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Abstract

Methods which accurately predict protein–ligand binding strengths are critical for drug 

discovery. In the last two decades, advances in chemical modelling have enabled a steadily 

accelerating progress in the discovery and optimization of structure-based drug design. Most 

computational methods currently used in this context are based on molecular mechanics force 

fields that often have deficiencies in describing the quantum mechanical (QM) aspects of 

molecular binding. In this study, we show the competitiveness of our QM-based Molecules-in-

Molecules (MIM) fragmentation method for characterizing binding energy trends for seven 

different datasets of protein–ligand complexes. By using molecular fragmentation, the MIM 

method allows for accelerated QM calculations. We demonstrate that for classes of structurally 

similar ligands bound to a common receptor, MIM provides excellent correlation to experiment, 

surpassing the more popular Molecular Mechanics Poisson-Boltzmann Surface Area 

(MM/PBSA) and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) methods. 

The MIM method offers a relatively simple, well-defined protocol by which binding trends can 

be ascertained at the QM level and is suggested as a promising option for lead optimization in 

structure-based drug design. 
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1.  Introduction

The study of structure-function relationships in proteins has accelerated over the last 

decade due to newly emergent techniques in computational chemistry.1, 2 In particular, these 

techniques have become increasingly important for the study of protein–ligand binding. The 

binding of a ligand to a target protein is a thermodynamic process, whose direction is guided by 

the free energy of the system. Free energy steers all biochemical processes, and therefore its 

calculation is fundamental. However, obtaining experimentally significant enthalpies and free 

energies is often difficult, and for systems involving complex biological systems in their native 

aqueous environment, accurate free energy calculations remain a grand challenge for chemists. 

For computational investigations of protein–ligand interactions, there is a dearth of 

methods which calculate binding free energies while maintaining both accuracy and efficiency. 

Molecular docking, whose primary goal is to predict and rank ligand binding poses using 

computationally inexpensive scoring functions, is one of the most widely used computational 

approaches for studying protein–ligand binding.3, 4 While this technique is computationally 

economical, its accuracy and predictive ability are often inadequate. By contrast, alchemical free 

energy (AFE) methods, such as free energy perturbation (FEP) and thermodynamic integration 

(TI) are mathematically rigorous, though they are computationally demanding.5-7 These methods 

involve extensive sampling of intermediate states, generated via small changes of the energy 

function, and are often slow to converge. While FEP-type methods are reliable and are used 

successfully in many applications, their accuracy still may suffer from the fundamental 

limitations of the underlying force fields.
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The two sets of methods described above occupy opposite ends of the spectrum when 

considering both accuracy and efficiency. Representing a compromise between AFE methods 

and molecular docking are the so-called end-point free energy methods, which have become 

extremely popular in structure-based drug design.8-17 As the name suggests, end-point methods 

sample only the bound and unbound states, unlike AFE methods which also sample intermediate 

states. By far, some of the most popular end-point free energy methods are the “Molecular 

Mechanics Poisson-Boltzmann Surface Area” (MM/PBSA) method and the “Molecular 

Mechanics Generalized Born Surface Area” (MM/GBSA) method developed by Kollman et al.18 

In the MM/P(G)BSA approach, the free energy of binding is calculated using the following 

thermodynamic cycle:

Thus, the free energy of a ligand (L) binding to a target protein (P) to from a complex (P-L) is 

given as

                                           (1)                                                        ∆Gbinding  =   GP–L  –  (GP  +   GL)

where the free energy of binding, , can be approximated as∆Gbinding

                                                        ∆Gbinding ≈  ∆Egas + ∆Gsolv– T∆S                                                         
(2)

where  is the gas phase binding energy typically calculated with MM potentials, ∆Egas ∆Gsolv  

denotes the contribution from the energy of solvation, and  is the change in ―T∆S

P(gas)      +         L(gas)                               P –L(gas)
∆G(gas)

P(aq)      +         L(aq)                                P –L(aq)
∆Gbinding

∆Gsolv, P
∆Gsolv, L ∆Gsolv, P–L
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configurational entropy upon ligand binding.16, 19 Terms in Equation 2 can be further 

decomposed:

