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Abstract

There are currently no methods for the acquisition of ultra-wideline (UW) solid-state 

NMR spectra under static conditions that enable reliable separation and resolution of overlapping 

powder patterns arising from magnetically distinct nuclei. This stands in contrast to the variety of 

techniques available for spin-1/2 or half-integer quadrupolar nuclei with narrow central transition 

patterns under magic-angle spinning (MAS). Resolution of overlapping signals is routinely 

achieved in MRI and solution-state NMR by exploiting relaxation differences between 

nonequivalent sites. Preliminary studies of relaxation assisted separation (RAS) for separating 

overlapping UWNMR patterns use pseudo–inverse Laplace Transforms have reported two-

dimensional spectra featuring relaxation rates correlated to NMR interaction frequencies. 

However, RAS methods are inherently sensitive to experimental noise, and require that 

relaxation rates associated with overlapped patterns be significantly different from one another. 

Herein, principal component analysis (PCA) denoising is implemented to increase the signal-to-

noise ratios of the relaxation datasets and RAS routines are stabilized with truncated singular 

value decomposition (TSVD) and elastic net (EN) regularization to resolve overlapped patterns 

with a larger tolerance for differences in relaxation rates. We extend these methods for improved 

pattern resolution by utilizing 3D frequency-R1-R2 correlation spectra. Synthetic and 

experimental datasets, including 35Cl (I = 3/2), 2H (I = 1), and 14N (I = 1) NMR of organic and 

biological compounds, are explored with both regularized 2D RAS and 3D RAS; comparison of 

these data reveal improved resolution in the latter case. These methods have great potential for 

separating overlapping powder patterns under both static and MAS conditions.
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1. Introduction

High-resolution techniques are important for separation of overlapping patterns arising 

from chemically and magnetically nonequivalent sites in solid state NMR (SSNMR) spectra, 

leading to site-specific resolution and unambiguous spectral assignments. For spin-1/2 nuclei, 

this includes techniques like phase-adjusted spinning sidebands,1 magic-angle hopping,2 and 

magic-angle turning.3 For quadrupolar NMR, techniques like multiple-quantum magic-angle 

spinning (MQMAS),4,5 satellite-transition MAS (STMAS),6 dynamic angle spinning (DAS),7 and 

double rotation (DOR)8 are limited to resolving central transition (CT) patterns of half-integer 

spin quadrupolar nuclei with relatively narrow pattern breadths, of which only a handful (e.g., 

11B, 17O, 23Na, 27Al) are routinely investigated. More recently, there have been additional 

proposals for resolving wideline quadrupolar NMR patterns under MAS conditions;9–12 while 

extremely useful, these techniques are limited in their application to ultrawide (UW) NMR 

spectra with overlapping patterns, due to factors such as limited MQ or ST coherence generation, 

complicated spinning-sideband manifolds, and/or challenges in precise magic angle settings.13 

Furthermore, few methods are helpful under static (i.e., no MAS) conditions at the present time. 

Finally, in the case of integer spin NMR where MQMAS experiments are not necessary, high-

resolution spectra are difficult to obtain due to the need for extremely precise and stable magic 

angle settings.14–16 

An alternative possibility for separating and resolving overlapping magnetic resonance 

powder patterns is by relying on different site-specific magnetic resonance properties – for 

instance, distinct spin relaxation, diffusion and/or dynamical behaviours. The spin evolution 

defined by these properties is usually given by a basis set of time-dependent exponential 

functions; hence, subjecting the resulting NMR signals to an inverse Laplace transform (ILT)17–

Page 3 of 38 Physical Chemistry Chemical Physics



4

19 could serve to resolve the individual signals with these distinct properties. This is routinely 

implemented in low-field NMR and in MRI, where diffusion and relaxation are prime contrast 

mechanisms;20–22 however, their routine use in SSNMR is rarer. Lupulescu et al. demonstrated 

that relaxation assisted separation (RAS) could resolve relatively narrow, overlapping CT 

powder patterns of half-integer quadrupolar nuclei, using a pseudo–ILT with a non-negative 

least-squares (NNLS) fitting of the relaxation data.23 Iijima and Shimizu implemented RAS for 

static 2H NMR,24 while Boutis and Kausik used it for separating patterns influenced by chemical 

shift anisotropy (CSA).25 

We have extended RAS methods for resolving overlapped UW patterns,26 including those 

exceeding 250 kHz in breadth due to large anisotropic NMR interactions,27 using stabilized 

solutions of the NNLS with Tikhonov regularization (Non-Negative Tikhonov Fitting – NNTF). 

RAS measurements based on T1 and T2
eff (i.e., effective T2) were thus used to resolve patterns of 

both half-integer and integer-spin quadrupolar nuclei, as well as spin-1/2 patterns influenced by 

large CSAs.26 These precedents could further benefit from the application of WURST28,29 pulses 

(for direct excitation)30 or broadband adiabatic inversion-cross polarization (BRAIN-CP) (for 

CP-enhanced excitation),31 combined with measurements of T1 and T2 (or T2
eff) relaxation time 

constants using inversion recovery (IR)32 and CPMG33,34 sequences, respectively.35 In particular, 

all of these sequences are relatively simple, utilize low RF powers, and can be applied to a wide 

array of spin-1/2 and quadrupolar nuclei.27,36,37 

All RAS approaches involve an inversion of the NMR relaxation data, transforming it 

from the time domain to the relaxation-rate domain. Ill-posed inversion problems of this type are 

inherently sensitive to experimental noise, and the resulting solutions can be quite unstable.38 

Previous RAS work thus implemented regularization procedures by incorporating an additional 
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l2-norm constraint in the NNLS regression,39,40 truncated singular value decompositions 

(TSVD),38,41–43 l1-norm constraints,44–46 and elastic net (EN) regularizations;43,47 the use of neural 

networks48 and principal component analyses (PCA) have also improved the robustness of these 

relaxation measurments.49,50 Previous work also demonstrated the resolution improvement 

capabilities of using T1-T2 correlations to obtain higher-dimensional relaxation spectra.42,44,51,52 

This study describes the potential of using improved regularized methods for resolving 

overlapping SSNMR powder patterns. To this end, protocols were developed to acquire R1 (T1
–

1)-  and R2 (T2
–1)-encoded NMR datasets using WCPMG-IR, BRAIN-CP-IR, and QCPMG-IR 

pulse sequences.35 RAS processing of these data employed custom-written routines stabilized 

with TSVD and EN regularization, which substantially reduce both the computational 

requirements and sensitivity to artifacts, as well as denoising by PCA. An improved pattern 

resolution can be realised by encoding both R1 and R2 domains, as 3D RAS datasets separating 

powder patterns along the R1 and R2 axes can yield separations that are not achievable from 2D 

datasets. Experimental applications to the resolution of 2H (I = 1), 35Cl (I = 3/2) and 14N (I = 1) 

UWNMR datasets are discussed.

