint methods, the model performance of IPSF models 

was evaluated using cross-validation RMSE and correlation coefficient R. As expected, the 

RMSE values, around 1.0 to 1.4 kcal/mol, are much smaller than those predicted by the 

endpoint methods. As to the correlation coefficient R, the IPSF scoring functions achieved 

comparable values achieved by the best endpoint method for both mGluRs. Considering the 

performance of IPSF is not sensitive to the sampling methods,(20) we expect machine learning-

based IPSF scoring function can efficiently guide lead optimization without the need of doing 

long MD simulations to construct a conformation ensemble. 

Conclusion 

In this study, we tested the practicability of a HVS method on drug lead identification for 

mGluR8 and mGluR4 proteins, and the latter does not have a resolved crystal structure so far. 

The docking and MD simulation screening results of mGluR8 demonstrated the applicability 

of an HVS method for screening active ligands with regard to a resolved crystal structure of 

this protein receptor. The application result of this HVS method on the homology model of 

mGluR4 further demonstrated the practicability of this screening protocol and at the same time 

validated the homology model we built for mGluR4 using mGluR8 as the template. What’s 

more, with the preliminary screening by molecular docking which can be finished within days 

and more precise screening by MD simulation, we successfully balanced the computational 

efficacy and accuracy, which is promising to help improve the success rate and reduce the cost 
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during new drug development. With the initially predicted docking scores for all the ligands in 

the library and the further prediction of binding free energies for a series of ligands with top-

ranked docking scores, active ligands with high binding affinities are prone to be screened out. 

As such, this VHS protocol which well balances the screening efficiency and accuracy, has 

high practicability and broad applicability by covering drug targets without solved structures. 

Moreover, the MM-GBSA decomposition analysis provided guidance on the development of 

potent and selective ligands targeting a specific receptor, as well as serving as inputs of machine 

learning to construct IPSF scoring functions to guide drug lead optimization for mGluR8 and 

mGluR4 drug targets. 

Supplementary material

Information of available crystal structures and experiment Ki binding data of mGluR proteins 

is shown in Table S1. Detailed MM-PB/GBSA binding free energies of each ligand-receptor 

system are shown in Table S2-S9. Sequence comparison between mGluR4 and mGluR8 is 

shown in Fig. S1. Fluctuation of root-mean-square-deviations along the time course of MD 

simulations for representative systems are shown in Figures S2-S5.
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Figure caption

Fig. 1 The correlation analysis between experimental ligand-binding affinities and docking 

scores for mGluR8 (A) and mGluR4 (B) receptor. 

Fig. 2 The correlation between experimental and the predicted binding free energies for 

mGluR8 ligands using different endpoints models. A. MM-PBSA, B. MM-GBSA1, C. MM-

GBSA2, and D. MM-GBSA5. The entropy contribution (TS) was estimated using the WSAS 

model.

Fig. 3 The correlation between experimental and the predicted binding free energies for 

mGluR4 ligands using different endpoints models. A. MM-PBSA, B. MM-GBSA1, C. MM-

GBSA2, and D. MM-GBSA5. The entropy contribution (TS) was estimated using the WSAS 

model. 

Fig. 4 Predicted active ligands with top-ranking binding affinities for receptor mGluR8 and 

receptor mGluR4.           

Fig. 5 Functional groups of advantageous ligands from mGluR8 (A) and mGluR4 (B). The 

binding poses of each ligand are from representative conformations of the collected MD 

snapshots. 

Fig. 6 Interaction between CHEMBL33567 and two receptors. The polar interaction between 

ligand and binding-pocket residues is shown in yellow dash lines and ligand atoms are colored 

by elements. Residues within 5 Å to the ligands are shown in lines. The red color of residues 

represents strong residue-ligand interaction, grey color represents medium residue-ligand 

interaction and cyan represents low residue-ligand interaction. (A) Overall view of the ligand-

receptor complex of CHEMBL33567 and mGluR8. (B) Overall view of the ligand-receptor 

complex of CHEMBL33567 and mGluR4. (C) Detailed interaction between CHEMBL33567 

and binding-site residues of mGluR8. (D) Detailed interaction between CHEMBL33567 and 

binding-site residues of mGluR4.

Fig. 7 Interaction between CHEMBL575060 and two receptors. The polar interaction between 

ligand and binding-pocket residues is shown in yellow dash lines and ligand atoms are colored 

by elements. Residues within 5 Å to the ligands are shown in lines. The red color of residues 

represents strong residue-ligand interaction, grey color represents medium residue-ligand 

interaction and cyan represents low residue-ligand interaction. (A) Overall view of the ligand-

receptor complex of CHEMBL575060 and mGluR8. (B) Overall view of the ligand-receptor 
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complex of CHEMBL575060 and mGluR4. (C) Detailed interaction between ligand and 

binding-site residues of mGluR8. (D) Detailed interaction between ligand and binding-site 

residues of mGluR4.