                                                                                                ∆Egas ≈  ∆EMM = ∆Eint + ∆Eelec + ∆EvdW

(3)

                   (4)                                                                ∆Gsolv = ∆GPB/GB + ∆GSA

                                                                                                                               ∆GSA = γ ∙ SASA + b

(5)

where  includes all contributions to the internal energy (bond, angle and dihedral terms), ∆Eint ∆

 represents the electrostatic contribution, and is the van der Waals contribution. The Eelec ∆EvdW 

solvation term, , is composed of an electrostatic (polar) contribution, , and a ∆Gsolv ∆GPB/GB

nonpolar contribution, .  is calculated using either the PB or GB model, and  is ∆GSA  ∆GPB/GB ∆GSA

approximated using the solvent-accessible surface area (SASA). For the MM/P(G)BSA methods, 

all terms in Equation 2 are typically taken as an average over many snapshots from a molecular 

dynamics (MD) trajectory, although a few studies have investigated the use of only a single 

minimized structure.11, 20 The change in configurational entropy, , may be determined via ― T∆S

normal-mode analysis on a set of MD snapshots; however, due to its high computational cost, 

entropy terms are often neglected when only relative free energies of structurally similar ligands 

bound to a common target receptor are desired. This choice assumes that entropic contributions 

are similar across a dataset, and therefore the neglect of such terms will have only a minimal 

effect on overall correlation.8  

The accuracy of MM/P(G)BSA results, and more specifically of , is directly related ∆Egas

to the quality of the energy function used in the calculation.10, 21, 22 Since is most often ∆Egas 

calculated using MM potentials, the use of MM/P(G)BSA is limited to cases for which such a 
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potential exists.21, 23-25 Moreover, for challenging and experimentally relevant cases, MM 

potentials often have significant deficiencies.26-28 Conversely, QM potentials give a rigorous 

description of those electronic effects which play a critical role in intermolecular interactions 

(e.g., charge-transfer, π–π interactions and many-body effects). As such, a high-level QM 

treatment of protein–ligand binding is highly desirable. 

Several research groups have begun to study proteins using QM potentials.10, 29, 30 

However, because of their computational complexity, these calculations have typically been 

limited to minimal model systems, for example, including only a small number of residues 

around the ligand. In recent years, QM treatments of larger portions of protein–ligand complexes 

have begun to emerge, using either semiempirical methods or high-level methods with 

fragmentation techniques.31, 32 Among the many fragmentation-based methods, the fragment 

molecular orbital (FMO) technique, molecular fragmentation with conjugate caps (MFCC), and 

related approaches have been used in studying protein–ligand interactions.33-37 

We have developed our own fragmentation method, the Molecules-in-Molecules (MIM) 

multilayer fragmentation method, to study protein–ligand interactions.38, 39 Our MIM 

fragmentation method is designed to produce high-level QM results efficiently for large systems. 

Similar to the ONIOM methodology developed by Morokuma and co-workers,40 the MIM 

protocol is a hybrid method which employs layers of structural fragmentation to achieve highly 

accurate chemical calculations at a fraction of the typical cost. Over the course of several recent 

studies, we have successfully applied our method to over 100 protein–ligand complexes.39, 41-43 

According to the MIM protocol, the full system is partitioned into smaller overlapping 

subsystems, and independent QM calculations are performed on each one. The energy 

contributions from all subsystems are then combined in such a way that the total energy of the 
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full system is recovered. The MIM method is capable of providing high quality QM results at a 

substantially lower computational cost compared to traditional QM approaches. Moreover, the 

MIM method prescribes a well-defined protocol, which makes it particularly appealing for drug 

discovery purposes. The protocol has proven to be widely useful and has been effective in 

achieving high correlation (Spearman rank correlation (ρ) = 0.83–0.94; R2 = 0.74–0.93) between 

calculated interaction energies and experimentally derived binding affinities for similar ligands 

binding to a target receptor.39

 While we have demonstrated the effectiveness of our method in several studies, we have 

not yet made a direct comparison of the MIM method to the more popular end-point methods. 