2. Theory

2.1 Multidimensional Inverse Laplace Transforms with EN and TSVD Regularization

Although the challenges of and solutions for multidimensional ILT of NMR and MRI 

relaxation datasets have been described in detail,38,41,51,53 a summary of the inversion methods 

used in the current work are explained herein for clarity. 2D or 3D structures defined over a 

continuous domain are capitalized (e.g., F); their discrete analogues are capitalized and 
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boldfaced (e.g., F); and any 1D vectors are lowercase and boldface (e.g., f). Quantities spanning 

domains of , , and , are 1D vectors, 2D matrices, and 3D arrays, respectively.  R
m × 1  R

m × n  Rk × m × n

The problem considered here is that of a signal giving rise to a broad NMR powder 

pattern, which is undergoing simultaneous exponential decay due to two independent relaxation 

mechanisms (e.g., T1 and T2). This signal can be modelled as: 

 G(τ,τʹ,t) = ∫∫∫K(R1,R2,τ,τʹ)exp(iνt) F(R1,R2,ν) dR1dR2dν +  ϵ(τ,τʹ,t) (1)

where G(τ,τʹ,t) is the signal viewed as a function of a direct, spectrum-encoding acquisition time 

t and over two indirect relaxation dimensions τ and τʹ; F(R1,R2,ν) is a distribution correlating the 

powder patterns to their associated relaxation rates;  describes experimental noise; and K ϵ(τ,τʹ,t)

is the kernel that encodes the relaxation behaviours. This is modelled as a product of a kernel that 

encodes R1, K1(R1,τ) = 1–2exp(–R1τ), with a kernel that encodes R2, K2(R2,τʹ) = exp(–R2τʹ) (vide 

infra). The goal of RAS is to estimate F(R1,R2,ν) from . This is a 3D inversion problem G(τ,τʹ,t)

that can be reduced to 2D by considering Eq. (1) on a frequency-by-frequency basis;41 i.e., by 

Fourier transforming the signal over the direct-acquisition time dimension, t, such that G(τ,τʹ,t) 

. Considering only a single frequency point, νk, the problem then reduces to solving FT(t)
 G(τ,τʹ,ν)

a 2D Fredholm integral of the first kind:38

 Gk(τ,τʹ) = ∬K(R1,R2,τ,τʹ) Fk(R1,R2) dR1dR2 +  ϵ(τ,τʹ) (2)

This 2D inversion problem is evaluated numerically with a non-negative least-squares (NNLS) 

regression, which is reduced to a 1D inversion problem by 

fg
k =  min

f ≥ 0
(‖K·fk – sk‖2

2) (3)

where discrete matrix representations of  and  have been vectorized by Fk(R1,R2) Gk(τ,τʹ)

rearranging and stacking their columns as  and , respectively, and the fg
k ∈  R(n1·n2) × 1

sk ∈  R(m1·m2) × 1
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discrete kernel K = K1  K2 with K . The label ‘g’ differentiates the signal fg that ⊗ ∈  R(m1·m2) × (n1·n2)

minimizes the norm from f in the regression. n1 and n2 refer to the number of rates used to model 

R1 and R2 relaxation, respectively, and m1 and m2 are the number of experimental time 

increments used to encode R1 (τ increments) and R2 (τʹ increments; also, the number of CPMG 

spin echoes) relaxation rates, respectively. A non-negativity constraint is imposed since the 

experimental rates describing relaxation are strictly non-negative. Any constraints enforced in 

the NNLS in general are referred to as regularization (vide infra). In general,  and  ‖𝐱‖2 ‖𝐱‖1

denote the l2 and l1 Euclidean norms of , respectively. 𝐱

In principle, the resultant fg that minimizes the norm in Eq. (3) can be transformed back 

into a matrix for every k, thereby forming a 3D dataset as . Solutions to Eq. (3), Fg ∈  R
k × n1 × n2

however, are extremely sensitive to the experimental noise; such problems are classified as ill-

posed,54 and require additional regularization constraints to help stabilize their solutions. Elastic-

net (EN) is one form of regularization that we have adopted, and refers to the linear combination 

of additional l2 and l1 norm constraints.35,47 The additional l2 norm serves to minimize the 

condition number of the kernel by penalizing its small non-zero singular values, which attenuates 

the amplitude of the experimental noise in the NNLS fit. The l1 norm imposes a sparsity 

constraint that can force some solutions to zero, which is often useful for multi-component 

relaxation or distributions of relaxation rates.45,47 EN regularization introduces these norms into 

Eq. (3):

fg
k =  min

f ≥ 0
(‖K·fk – sk‖2

2 +  α‖fk‖2
2 +  λ‖fk‖1) (4)

where α and λ are called the regularization parameters, which are weighting factors for the l2 and 

l1 norm constraints, respectively. The l2 norm constraint is implemented here using Tikhonov 

regularization,26,39,40,54 such that
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fg
k =  min

f ≥ 0 (‖( K
αL)fk – (sk

𝟎)‖2

2
+  λ‖fk‖1) (5)

where L  is the discrete, second-order derivative operator necessary for ∈  R(n1·n2 – 2) × (n1·n2)

inversion.26,43,54,55 In this work, the NNLS regression including the l1 constraint is evaluated 

directly in Eq. (5) using the novel interior point method developed by Boyd et al.45 The optimal 

λ for the l1 norm constraint can be determined with a characteristic S-curve by examining the log 

of the residual norm as a function of λ (vide infra; see supporting information Figure S5).42,56 