Fig. 8 The heatmap of mGluR8 protein. the Y-axis labels are the names and ID numbers of key 

residues. The X-axis labels are seven selected ligands which the predicted MM-GBSA2 

binding affinities are consistent with experimental results and with low Ki values for mGluR8. 

The bar on the right is a color map measuring the strength of a ligand-residue interaction. 

Fig. 9 The heatmap of mGluR4 protein. the Y-axis labels are the names and numbers of key 

residues. The X-axis labels are seven selected ligands which the predicted MMGBSA2 binding 

affinities are consistent with experimental results and with low Ki values for mGluR4. The bar 

on the right is a color map measuring the strength of a ligand-residue interaction.
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Table 1. List of ligand experimental binding free energies, glide docking scores and MM-

PB/GBSA-WSAS binding free energies (in kcal/mol) for ligands binding to mGlur8 receptor. 

The R-value reflects the correlation between experimental binding free energies and glide 

docking score or MM-PB/GBSA-WSAS binding free energies for ligands.

Molecule ID Δ𝑮Experimental Docking score Δ𝑮𝑴𝑴-GB𝑺𝑨1 Δ𝑮𝑴𝑴-GB𝑺𝑨2 Δ𝑮𝑴𝑴-GB𝑺𝑨5 Δ𝑮𝑴𝑴-𝑷𝑩𝑺𝑨

CHEMBL33567 -9.81 -7.34 -81.95 -83.01 -100.89 -33.35
CHEMBL432038 -9.21 -5.51 -67.80 -60.50 -53.64 -16.02
CHEMBL277475 -9.08 -7.47 -24.88 -10.12 -2.17 11.55
CHEMBL275079 -7.85 -8.27 -67.10 -66.43 -82.01 -30.84
CHEMBL280563 -7.44 -6.77 -60.91 -61.12 -85.62 -27.01
CHEMBL88999 -6.99 -7.52 -61.79 -53.28 -54.21 -27.16
CHEMBL575060 -6.83 -6.36 -73.93 -69.41 -83.83 -34.36
CHEMBL229429 -6.80 -5.79 0.02 4.10 12.33 3.41
CHEMBL1672288 -6.80 -5.82 -9.21 0.05 16.72 14.73
CHEMBL8759 -6.69 -7.56 -60.66 -47.40 -35.63 -26.59
CHEMBL330097 -6.56 -7.63 -51.52 -31.79 5.74 -16.20
CHEMBL34453 -5.91 -7.53 -45.33 -18.53 5.58 -13.41
CHEMBL40086 -5.44 -7.24 -18.33 6.61 54.82 18.49
CHEMBL327783 -5.44 -4.96 -5.67 -0.10 13.38 2.62
CHEMBL66654 -5.44 -4.25 -14.76 -7.84 6.35 6.96
CHEMBL88553 -5.44 -4.54 7.04 8.49 10.14 9.40
CHEMBL88612 -5.44 -3.96 -9.21 -4.52 9.02 10.63
CHEMBL39338 -4.79 -7.18 -63.94 -45.67 -42.88 -11.98
CHEMBL40123 -4.79 -7.61 -27.52 -11.02 16.24 8.59
CHEMBL39221 -4.08 -5.83 53.16 68.96 96.42 102.86
R ------- 0.30 0.60 0.66 0.67 0.55
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Table 2. List of ligand experimental binding free energies, glide docking scores, and MM-

PB/GBSA binding free energies (in kcal/mol) for ligands binding to mGlur4 homology model. 

The R-value reflects the correlation between experimental binding free energies and glide 

docking scores or MM-PB/GBSA binding free energies for ligands.