MM/P(G)BSA methods achieve a reasonable balance between accuracy and computational cost; 

therefore, they serve as an appropriate standard to judge our own method for calculating and 

ranking binding interactions. In the present study, we make such a comparison, considering 

nearly 100 protein–ligand complexes, and demonstrate MIM’s ability to achieve high correlation 

between theory and experiment. 

2.  Methods
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Data Sets and Structure Preparation:

 MIM-calculated binding affinities of 98 ligands, bound to five different target receptors, 

are compared to affinities obtained via MM/P(G)BSA analysis. A group of congeneric ligands 

bound to a single target receptor comprises each of the seven datasets. Ligand structures were 

obtained from published cocrystallized structures or generated from a similar cocrystallized 

ligand. Assuming similar ligands bind similarly to a given receptor, each generated ligand was 

placed 

Figure 1. Representative ligand structure for each dataset (a) biotin-analogue avidin inhibitors, 
(b) benzothiazole-based ITK inhibitors, (c) CDK2 inhibitors, (d) indazole-based ITK inhibitors, 
(e) sulfonylpyridine-based ITK inhibitors, (f) Thrombin inhibitors, (g) 4-aminopyridine 
benzamide-based TYK2 inhibitors.
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into the binding pocket of the published crystal structure. While modifying the ligand, the 

flexible alignment module, as implemented in the Molecular Operating Environment (MOE) 

program (version 2019.01), was used to conserve any key binding features observed in the 

cocrystallized structure. Missing hydrogen atoms in the crystal structure were added to the 

complexes at pH 7.0 with the Protonate 3D44 tool, as implemented in MOE. Each protein–ligand 

complex was minimized in MOE with the AMBER10:EHT force field, using a generalized 

Born/volume integral implicit solvation model with an internal dielectric constant of 2 for the 

binding pocket and an external dielectric constant of 80. The minimization was performed using 

restraints via a harmonic potential centered on each atom, where the strength of the force 

constant was specified by the standard deviation (0.5 Å in this work) from the original 

coordinates at 300 K as implemented in MOE. Assuming the PDB structure is a good 

Table 1. Size, ligand type, receptor, PDB ID, and resolution of PDB structure used for modeling of 
each dataset. 

Set Count Ligand class Receptor  PDB ID Resolution 
(Å)

I 10 biotin-based Avidin 1AVD 2.70

I 14 benzathiazole (BZT)-based ITK 4MF0 2.67

III 13 -- CDK2

2VTA,2VTH, 
2VTI, 2VTJ, 

2VTL, 2VTM, 
2VTN, 2VTO, 
2VTQ, 2VTR, 
2VU3, 2VTT, 

2VTS

2.00, 1.90, 
2.00, 2.20, 
2.00, 2.25, 
2.20, 2.19, 
1.90, 1.89, 
1.85, 1.68,    

1.90
IV 11 indazole (IND)-based ITK 4PP9 2.58

V 18 sulfonylpyridine (SAP)-based ITK 4QD6 2.45

VI 16 D-Phe-Pro-based Thrombin 2ZFF 1.47

VII 16 4-aminopyridine benzamide-
based TYK2 4GIH 2.00

Page 8 of 32Physical Chemistry Chemical Physics



9

representation of the dominant binding pose, we minimize in order to relax the added hydrogens 

while keeping the overall structure close to the starting PDB structure.  Protonation states of 

histidine residues present within 5 Å of the ligand were further determined by analyzing the 

possibility of hydrogen-bond formation with nearby residues. Our previous study considering 22 

thrombin inhibitors showed that calculations which include residues within 5.0 Å of the ligand 

capture approximately 95 percent of the total interaction energy when compared to results 

calculated using the full complex.43 In this same study, it was found that the coefficient of 

determination comparing theory to experiment is converged at about a 4 Å radius.  Therefore, all 

residues and water molecules within 5.0 Å of the ligands were included in the MIM calculations. 