As mentioned, the kernel in Eq. (5) is defined as the outer product between the two 

kernels used to describe R1 and R2 relaxation 

K =  K1 ⊗  K2 (6)

where K1 , K2 , and K . When many relaxation rates are used to ∈  Rm1 × n1 ∈  Rm2 × n2 ∈  R(m1·m2) × (n1·n2)

define K, the inversion problem becomes computationally expensive. One approach to overcome 

the computational cost is to reduce the dimensionality of the problem using truncated singular 

value decomposition (TSVD).41,43 The SVD of Ki (i = 1, 2) can be written as

Ki = Ui ΣiVT
i (7)

where Ui  and Vi  are orthogonal matrices whose columns form the singular ∈  Rmi × mi ∈  Rni × ni

vectors of Ki, i 
 has diagonal non-negative singular value entries σr (r = 1, …, mi) of Σ ∈  Rmi × ni

progressively decreasing magnitude, and the superscript T indicates matrix transposition. To 

reduce the dimensionality of the kernel, it is projected onto a low-rank subspace using only the 

first ri singular values and corresponding singular vectors:

Ki =  Σri
i (Vri

i )T (8)

K =  K1 ⊗  K2 (9)

and the signal is compressed as41
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Sk =  (Ur1
1 )T

·Sk·Ur2
2

(10)

where  ,  ,  ,  , , , and ri is Uri
i ∈  Rmi × ri Vri

i ∈  Rni × ri Σri
i ∈  Rri × ri K ∈  R(r1·r2) × (n1·n2) Sk ∈  Rm1 × m2 Sk ∈  R

r1 × r2

some value less than mi that is determined with the maximum entropy-based criterion separately 

for each kernel Ki.43,57  is then rearranged into a vector to be used in 1D NNLS as . Sk sk ∈  R
(r1·r2) × 1

The total dimensionality of the kernel and signal can then be substantially reduced depending on 

number of singular vectors and values retained, resulting in faster calculations and increased 

regularization. With these provisions, Eq. (5) can be described as the sparse non-negative 

Tikhonov fitting (Sparse NNTF):

fg
k =  min

f ≥ 0 (‖( K
αL)fk – (sk

𝟎)‖2

2
+  λ‖fk‖1) (11)

where the total concatenated kernel size is  and the concatenated signal size is R(r1·r2 +  n1·n2 – 2) × (n1·n2)

. As mentioned, this way of casting the ILT problem then needs to be evaluated for  R(r1·r2 +  n1·n2 – 2) × 1

every frequency point, k (k = 1, 2, 3, …, np) defining the SSNMR powder pattern, the result of 

which is used to form the 3D dataset Fg.

2.2 Spectral Denoising with Principal Component Analysis

A 3D ν-R1-R2 correlation experiment, as described above, can be useful for achieving 

high resolution; however, its performance is sensitive to the signal-to-noise ratio (SNR) – a 

parameter that directly affects the performance of any NNLS regression. Spectral reconstruction 

with principal component analysis (PCA) can be implemented to increase overall SNRs.49,50 

PCA fundamentally operates along similar lines of the SVD described in Eq. (7), except in this 

case the matrix of the centered 2D NMR signal X = G(τ, ν) or G(τʹ, ν) is factored with SVD. If X 

is the centered matrix of G according to
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 X =  (x1– x1, ... xp– xp)T  (12)

 where p is the column index for X, then the SVD of X is

X = UΣVT (13)

where the columns of V are the principal directions/axes of X, and the columns of U·Σ are the 

corresponding principal components. Similar to TSVD, only the first b columns are retained 

from V and U·Σ, which are a lower variance representation of the data (i.e., a low dimensional 

subspace or projection). The signal is then reconstructed as

 Zj = Ub
j  Σb

j (Vb
j )T (14)

where Z has the same dimensions as X but is now of lower rank, and j indexes the relaxation-

delay increment (i.e., τj or τʹj). The 2D NMR signal is thus denoised for every point in the other 

relaxation dimension. For example, every 2D ν-τ plane of the 3D data is individually denoised 

for each j (j = 1, 2, 3, … m2) number of echoes using this procedure. It is possible to determine b 

with a maximum entropy criterion (vide supra); however, we have empirically found robust 

performance with b = 2 or 3 throughout this work. It is important to note that PCA denoising is 

performed during pre-Sparse NNTF processing, on the input NMR relaxation data (i.e., before 

evaluating Eq. 11); in this way the data is denoised without augmented spectral features, and 

retains its original dimensions. 

3. Experimental Methods

3.1 Samples

Glycine HCl [Sigma Aldrich], histidine monohydrate HCl [Sigma Aldrich], isoxsuprine 

HCl [Sigma Aldrich], xylazine HCl [VWR], betaine HCl [Sigma Aldrich], and 1,8-

dimethylnapthelene-d12 [Cambridge Isotopes] were purchased; all were all used in subsequent 
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NMR experiments without further purification. The identities and purities of the samples were 

verified through comparisons with previously reported NMR spectra.58–61 A novel 

RbCl:CdCl2:Urea cocrystal was prepared mechanochemically via ball milling of the dried 

reagents in the appropriate molar ratios (1:1:1): rubidium chloride [Sigma Aldrich], cadmium 

chloride [Sigma Aldrich], and urea [Sigma Aldrich]. This synthesis used a Retsch Mixer Mill 

400, 10 mL stainless steel milling jars, and two 7 mm stainless steel ball bearings. All samples 

were ground into fine powders and packed into 5 mm outer-diameter glass tubes that were sealed 

with Teflon tape.

3.2 Solid-State NMR Spectroscopy

NMR spectra were acquired using a Bruker Avance NEO console and a 14.1 T 

Magnex/Bruker (υ0(1H) = 600 MHz) wide-bore magnet at resonance frequencies of υ0(14N) = 

43.348 MHz, υ0(35Cl) = 58.792 MHz, and υ0(2H) = 92.104 MHz. A home-built 5 mm double-

resonance (HX) probe was used for all experiments. All data were collected under static 

conditions (i.e., stationary samples). Spectra were acquired with 1H continuous-wave (CW) 

decoupling using RF fields of 50 kHz. RF pulse powers and chemical-shift reference frequencies 

were calibrated using the following standards: (i) 14N reference: NH4Cl with δiso = 0 ppm; (ii) 

35Cl reference: NaCl (s) with δiso = 0.0 ppm; and (iii) 2H reference: D2O (l) with δiso = 4.8 ppm.