Molecule ID Δ𝑮Experimental Docking score Δ𝑮𝑴𝑴-GB𝑺𝑨1 Δ𝑮𝑴𝑴-GB𝑺𝑨2 Δ𝑮𝑴𝑴-GB𝑺𝑨5 Δ𝑮𝑴𝑴-𝑷𝑩𝑺𝑨

CHEMBL33567 -8.61 -6.48 -79.18 -93.17 -123.59 -37.85
CHEMBL575060 -7.88 -5.51 -59.43 -48.42 -37.11 -21.43
CHEMBL277475 -7.19 -5.52 -37.47 -23.32 -14.03 -1.12
CHEMBL329236 -6.88 -9.32 -66.73 -58.31 -53.19 -23.57
CHEMBL229429 -6.80 -6.06 -12.75 -1.94 20.44 8.47
CHEMBL1672288 -6.80 -5.64 -12.83 -3.74 14.48 7.47
CHEMBL275079 -6.36 -6.99 -62.95 -52.81 -47.62 -26.09
CHEMBL432038 -6.33 -6.82 -71.52 -61.55 -50.90 -17.90
CHEMBL330097 -6.33 -6.64 -8.55 3.29 34.94 5.68
CHEMBL90501 -6.31 -7.36 -65.29 -47.04 -39.49 -24.53
CHEMBL39573 -5.85 -7.73 -71.77 -71.12 -84.86 -29.14
CHEMBL280563 -5.85 -6.88 -29.72 -24.40 -8.40 -1.02
CHEMBL230951 -5.81 -6.06 -69.14 -77.99 -104.51 -28.18
CHEMBL279838 -5.52 -5.88 -69.69 -40.08 1.77 -7.02
CHEMBL34453 -5.45 -8.18 -60.06 -38.31 -26.28 -23.39
CHEMBL8759 -5.44 -6.86 -65.55 -57.85 -64.99 -28.72
CHEMBL327783 -5.44 -5.74 -8.45 11.11 51.74 8.82
CHEMBL305406 -5.44 -5.96 -19.39 1.84 46.32 10.62
CHEMBL279956 -5.37 -7.66 -23.43 0.61 40.14 1.45
CHEMBL2115159 -4.83 -6.56 -30.64 -20.75 -1.27 4.34
CHEMBL2114110 -4.83 -7.24 -15.57 -12.35 -3.56 4.40
CHEMBL2114109 -4.83 -5.75 -24.48 -16.13 3.35 3.86
CHEMBL2114106 -4.83 -7.66 -24.08 -17.80 -2.94 6.59
CHEMBL40123 -4.79 -6.77 -68.10 -45.38 -16.34 -13.48
CHEMBL40086 -4.79 -8.25 -64.29 -27.04 6.60 -24.07
CHEMBL39338 -4.79 -7.43 -71.09 -66.05 -66.47 -9.04
CHEMBL389558 -4.79 -5.76 -23.13 -28.86 -43.70 5.56
CHEMBL88184 -4.08 -6.49 -38.34 -12.53 23.34 4.64
CHEMBL467234 -4.08 -5.58 -43.37 -15.33 15.91 8.34
CHEMBL448885 -4.08 -5.53 -29.90 -0.29 58.81 2.96
CHEMBL444718 -4.08 -5.56 -20.11 0.00 42.91 0.08
CHEMBL315032 -4.08 -7.21 -36.12 -9.80 32.89 -8.84
CHEMBL313938 -4.08 -6.60 -27.25 -19.07 5.32 -7.80
CHEMBL297150 -4.08 -7.39 -35.88 -6.17 34.77 -7.97
CHEMBL284895 -4.08 -7.72 -30.35 -5.79 34.82 5.41
CHEMBL2021372 -4.08 -5.71 -37.54 -14.91 41.30 -4.71
CHEMBL126608 -4.08 -6.69 -35.63 1.19 55.01 8.36
R ------- 0.02 0.31 0.50 0.57 0.45
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Table 3. List of machine-learning trained IPSF models to predict ligand binding activity to 

mGluR8 and mGluR4 proteins. 

mGluR8, 5-fold Cross Validation
PCA Model type Model detail RMSE R-value

SVM Quadratic SVM 1.2722 0.57Without PCA
Gaussian process regression Squared exponential GPR 1.2066 0.63
Linear regression Linear 1.2704 0.57PCA (specify 

explained 
variance=95) SVM Cubic SVM 1.3228 0.53

Linear regression Linear 1.3163 0.53PCA (specify number 
of components = 1) SVM Linear SVM 1.3309 0.52

Linear regression Robust linear 1.3476 0.50
Stepwise linear regression Stepwise linear 1.3444 0.50
SVM Medium gaussian SVM 1.2974 0.55
Gaussian process regression Squared exponential GPR 1.3473 0.50

PCA (specify number 
of components = 2)

Gaussian process regression Rational quadratic GPR 1.3473 0.50
PCA (specify number 
of components = 3) SVM Quadratic SVM 1.2711 0.57
PCA (specify number 
of components = 4) Linear regression Linear 1.2463 0.60

mGluR8, 10-fold Cross Validation
PCA Model type Model detail RMSE R-value

SVM Cubic SVM 1.3194 0.55Without PCA
Gaussian process regression Squared exponential GPR 1.2814 0.58