Any dangling bonds were saturated with hydrogen atoms using MOE. For MD, the full system 

was included in all simulations. Relevant information concerning protein–ligand structures 

considered in this work, along with corresponding PDB IDs are featured in Table 1 (set I45, set 

II31, 46, set III47, 48, set IV31, 49, set V31, 50, set VI51, and set VII52, 53).

2.1  MIM calculations

The full MIM protocol has been detailed in previous works.39, 41, 43 Herein, only the 

necessary protocol for our protein–ligand binding analysis is given. Similar to the ONIOM 

methodology, the MIM protocol is a hybrid method which employs layers of structural 

fragmentation to achieve highly accurate chemical calculations at a fraction of the typical cost. 

According to the MIM protocol, each subsequent fragmentation layer is comprised of 

increasingly smaller fragments (primary subsystems), with each subsequent layer treated at a 

higher (more accurate) level of theory. For example, the three-layer MIM protocol for 

calculating energies can be understood through Equation 6.

                          (6)                                      𝐸𝑀𝐼𝑀3 = 𝐸𝑅
𝑙𝑜𝑤 + (𝐸𝑟′

𝑚𝑒𝑑𝑖𝑢𝑚 ― 𝐸𝑟′

𝑙𝑜𝑤) + (𝐸
𝑟
ℎ𝑖𝑔ℎ

― 𝐸𝑟
𝑚𝑒𝑑𝑖𝑚)
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Equation 6 involves three levels of theory (low, medium, and high) as well as three primary 

subsystem size parameters (  < << ). Resembling a telescoping series, each subsequent layer 𝑟 𝑟′ 𝑅

corrects errors present in the previous layer. According to the MIM protocol, proteins are first 

fragmented into small fragments (monomers) by cleaving single bonds between heavy atoms, as 

depicted in Figure 2. Because of their partial double-bond character, peptide bonds are left 

uncut.54 

3.5 Å

Figure 2. Illustrations of the fragmentation scheme used in MIM3 calculations. a) Depiction of 5.0 Å radius 
around ligand considered in MIM calculations b) Formation of monomers, which consist of  backbone 
residue or sidechain residue or the ligand itself.  c) Example of distance-based middle layer subsystem d) 
Example of distance-based dimer pair used in high layer

b)

c) d)

a)
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Primary subsystems of each fragmentation layer are then created by grouping proximate 

monomers into larger, overlapping subsystems. Primary subsystems are created by expanding 

around an initiating monomer fragment, based on either a number- or distance-based criteria as 

described in previous works and as illustrated in Figure 2. Under the number-based scheme, 

primary subsystems are generated by combining n covalently bonded monomers, with the 

initiating fragment as the central monomer. The prescription for the distance-based scheme 

involves the creation of primary subsystems via the grouping of all monomers within a certain 

cutoff distance, d, of the initiating monomer. In previous work, we have employed distance-

based schemes in the middle layer in order to capture important long-range interactions at a 

satisfactory level of theory and number-based schemes in the high layer to capture bonded 

interactions with high accuracy. Additionally, we have found that a number-based high layer 

may be supplemented using a distance-based dimers scheme, under which interactions between 

pairs of primary subsystems whose distance falls within a certain cutoff ( ) are included in the 𝑑

high-layer (see Figure 2). The distance-based dimer scheme ensures that certain short-range, 

nonbonded interactions (e.g. hydrogen bonding, -  stacking) are included at the high-level of 𝜋  𝜋

theory. The low layer includes the full molecule and thus captures any long-range effects not 

included in the high and middle layers. After subsystems are generated, all remaining cleaved 

bonds are then saturated with hydrogens. Finally, contributions from overlapping regions are 

subtracted out via the Inclusion-Exclusion principle: 

|𝑎1 ∙  ∙  ∙   ∪ 𝑎𝑛| = ∑
𝑖|𝑎𝑖| ― ∑

𝑖 < 𝑗|𝑎𝑖 ∩ 𝑎𝑗| +  ∑𝑖 < 𝑗 < 𝑘|𝑎𝑖 ∩ 𝑎𝑗 ∩ 𝑎𝑘| .  .  . + ( ―1)𝑛 ― 1|𝑎𝑖 ∩  .  .  .  ∩  𝑎𝑛|  
(7)