3.3 Spectral Processing

All datasets were processed in MATLAB using custom-written code. NMR data were 

acquired using pulse sequences that implemented inversion-recovery (IR) – sometimes with the 

aid of an adiabatic pulse and CPMG refocusing: WCPMG-IR, BRAIN-CP-IR, or QCPMG-IR 
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(Scheme 1).35,62 During each IR delay increment, τ, NMR signals were acquired with CPMG-

windowed acquisitions; the individual spin echoes where then individually Fourier transformed 

and phase-corrected with an automatic zeroth, first, and second-order phasing routine, resulting 

in a 3D dataset, G(τ, τʹ, ν). For 2D RAS processing, the 3D dataset was summed over the rate 

dimension that is not being analyzed. For example, R1-RAS was accomplished by summing over 

the entire R2 dimension in the 3D dataset, resulting in a 2D G(τ, ν) data set. Thirty-two 

logarithmically sampled τ increments were measured in every experiment. SNRs were calculated 

as the ratio of maximum spectral intensity to the standard deviation of the baseline noise along 

the relaxation dimension for a 1D slice of any 2D or 3D dataset presented herein: SNR = 

max(s)/σnoise.63,64 Sparse NNTF was calculated in MATLAB using custom code that implements 

the regularization toolbox by Hansen55 and the l1-regularized NNLS routine of Boyd et al.45 All 

MATLAB code used is available at github.com/rschurko/RAS; simulation input files and pulse 

programs are available from the authors upon request.

4. Results and Discussion

4.1 Overview

WCPMG-IR, BRAIN-CP-IR, or QCPMG-IR pulse sequences (Scheme 1) were used to 

experimentally acquire 3D ν-τ-τʹ datasets.35 R1 was encoded via IR over a logarithmically 

incremented delay τ, leading to an exponential recovery of the form 1–a⸱exp(–R1τ), where a = 2 

for direct excitation, and a = 1 + ε for CP, where ε is the CP enhancement factor.35 R2’s were 

encoded with CPMG sequences over a delay τʹ that was linearly incremented via the number of 

CPMG loops, N (where N = m2 in the theory section), leading to an exponential decay of the 

form exp(–R2τʹ) (N.B.: R2 is in fact reflecting the effective T2, T2
eff, in cases where 1H-S dipolar 
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coupling is present and decoupling is active on the 1H channel; however, herein R2 is used in 

every case for simplicity of notation). The result is a 3D data set, but since the τʹ increments are 

obtained as a result of windowed CPMG acquisitions, the experimental time requirements are the 

same as those of a standard 2D NMR experiment. For both T1 and T2, it is also possible that the 

encoded relaxation behaviour is multiexponential. An example of an experimental 3D ν-τ-τʹ 

dataset is shown in the supporting information (Figure S1).

Scheme 1: (a) The BRAIN-CP-IR pulse sequence, (b) the WCPMG-IR pulse sequence, and (c) 
the QCPMG-IR pulse sequence. The delay time, τ, is logarithmically incremented in every case 
which encodes R1 relaxation. τʹ represents the R2 encoding, which is incremented linearly via the 
number of loops, N. In (a) the phase of the 1H excitation pulse controls whether signal is stored 
as ±Sz(t) during τ; this can also vary depending on the WURST-A sweep direction. These details 
have been previously described.35 In (c) a θ refocusing pulse is used for signal enhancement and 
φ1 and φ2 are cycled according to an 8-step phase cycle.62,65–67 
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Herein, we describe the use of BRAIN-CP-IR, WCPMG-IR, and QCPMG-IR 

experiments to acquire experimental 2D or 3D datasets suitable for RAS. First, the application of 

2D RAS is benchmarked on synthetic datasets to systematically demonstrate the outcomes of EN 

and TSVD regularization methods as well as those of PCA denoising; these methods are then 

tested with one experimental 2H (I = 1) dataset. Second, 3D RAS is demonstrated with synthetic 

datasets that outline the processing pipeline and test these same numerical methods. Finally, 3D 

RAS is demonstrated for several experimental datasets and compared with 2D RAS, including 

35Cl (I = 3/2), 2H (I = 1), and 14N (I = 1) NMR examples that show the potential of 3D RAS for 

separating overlapping powder patterns with clearly resolved features.

4.2 2D RAS

The effects of EN and TSVD regularization were first examined using a 2D 

implementation of the Sparse NNTF inversion described earlier, as applied to ν-τ or ν-τʹ datasets. 

To this end, a synthetic CPMG dataset of two overlapping powder patterns, with parameters 

typical of 35Cl in organic hydrochloride (HCl) salts, was used as input (Figure S2); 100 echoes 

were simulated across the τʹ (R2) dimension and 1000 logarithmically spaced rates supplied to the 

kernel. The size of the kernel was K  ℝ(100)×(1000) without TSVD and   ℝ(22)×(1000) with ∈ K ∈

TSVD, resulting in much faster calculations in the latter case. Figure 1 (and Figure S3) shows 

evaluations of the Sparse NNTF for several input signals with distinct SNRs, and for different R2 

rates applied to each powder pattern. In these simulations, α represents the amount of l2 

regularization, which can be determined with a characteristic L-curve;26,55 the resulting optimal α 

is often on the order of the standard deviation of the noise and is set as such throughout. λ 

represents the amount of l1 regularization, which can vary depending on the amount of noise 
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and/or how close the rates or distributions of rates are to one another. If λ is set too low, then no 

sparsity is imposed – but if it is too high, then multiple unique rates will appear as just a single 

rate distribution in the RAS spectrum, thereby hindering pattern separation (Figure S4). The 

optimal λ is determined using a S-curve routine in this work (Figure S5).42,56 

Figure 1: 2D R2 RAS of simulated nonequivalent CT powder patterns using synthetic CPMG 
data. The simulated patterns correspond to the case of two magnetically-distinct 35Cl nuclei with 
EFG tensor parameters of CQ = 10 and 9.8 MHz and ηQ = 0.6 and 0.1, respectively, at a 14.1 T 
field. The first two columns show the 2D RAS ν-R2 contour spectrum and a projection of the 
corresponding 1D R2 dimension for different SNRs, as indicated. Each row has a unique 
combination of applied rates R2,A (T2,A