PCA (specify 
explained 
variance=95) SVM Cubic SVM 1.2173 0.63

Linear regression Linear 1.3472 0.52
Linear regression Interactions linear 1.3472 0.52
Stepwise linear regression Stepwise linear 1.3472 0.52
SVM Linear SVM 1.3608 0.51

PCA (specify number 
of components = 1)

SVM Coarse gaussian SVM 1.3585 0.51
SVM Medium gaussian SVM 1.3528 0.51PCA (specify number 

of components = 2) Gaussian process regression Rational quadratic GPR 1.315 0.55
PCA (specify number 
of components = 3) Linear regression Interactions linear 1.2766 0.58
PCA (specify number 
of components = 4) Linear regression Linear 1.3309 0.54
PCA (specify number 
of components = 5) SVM Cubic SVM 1.2427 0.62

mGluR4, 5-fold Cross Validation
PCA Model type Model detail RMSE R-value
Without PCA SVM Medium gaussian SVM 1.0749 0.47

mGluR4, 10-fold Cross Validation
PCA Model type Model detail RMSE R-value

SVM Medium Gaussian SVM 1.066 0.45Without PCA
Ensemble Boosted trees 1.0293 0.51
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Fig. 1 The correlation analysis between experimental ligand-binding affinities and docking 

scores for mGluR8 (A) and mGluR4 (B) receptor. 

Fig. 2 The correlation between experimental and the predicted binding free energies for 

mGluR8 ligands using different endpoints models. A. MM-PBSA, B. MM-GBSA1, C. MM-

GBSA2, and D. MM-GBSA5. The entropy contribution (TS) was estimated using the WSAS 

model.
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Fig. 3 The correlation between experimental and the predicted binding free energies for 

mGluR4 ligands using different endpoints models. A. MM-PBSA, B. MM-GBSA1, C. MM-

GBSA2, and D. MM-GBSA5. The entropy contribution (TS) was estimated using the WSAS 

model. 
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Fig. 4 Predicted active ligands with top-ranking binding affinities for receptor mGluR8 and 

receptor mGluR4.        

   

Fig. 5 Functional groups of advantageous ligands from mGluR8 (A) and mGluR4 (B). The 

binding poses of each ligand are from representative conformations of the collected MD 

snapshots. 
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Fig. 6 Interaction between CHEMBL33567 and two receptors. The polar interaction between 

ligand and binding-pocket residues is shown in yellow dash lines and ligand atoms are colored 

by elements. Residues within 5 Å to the ligands are shown in lines. The red color of residues 

represents strong residue-ligand interaction, grey color represents medium residue-ligand 

interaction and cyan represents low residue-ligand interaction. (A) Overall view of the ligand-

receptor complex of CHEMBL33567 and mGluR8. (B) Overall view of the ligand-receptor 

complex of CHEMBL33567 and mGluR4. (C) Detailed interaction between CHEMBL33567 

and binding-site residues of mGluR8. (D) Detailed interaction between CHEMBL33567 and 

binding-site residues of mGluR4.
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Fig. 7 Interaction between CHEMBL575060 and two receptors. The polar interaction between 

ligand and binding-pocket residues is shown in yellow dash lines and ligand atoms are colored 

by elements. Residues within 5 Å to the ligands are shown in lines. The red color of residues 

represents strong residue-ligand interaction, grey color represents medium residue-ligand 

interaction and cyan represents low residue-ligand interaction. (A) Overall view of the ligand-

receptor complex of CHEMBL575060 and mGluR8. (B) Overall view of the ligand-receptor 

complex of CHEMBL575060 and mGluR4. (C) Detailed interaction between ligand and 

binding-site residues of mGluR8. (D) Detailed interaction between ligand and binding-site 

residues of mGluR4.
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Fig. 8 The heatmap of mGluR8 protein. the Y-axis labels are the names and ID numbers of key 

residues. The X-axis labels are seven selected ligands which the predicted MM-GBSA2 

binding affinities are consistent with experimental results and with low Ki values for mGluR8. 

The bar on the right is a color map measuring the strength of a ligand-residue interaction. 
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Fig. 9 The heatmap of mGluR4 protein. the Y-axis labels are the names and numbers of key 

residues. The X-axis labels are seven selected ligands which the predicted MMGBSA2 binding 
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affinities are consistent with experimental results and with low Ki values for mGluR4. The bar 

on the right is a color map measuring the strength of a ligand-residue interaction.
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