In multilayer MIM, less computationally expensive QM methods are used in the low 

layer to describe long-range interactions and polarization effects not present in individual 

subsystems, while more expensive but highly accurate methods are used to locally correct any 
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errors present at the low-level of theory. In the present study, we use three-layer MIM (MIM3) 

using a distance-based (d=3.5 Å) scheme at the middle level and a number-based (n=5) scheme 

supplemented with a distance-based dimer scheme ( =3.5 Å) at the high level. This particular 𝑑

protocol (denoted as N5D) has been benchmarked on similar complexes in previous studies.39, 41, 

43 

2.2  Protein-Ligand binding energy calculation with MIM3 protocol

The starting point is the gas phase interaction energy between a ligand and a protein, 

given as 

                                           (8)                                                           ∆𝐸𝑔𝑎𝑠
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐸𝑃𝐿 ―(𝐸𝑃 + 𝐸𝐿)

where , , and  are dispersion-corrected gas-phase electronic energies of the complex, 𝐸𝑃𝐿 𝐸𝑃 𝐸𝐿

protein, and ligand, respectively. The protocol outlined in the previous section was used to 

calculate energies for the bound and unbound structures. Both bound and unbound structures 

were obtained from the same energy-minimized structure. All QM calculations were performed 

in the gas phase, and due to overestimation of electrostatic interactions, charged ligands and 

residues (Lys, Arg, His, Asp, and Glu) were neutralized to better match charge stabilization 

observed in solution. The effectiveness of this treatment has been validated in several previous 

studies.31, 39, 41-43 While QM calculations are performed in gas phase, the penalty for ligand 

desolvation is included in the MIM calculation. Thus, the total MIM3 binding energy reported 

herein includes  as well as the penalty term from ligand desolvation (the penalty of ∆𝐸𝑔𝑎𝑠
𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

abstracting ligand from solvent upon binding). Therefore, the total MIM3 binding energy is 

given as  

                                 (9)                                                        ∆𝐸𝑟
𝑀𝐼𝑀3 = ∆𝐸𝑔𝑎𝑠

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + ∆𝐸𝐿
(𝑑𝑒𝑠𝑜𝑙𝑣)
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where  is the desolvation penalty based on the solvent accessible surface area (SASA). ∆𝐸𝐿
(𝑑𝑒𝑠𝑜𝑙𝑣)

The method used for determining the desolvation penalty is detailed in our previous works.41 

For the high level of theory, the dispersion-corrected B97-D3BJ functional (B97 

functional55, 56 with Grimme’s D3 dispersion correction57 and Becke—Johnson damping58) with  

6-311++G(d,p) basis set was used. For the middle layer, B97-D3BJ was again used, however this 

time with the smaller 6-31+G(d) basis set.59-62 Finally, PM6-D3 was used for the low layer.63 

The ligand desolvation penalty was determined using the SMD implicit polarizable continuum 

solvation model at the high level of theory.64 All DFT calculations were performed using the 

Gaussian 16 program suite65 and our MIM external program was used to generate and sum the 

fragmented systems. 

2.3  Molecular dynamics simulations:

The electrostatic potential (ESP) was obtained via geometry optimization at the 

SMD/B3LYP/6-31+G(d,p) level of theory followed by a Merz-Kollman ESP-fitted charge 

calculation at the HF/6-31G* level of theory.66, 67 The RESP method was used for charge fitting. 

Ligand atoms were described by the generalized Amber force field (GAFF).68, 69 All protein 

residues were described with the ff14SB force field.70 Each complex was solvated in a truncated 

octahedral periodic box of TIP3P water molecules extending 18 Å from the solute. The crystal 

structure water molecules were removed before solvating with the explicit water molecules. 

Counterions of Na+ or Cl– were added to neutralize the system. Specific details concerning 

minimization, heating, equilibration, and production are given in the Supporting Information. 