–1) and R2,B (T2,B
–1). In every case (a – g) the regularization 

parameters used for RAS are noted as α for the l2 norm and λ for the l1 norm constraint, 
respectively. (g) The same input signal as (f) is denoised using PCA prior to RAS. (h) 
Projections of the individual powder patterns from their respective rate distributions in the RAS 
spectrum from (g).
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These simulations show that when the supplied rates are far apart (e.g., R2,A = 0.2 ms–1 

and R2,B = 0.033 ms–1) and the SNR of the input data is high, two distinct rate distributions are 

observed in the frequency-R2 contour plot and the 1D R2 projection, where each corresponds to a 

distinct powder pattern in the CPMG dataset (Figure 1a). Solutions in this relatively low-noise 

regime are stable and provide two distinct rate distributions even as the rates become 

increasingly similar (Figure 1b and 1c). As the SNR decreases, two isolated rate distributions 

can still be identified when the rates are far apart (Figure 1d), but the distributions start to 

overlap as the rates get closer (Figure 1e); however, the sparsity constraint of l1 regularization 

still helps to maintain two distinct distributions, as evidenced by the two peaks in the R2-

dimension (even though there is still some degree of overlap). Eventually, if noise is high and 

rates are closely spaced, two distributions are not identifiable even with EN and TSVD 

regularization (Figure 1f). This can be problematic, resulting in either long experimental times 

for improving the SNR, or in preventing studies from intrinsically insensitive or chemically 

dilute nuclei of interest. Reconstructing the input data with PCA (Eq. 12-14), which effectively 

discards high-noise (or high-variance) components in the spectral data,49 can alleviate this 

problem. This is illustrated in Figure 1g, which took the input data corresponding to the 

challenging case above (Figure 1f), and reconstructed it using just two principal components. 

PCA improves the SNR of the input relaxation data (i.e., the data pre-processed before Sparse 

NNTF) by approximately a factor of 12, making the solution of the 2D RAS problem much more 

stable and identifying the correct rate distributions with little overlap and few artifacts. 

Individual powder patterns can be projected from their respective rate distributions (Figure 1g), 

revealing complete separation from one another (Figure 1h). 
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2D RAS processing was applied to an experimental 2H NMR dataset for 1,8-

dimethylnapthelene-d12, for the purpose of separating the overlapping powder patterns. The 1D 

NMR spectrum shows two nonequivalent 2H sites associated with methyl and aromatic deuterons 

(Figure 2a).61 A modified QCPMG-IR sequence (Scheme 1) was used to encode R1’s for either 

site while providing T2-weighted signal enhancement in this case, where the refocusing pulses 

use a flip angle of θ = 36° for signal enhancement.62,67–71 The 2D R1 RAS Sparse NNTF routine 

with EN and TSVD regularization results in a 2D spectrum indicating unique R1 distributions for 

each deuteron site (Figure 2b). PCA denoising was not necessary for this dataset. The added 

regularization constraints permit high-resolution separation of the overlapped powder patterns. 

These distributions are characteristic of R1-anisotropy as has been previously observed in 2H 

SSNMR spectra.35,72,73 There is a low intensity (i.e., < 1% max spectral intensity) rate 

distribution around 0 Hz for the broad aromatic site, since in this frequency region, the two 

patterns are the most overlapped in the 1D spectrum and the pattern corresponding to the 

aromatic site is approximately five-times less intense than that of the methyl site. Summing over 

specified rates in the distribution can recover uniform powder patterns corresponding to each 

site; the rates that are summed over can easily be fine-tuned for optimal separation (i.e., as 

represented by the dashed red line in Figure 2b). Projections of the powder patterns from each 

rate distribution reveal 2H patterns that match well with typical line shapes for 2H methyl and 

aromatic moieties (Figure 2c). 2D R2 RAS in this example was not as useful as R1-encoding, as 

both 2H sites have similar, closely overlapping R2 distributions; however, the R2 encoding may 

be useful for 3D RAS for this sample (vide infra). 
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Figure 2: (a) Experimental 1D 2H NMR of 1,8-dimethylnaphthalene-d12. (b) 2D R1 RAS of 1,8-
dimethylnapthelene-d12 with regularization parameters α = 0.015 and λ = 0.02 using R1 data 
acquired with QCPMG-IR as input. PCA denoising was not necessary for this dataset.  (c) 
Projections of the powder patterns associated with each rate distribution from above and below 
the dashed red line from the RAS spectrum. Relative intensities of the patterns are scaled 
according to the factors on the right.

It is important to note that, in general, the rate distributions associated from 2D RAS may 

not correspond to the ground-truth rate values (i.e., the exact rate distributions, R1 and/or R2, that 

could be measured in the absence of noise): Sparse NNTF solutions are sensitive to the 

experimental noise, which can bias the calculated, inverted rates. Regularization can stabilize the 

solutions; however, it can also affect the inverted rate distributions – especially the l1 norm 

constraint used in EN.47 In the current work RAS is used to resolve overlapped spectra; hence, 

the resulting rates should be interpreted with caution and verified with other methods.35 

4.3 3D RAS

Synthetic datasets for 3D RAS used simulated spectra based on two overlapping static 

CT patterns corresponding to two non-equivalent 35Cl sites though in principle, the shape of the 

frequency pattern could be anything (e.g., CSA patterns, Pake doublets, spinning sideband 
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manifolds, disordered distributions, etc.). The two sites (A and B) were simulated with EFG 

tensor parameters of CQ = 10 and 9.8 MHz and ηQ = 0.6 and 0.1, respectively, at a 14.1 T field 

and relaxation time constants are applied for either site with R1,A = 4 s–1, R1,B = 1.5 s–1, R2,A = 

550 s–1, and R2,B = 300 s–1. IR behavior is modelled with 32 logarithmically-spaced τ increments, 

and transverse decays are modelled with 64 linearly-spaced CPMG echoes (Figure 3a,b). R1 and 

R2 kernels were sampled with 200 rates each, resulting in a kernel size of K  ℝ(2048)×(40000) ∈

without TSVD and   ℝ(78)×(40000) with TSVD, again offering a substantial reduction in K ∈

computational cost. Eq. 11 was evaluated for the Sk dataset after rearranging it into a vector for 

Sparse NNTF input as Sk    for every frequency point, initially without l1 and/or l2 
TSVD

Sk
rearrange

sk

regularization in this example. The output is therefore a vector containing the joint R1 and R2 rate 

distributions that can be rearranged into a matrix  for every frequency point, thereby fg
k

rearrange
Fg

k

yielding a multidimensional array describing R1, R2, and ν. As this can be difficult to visualize 

and interpret, it may be useful to instead examine the 2D ν-R2 (Figure 3c) or ν-R1 plots (Figure 

3d), which are generated by summing over all the rates in the opposite rate dimension. 

Sometimes, it is also beneficial to examine the 2D R1-R2 correlation map by summing over all 

frequency points (Figure 3e). 2D RAS processing of the noiseless, two-site synthetic dataset 

yields a R1-R2 correlation map showing just two high-resolution peaks, as expected. Each peak 

appears at rates that match perfectly with the simulated rates, as do the projections of both 

powder patterns extracted from each of the unique rate distributions (Figures 3f). 
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Figure 3 (a) Synthetic τ-τʹ data at a single frequency point (Sk) of two nonequivalent simulated 
35Cl NMR patterns that are summed together and used as input for 3D RAS without added noise 
and (b) 1D frequency representation of the individual sites and their sum. The patterns are 
simulated with EFG tensor parameters of CQ = 10 and 9.8 MHz and ηQ = 0.6 and 0.1 for sites A 
and B, respectively, at a 14.1 T field and relaxation time constants are applied for either site with 
R1,A = 4 s–1, R1,B = 1.5 s–1, R2,A = 550 s–1, and R2,B = 300 s–1. 2D projections after performing 3D 
RAS on the synthetic 3D dataset of the mixture for the (c) ν-R2 projection (summed over the R1 
dimension) and the (d) ν-R1 projection (summed over the R2 dimension). (e) The R1-R2 
correlation map obtained by summing over the frequency dimension; no regularization is used as 
indicated by α = 0.0 and λ = 0.0. (f) Projections of the individual powder patterns associated with 
each rate distribution. (g) Synthetic τ-τʹ data with added noise and (h) a 1D frequency 
representation of the data. The R1-R2 correlation map after 3D RAS (i) without regularization (α 
= 0.0, λ = 0.0), and (k) with regularization and PCA reconstruction such that the SNR of the 
input data increases (i.e., the SNR prior to RAS processing). (j,l) Projections of the individual 
powder patterns associated with the rate distributions in each case.

Page 20 of 38Physical Chemistry Chemical Physics



21

The same dataset is presented in Figure 3g, 3h, except with the addition of Gaussian 

noise. The R1-R2 correlation map arising after performing 3D RAS without any regularization 

(Figure 3i) shows many spurious artifacts, and a low-resolution “smear” of the signal between 

the two expected (R1,R2) solutions. This complicates the identification of the two components 

from projections, and the retrieval of clean powder patterns (Figure 3k). PCA denoising based 

on two principal components improves the SNR of the input relaxation signal by approximately 

an order of magnitude, greatly improving the performance of the Sparse NNTF. The resulting R1-

R2 correlation maps then show two distinct components corresponding to each powder pattern 

(Figure 3j) that can be projected separately with only minor distortions originating from the 

noise (Figure 3l). 

Using these numerical methods, the experimental 3D ν-R1-R2 35Cl NMR dataset of a 

glycine HCl : histidine HCl 3:1 w/w mixture (Figure S1) was processed using both 2D and 3D 

RAS. The benefits of regularization from l1 and l2 penalties are first compared using a 2D R1-

RAS example. 2D R1-RAS is initially used with only TSVD and l2 Tikhonov regularization 

(Figure 4a), similar to the NNTF method previously reported by our research group.26 An 

intense narrow signal is identifiable around +5 kHz and below R1 = 1 s–1, which is likely 

associated with histidine HCl (denoted by †); however, there is still a substantial amount of 

broad signal (i.e., above 10 kHz and below –10 kHz) around the same rate distribution that likely 

corresponds to glycine HCl. Above R1 = 1 s–1, the broad glycine HCl powder pattern appears to 

span two general rate distributions with several artifacts, which agrees with the observation that 

the T1(35Cl) for glycine HCl is described by a biexponential decay.35 Additionally, there is signal 

intensity outside of the bandwidth of the CT powder pattern of glycine HCl that appears at 

multiple rates below ca. –80 kHz, which is likely ST signal. By contrast, if 2D R1-RAS is 
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executed with the additional l1 norm, the rate distributions associated with each pattern are 

clearly identifiable (Figure 4b). The low-frequency signal is also isolated and can be attributed 

to satellite transition (ST) signal. The CT powder patterns can be extracted from each rate 

distribution, revealing the patterns for glycine HCl and histidine HCl (Figure 4c); however, the 

powder patterns are distorted, and the narrow pattern corresponding to histidine HCl appears to 

have residual signal from glycine HCl (i.e., the broader, low-intensity features). 2D R2-RAS 

cannot separate the patterns, since the R2 distributions between the two samples are overlapped, 

mainly due to the large R2 distribution from glycine HCl (Figure S6). 

Figure 4: Experimental 35Cl 2D R1 RAS NMR spectrum of a glycine HCl:histidine HCl 3:1 w/w 
mixture with regularization parameters (a) α = 0.0001 and λ = 0.0 and (b) α = 0.0001 and λ = 0.3. 
PCA denoising was not necessary for this dataset. In (a) the histidine pattern is indicated with †, 
and the ST signal is denoted below ca. 80 kHz. (c) Projections of the powder patterns from each 
of the highlighted rate distributions in (b). R1-R2 correlation obtained from 3D RAS with Sparse 
NNTF (d) without EN regularization and (e) with regularization. (f) Projections of the powder 
patterns from each rate distribution in (e) with ideal 35Cl NMR simulations of each pattern in red.
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3D RAS was used to process this entire 3D NMR dataset, initially without regularization. 