One prominent issue with MM/P(G)BSA methods is that there may exist several energy 

states that are rarely sampled from the MD trajectory, and therefore, one may obtain energies 

with high standard errors.71-73 Several recent publications have indicated that the results of 
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MM/P(G)BSA calculations are highly dependent upon the length of MD simulation. Multiple 

authors have explored issues with convergence and reproducibility of MM/P(G)BSA calculations 

and have suggested that averaging over several independent MD trajectories, initiated with 

random starting velocities, provides greater statistical significance than a single long 

trajectory.73-76 Therefore, we ran 40×1 ns independent trajectories using random starting 

velocities ( see “ig”, “ntx”, and “irest” flags in AMBER 18). The last recorded geometry of the 

10 ns equilibration was used as the initial structure for each 1 ns trajectory run. Coordinates were 

recorded every 10 ps. 

2.4  MM/PBSA calculations

Studies describing the effects of various force fields, charge models, radii sets, etc., for 

MM/P(G)BSA calculations are abundant. In this study, we elected to follow a computational 

protocol similar to that most often encountered in the literature. The MM/PBSA calculations 

were performed using MMPBSA.py in AMBERTools18.77 The solute and solvent dielectric 

constants were set to 1 and 80, respectively, and the salt concentration was set to 0.1 M. It should 

be noted that MM/PBSA is known to be particularly sensitive to the choice of solute dielectric, 

especially for highly charged binding pockets.15 1000 snapshots were taken evenly from the 

40×1 ns production runs and used for MM/PBSA calculations. This sampling interval is believed 

to ensure that subsequent MD snapshots are sufficiently uncorrelated.73  Default MM/PBSA 

surface tension and non-polar free energy correction were used, and the mbondi2 radii set was 

used. Entropic terms calculated via normal mode analysis were not included. Because we 

consider similar ligands bound to a common target receptor, entropic contributions are expected 

to be similar across each data set. 

2.5  MM/GBSA calculations
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The MM/GBSA calculations were also performed using MMPBSA.py in 

AMBERTools18. For this study, the polar contribution to solvation was obtained by solving the 

generalized Born solvation model of Onufriev et al. with  to 0.8, 0.0, and 2.909125, α, β, and γ

respectively (GBOBCI/ “igb=2” flag in AMBER18).78 The solute and solvent dielectric constants 

were set to 1 and 80, respectively, and the salt concentration was set to 0.1 M. As for the case of 

MM/PBSA calculations, 1000 snapshots were evenly extracted from the 40×1 ns production runs 

and used for MM/GBSA calculations. The default MM/GBSA surface tension and non-polar free 

energy correction terms were used, and the mbondi2 radii set was used. As in the case of 

MM/PBSA calculations, entropic terms were not included. 

3.  Results and Discussion

In the lead optimization stage of drug discovery, the goal is to develop drug molecules 

with improved selectivity and potency, relative to the lead compound. Therefore, the ability to 

rank a series of structurally similar molecules in terms of their capacity to bind to target receptors 

becomes an invaluable tool. In this section, we make a direct comparison of the QM-based MIM 

model to the more popular MM/P(G)BSA methods and determine their relative performance 

when it comes to correctly ranking binding free energies. To make this comparison, we have 

elected to study a series of structurally and chemically diverse ligands, bound to one of five 

different target receptors. A representative structure for each dataset is given in Figure 1. For a 

complete structural description of each ligand, see Figures S1-S7.

 Often used in structure-based drug design, MM/P(G)BSA methods are regarded as well 

suited for ranking structurally similar ligands according to their ability to bind to a target 

receptor, rather than for obtaining absolute binding energies.9, 13, 17, 79 Indeed, systematic 

inaccuracies of MM potentials and the common neglect of entropic contributions renders 
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MM/P(G)BSA methods perhaps more appropriate for identifying correlation between theory and 

experiment. Similarly, the MIM method has been proven effective at producing binding energy 

trends that are well correlated with experiment. Therefore, we have elected to compare the 