The resulting R1-R2 correlation map shows many artifacts and spurious signals with evidence of 

potentially three components in the mixture, which likely originate from the two R1 terms for 

glycine HCl and a single R1 and R2 for histidine HCl (Figure 4d). Processing the data with 

regularization, including a relatively large l1 constraint (λ), reduces the R1-R2 correlation map to 

two distinct regions of signal (Figure 4e). The optimal λ was first determined with a S-curve 

routine (Figure S5), and then refined empirically (Figure S4) by running 3D RAS with three 

different λ’s until an optimal pattern separation was obtained with λ = 50. PCA denoising was 

not necessary for this dataset. In this case, only the frequency points that were associated with 

substantial regions of NMR signal intensity were used as input for Eq. 11 (i.e. only the frequency 

points from ca. – 100 to + 70 kHz in this case) to reduce computational costs. These compounds 

have unique R1’s, but glycine HCl has a distribution of R2 values, which overlaps with the small 

R2 distribution of histidine HCl. Still, projecting the frequency dimension from suitable (R1,R2)  

regions reveals patterns that match exceptionally well with the ideal simulations for either 

species58,59 (Figure 4f). Regardless of the R2 overlap, the additional information provided by the 

R2-dimension offers a higher-resolution separation of the powder patterns with 3D RAS than 2D 

RAS.

35Cl NMR of an isoxsuprine HCl:xylazine HCl 1:1 w/w mixture was acquired with the 

direct excitation WCPMG-IR pulse sequence (Figure 5a). An R1-R2 correlation map was 

obtained with 3D RAS using all of the aforementioned regularization methods as well as PCA 

denoising with three principal components (Figure 5b); in this case, the SNR of the input data 

increases ca. 6-fold with PCA. This mixture serves as good test case, since the resulting R1 and 
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R2 distributions are unique for both sites; the separation of the two patterns is very clear, and 

their projections match extremely well with the ideal simulated 35Cl line shapes (Figure 5c).74  

Figure 5: (a) Experimental 1D 35Cl NMR spectrum of an isoxsuprine (isox) HCl:xylazine (xyla) 
HCl 1:1 w/w mixture. (b) R1-R2 correlation map obtained from 3D RAS with Sparse NNTF and 
PCA denoising with α = 0.0001 and λ = 5. PCA increased the SNR of the input data from 118 to 
694. (c) Projections of the powder patterns from each rate distribution with ideal 35Cl NMR 
simulations of each pattern in red. 

3D RAS processing of a 35Cl NMR dataset was also used for the characterization of a 

novel RbCl:CdCl2:Urea cocrystal synthesized by our research group. This material was first 
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examined using 1D WCPMG, where two distinct CT powder patterns are observable, distinct 

from the CdCl2 starting material (Figure 6a and Figure S7). A separate narrow resonance, which 

may be unreacted RbCl, is observable if fewer echoes from the CPMG train are processed 

(Figure 6b). Additional signal above ca. 150 kHz and below ca. – 230 kHz (as indicated by ‡) 

spans several hundreds of kHz and extends well beyond the tuning range of the probe – it cannot 

be assigned as another CT pattern or as ST patterns (Figure S8); therefore, experimental 

acquisitions for RAS selectively and uniformly swept over only the ± 350 kHz offset range. The 

R1-R2 correlation map displays the reconstructed signals, that spread over several rate 

distributions (Figure 6c). Projections from the lower R1-R2 distributions reveal separation of two 

of the CT powder patterns, possessing low ηQ’s, and some residual overlap between them at ca. 

+40 and – 50 kHz (Figure 6d). There is also a distinctive high-valued R1-R2 distribution that 

reveals a narrow pattern with a higher value of ηQ that does not match with the NMR of bulk 

RbCl (Figures 6d, S9) and likely corresponds to a novel site in the cocrystal. The separation of 

this latter pattern using 3D RAS can allow for the measurement of the EFG tensor parameters 

(Table S6), which would not be possible using standard 1D static or MAS NMR for this sample. 

Finally, the unassigned broad underlying pattern also has a distinct rate distribution, as indicated 

by ‡ (Figure 6c). 
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Figure 6: (a) Experimental 1D 35Cl NMR spectrum of a RbCl:CdCl2:Urea cocrystal acquired 
with WCPMG and processed by coadding all 200 spin echoes and (b) processed by coadding the 
first 10 spin echoes. ‡ indicates a broad powder pattern in (a) and (b) of unknown origin (i.e., it 
is not clear if it is a unique CT pattern or signal arising from overlapping ST patterns). (c) R1-R2 
correlation map obtained from 3D RAS with Sparse NNTF and PCA denoising with α = 0.0001 
and λ = 1. PCA increased the SNR of the data from 112 to 1450. The area between R1 = 1.5 to 
2.5 s–1 marked with ‡ corresponds to the unassigned broad pattern. (d) Projections of the CT 
powder patterns from each rate distribution with  35Cl NMR simulations of each pattern in red. 
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3D RAS was also implemented for the separation of overlapping 2H patterns of 1,8-

dimethylnaphthalene-d12 (Figure 7a), in which each 2H site has a unique R1 (vide supra) but 

overlapping distributions of R2’s. The Sparse NNTF R1-R2 correlation map (Figure 7b) shows 

two distinct regions of signal corresponding to each 2H site. As discussed for the 2D R1 RAS of 

this data, the R1’s are unique for each site, but both display a distribution over the R1 dimension, 

which may be characteristic of R1-anisotropy that has been widely observed for static 2H 

NMR.35,72,73 The R2’s clearly overlap for these sites, limiting the potential of 2D R2 RAS for 

pattern separation; as in the case of 35Cl NMR of glycine HCl, there is also a large distribution 

over the R2 dimension for the 2H-methyl site. Each static 2H powder pattern can be resolved 

(Figure 7c) with minor distortions in the case of the broad aromatic 2H site (around ± 20 – 50 

kHz), likely from small residual spectral intensities arising from the much more intense methyl 

pattern.
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Figure 7: (a) An experimental 1D 2H NMR spectrum of 1,8-dimethylnapthalene-d12. (b) R1-R2 
correlation map obtained from 3D RAS with Sparse NNTF with α = 0.001 and λ = 0.1. PCA 
denoising was not necessary for this dataset. (c) Projections of the powder patterns from each 
rate distribution. 

A final example of 3D RAS’s ability to resolve overlapping powder patterns is 

demonstrated for a 14N NMR dataset of a glycine HCl:betaine HCl 1:1 w/w mixture. 14N 
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experiments yield UWNMR patterns that are very time-consuming to acquire;75 however, it has 

been demonstrated that the combination of 1H-14N BRAIN-CP and targeted acquisitions with 

selected transmitter frequencies can accelerate this process.76,77 Moreover, it has been 

demonstrated that spectral regions from only one half of the spin-1 14N patterns, are necessary 

for characterizing the EFG tensor parameters;35,76,77 targeting one half of the integer-spin powder 

pattern also offers additional signal enhancement due to the direct enhancement of integer spin 

magnetization (DEISM) effect.78 Experiments were accelerated by acquiring only half of the 

patterns;79,80 in the current example, by sweeping all WURST pulses from low-to-high 

frequency. The 1D 14N spectrum of the mixture was acquired with a targeted transmitter 

frequency such that the positive half of the betaine HCl pattern appears uniform, and the “horn” 

and shoulder” discontinuities of the glycine HCl pattern are visible (Figure 8a); for the latter, 

these two discontinuities alone are sufficient to characterize the EFG tensor parameters.76 3D 

RAS data for the mixture were acquired with BRAIN-CP-IR; PCA denoising with 3 principal 

components was used, resulting in an increase in the SNR by a factor of ca. 10. The resulting 

regularized 3D RAS transformation reveals a R1-R2 correlation map showing two distinct R1’s, 

and partially overlapped R2 distributions (Figure 8b). As in the case of the 35Cl glycine 

HCl:histidine HCl mixture (cf. Figure 4), although the R2 distributions are slightly overlapped, 

the added information from the R2 dimension assists in the overall separation. The projections 

from these rate distributions show clearly resolved powder patterns that match well with 

simulations (Figure 8c). The dip in the glycine HCl spectrum at ca. 100 kHz is characteristic of 

targeted spin-1 BRAIN-CP and is of no consequence for characterizing the powder pattern.77,80 

In this case, as well as all others, 3D RAS is only evaluated for frequency points associated with 

NMR signal in order to save on computation costs (ca. 0 to 550 kHz region). 
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Figure 8: (a) Experimental 1D 14N NMR spectrum of a glycine HCl:betaine HCl 1:1 w/w 
mixture with a simulated 14N spectrum of both ideal patterns summed together in red. (b) R1-R2 
correlation map obtained from 3D RAS with Sparse NNTF and PCA denoising with α = 0.0001 
and λ = 0.0. PCA increased the SNR of the input data from 94 to 920. (c) Projections of the 
powder patterns from each rate distribution with ideal 14N NMR simulations of each pattern in 
red. All WURST-A and WURST-B pulses in the sequence are swept from low-to-high frequency 
and the center offset of the sweep is set to +139 kHz with respect to υ0(14N).
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5. Conclusions

2D and 3D RAS implemented with TSVD, EN regularization, and PCA denoising can 

provide clear separation of overlapping static UWNMR spectra, as demonstrated by 

experimentally acquired and numerically simulated 2H (I = 1), 35Cl (I = 3/2), and 14N (I = 1) 

SSNMR spectra. TSVD greatly reduces computational costs for 2D and 3D RAS and regularizes 

Sparse NNTF solutions. EN regularization further stabilizes these solutions, and in particular, the 

l1-norm constraint can aid in the separation of powder patterns for samples with nuclei 

influenced by either multiexponential relaxation rates or distributions of rates. The SNR of the 

raw input data prior to RAS can be increased by up to 12-fold with PCA reconstruction. RAS is 

ultimately limited by experimental noise, requiring that the relaxation time constants associated 

with different nuclear sites and their concomitant powder patterns be unique from one another. 

Denoising and regularization schemes greatly alleviate these drawbacks, making RAS amenable 

to a wider array of possible samples, potentially even those with complex relaxation behaviour. 

The samples investigated herein are highly crystalline and their NMR data correspond to 

relatively sparse distributions of relaxation rates. We anticipate that further considerations and 

methodology will be required when analyzing amorphous samples that often yield broad 

distributions of relaxation rates (e.g., alternative regression algorithms or the use of neural 

networks).43,81 Even if nonequivalent sites do not have unique T1’s and/or (effective) T2’s, the 

rotating frame T1 (T1ρ) and the dipolar frame T1 (T1D) are also suitable exponential decay 

constants,23,82 that could be encoded and used with the RAS processing described herein. 

Furthermore, if the effective T2’s of two magnetically distinct sites at a given decoupling power 

are similar, it may be possible to differentiate them further by varying the heteronuclear dipolar 
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decoupling RF fields;60 variation in CP efficiency with variable contact times  could serve to 

highlight similar site differences.83

3D RAS is particularly useful for separating overlapping half-integer spin CT powder 

patterns of quadrupolar nuclei with large CQ’s, of the kind that cannot be resolved with MQMAS 

or STMAS. The example of a histidine HCl : glycine HCl mixture demonstrates the improved 

site resolution capabilities of 3D RAS over 2D RAS. The case of the isoxuprine HCl: xylazine 

HCl mixture suggests that RAS may be useful in the characterization of active pharmaceutical 

ingredients with 35Cl NMR.59,74 2H RAS of 1,8-dimethylnapthelene-d12 and 35Cl RAS of 

RbCl:CdCl2:Urea demonstrate the capabilities of site-resolution for multiple sites in the same 

sample – including in the latter example, the identification of a 35Cl pattern and corresponding 

site that would not resolvable using other methodologies. WCPMG-IR, BRAIN-CP-IR, and 

QCPMG-IR pulse sequences used for RAS are facile to implement and the RAS routines have 

been written in end-user friendly functions in MATLAB that are freely available to use. It is 

anticipated that the aforementioned 2D and 3D RAS protocols will be used for high-resolution 

static and MAS SSNMR in a wide variety of organic, inorganic, organometallic, and hybrid 

systems with spin-1/2 and quadrupolar nuclei of elements across the Periodic Table.

6. Supporting Information

Additional experimental details, experiments, and simulations are available in the 

electronic supporting information. All RAS routines are written in MATLAB and are available at 

http://github.com/rschurko/RAS.
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