MM/P(G)BSA and MIM methods based on their ability to calculate binding strength trends of 

structurally similar ligands bound to a common target receptor. We employ three different 

metrics to assess the performance of the methods tested: the Pearson correlation coefficient, , 𝑟𝑝

the Spearman rank-order correlation coefficient, , and the coefficient of determination, R2.𝑟𝑠

The correlation plots comparing the experimental binding energies (ΔGbind) or the 

Figure 3. Correlation (rp=Pearson, rS=Spearman) between 
experimentally measured binding affinities and MM/GBSA 
(40x1ns trajectory run with ) calculated binding 𝜀 = 1
energies for various protein-ligand complexes. (I) biotin-
analogue avidin inhibitors, (II) benzothiazole-based ITK 
inhibitors, (III) CDK2 inhibitors, (IV) indazole-based ITK 
inhibitors, (V) sulfonylpyridine-based ITK inhibitors, (VI) 
Thrombin inhibitors, (VII) 4-aminopyridine benzamide-
based TYK2 inhibitors. 

I II

IV V

III

VI

VII
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negative logarithms of the binding affinities (pKi) and the calculated interaction energies for 

MM/GBSA with sampling over 40×1 ns trajectory runs are shown in Figure 3. The 

corresponding plots for MM/PBSA are shown in Figure 4. The MM/GBSA results show an 

overall strong correlation, with five of the seven test sets achieving  values above 0.6. The 𝑟𝑠

Pearson correlation coefficient for set I, calculated with MM/GBSA, is particularly impressive at 

 = 0.95. However, it is perhaps expected that the dataset with the widest range of experimental 𝑟𝑝

affinities achieves the highest correlation. As experimental affinities become more closely 

spaced, the task of ranking ligands via

 computational means becomes more difficult, as in the case of set V, which contains the most 

datapoints as well as the narrowest range of experimental affinities. The precision and rank-

Figure 4. Correlation (rp=Pearson, rS=Spearman) between 
experimentally measured binding affinities and 
MM/PBSA (40x1ns trajectory run with ) calculated 𝜀 = 1
binding energies for various protein-ligand complexes. (I) 
biotin-analogue avidin inhibitors, (II) benzothiazole-based 
ITK inhibitors, (III) CDK2 inhibitors, (IV) indazole-based 
ITK inhibitors, (V) sulfonylpyridine-based ITK inhibitors, 
(VI) Thrombin inhibitors, (VII) 4-aminopyridine 
benzamide-based TYK2 inhibitors. 

I II

IV V

III

VI

VII
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ordering capability of a particular method is determined by the inherent errors and uncertainties 

present within the method. If differences between affinities is smaller than the precision of the 

method, then erroneous performance may result. This idea is discussed further below.

In contrast to MM/GBSA, MM/PBSA results (Figure 4) are somewhat mixed, with the 

degree of correlation varying between datasets. For MM/PBSA, the biotin-analogue avidin 

inhibitors, set I, and the 4-aminopyridine benzamide-based TYK2 inhibitors, set VII, achieve 

good correlation, with Pearson coefficients of 0.86 and 0.66, respectively. Here again, the dataset 

with the widest range of experimental affinities (set I) achieves the highest correlation. Although 

set I and VII show good correlation using MM/PBSA, the remainder of the datasets display 

Figure 5. Correlation (rp=Pearson, rS=Spearman) between 
experimentally measured binding affinities and 
MM/PBSA (40x1 ns trajectory run with ) calculated 𝜺 = 𝟒
binding energies for various protein-ligand complexes. (I) 
biotin-analogue avidin inhibitors, (II) benzothiazole-based 
ITK inhibitors, (III) CDK2 inhibitors, (IV) indazole-based 
ITK inhibitors, (V) sulfonylpyridine-based ITK inhibitors, 
(VI) Thrombin inhibitors, (VII) 4-aminopyridine 
benzamide-based TYK2 inhibitors. 

I II

IV V

III

VI

VII
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rather poor correlation, with   values of 0.31, −0.11, 0.22, −0.19, and 0.43 for set II, III, IV, V, 𝑟𝑝

and VI, respectively. 

It is perhaps counterintuitive that GBSA gives better overall correlation than PBSA, 

given that the former is a more approximate method. A few other studies have also found cases 

for which GBSA gives higher correlation with experiment than PBSA.9, 80, 81 In this context,  it 

should be noted that the results of MM/P(G)BSA calculations are dependent on parameter and 

protocol choice. Several studies have explored the effect of varying parameters.13, 17, 81 These 

studies often indicate that optimum parameter and protocol choice may be system dependent. 

Since we elected to follow a standardized protocol for all seven test sets in this study,15 it is 

possible that parameter optimization may improve results in some cases. A particularly relevant 

study in 2013 showed that for an internal dielectric constant of 1 ( ), the GBSA method 𝜀 = 1

outperforms PBSA when it comes to rank-ordering.82 However, setting resulted in a 𝜀 = 10 

significantly better rank-ordering for PBSA. In fact, even doubling  led to a significant 𝜀

improvement in performance. 

Given these results, we elected to run MM/PBSA calculations for .  Results are 𝜀 = 4

shown in Figure 5. We saw a similar overall improvement in correlation for PBSA when 

compared to results for . The improvement was particularly noticeable for complexes in set 𝜀 = 1

III that feature a highly charged binding pocket. After the increase in , PBSA results are on par 𝜀

with those obtained using GBSA. Despite the improvement in PBSA results, the 2013 study 

found that the improvement with higher  was attributed to a dulled effect of the electrostatic 𝜀

contribution due to screening. Moreover, the authors found no correlation between the 

electrostatic components of the experimental free energy and the calculated free energy. We 

explored this possibility for set III and had similar findings. Results are shown in Figure S16. 
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The electrostatic part of the MM/PBSA free energy for  was anticorrelated to the 𝜀 = 4

experimental free energy, while the Van der Waals term was well correlated. 
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An acknowledged deficiency of MM/P(G)BSA methods is the large variation in per 

Figure 6. Per snapshot distribution of  MM/PBSA ( =1) energies in kcal/mol 𝜀
over the 40×1 ns trajectory runs for 4-aminopyridine benzamide-based TYK2 
inhibitors.
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snapshot energies, which can lead to high standard deviations—typically 5-40 kcal/mol for 

MM/GBSA if a single trajectory is used for all three reactants.73 If one hopes to achieve 

statistically significant analyses, converged energies are needed. Figure 6 shows per snapshot 

binding energy distributions calculated using MM/PBSA over 40×1 ns trajectory runs for the 

indazole-based ITK inhibitor dataset (set IV), along with corresponding Gaussian fits. Overall, 

the 1000 energies sampled for each protein-ligand complex form a near Gaussian distribution 

with a standard error (S.E, the standard deviation divided by ) below or near ~0.25 1000

kcal/mol, indicating the energies are sufficiently converged. Per snapshot MM/PBSA energy 

Figure 7. Correlation (rp=Pearson, rS=Spearman) between 
experimentally measured binding affinities and MIM3 
calculated binding energies for various protein-ligand 
complexes. (I) biotin-analogue avidin inhibitors, (II) 
benzothiazole-based ITK inhibitors, (III) CDK2 
inhibitors, (IV) indazole-based ITK inhibitors, (V) 
sulfonylpyridine-based ITK inhibitors, (VI) Thrombin 
inhibitors, (VII) 4-aminopyridine benzamide-based TYK2 
inhibitors. 
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IV V
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distributions over 40×1 ns trajectory runs for the other six datasets can be found in Figures S10-

S15. Expected near Gaussian distributions are seen in all datasets with few exceptions. 

Next, we make a direct comparison of MIM to the more popular MM/P(G)BSA methods 

and determine the relative performance of the three models when it comes to correctly ranking 

binding free energies. Therefore, we have determined the binding affinities of each of the seven 

datasets using our MIM3 method. Figure 7 displays the correlation between MIM3 calculated 

interaction energies and experimental affinities for each of the seven tests sets. As mentioned 

earlier, the reported MIM3 values include the gas-phase interaction energy along with the 

contribution from ligand desolvation. The MIM3 method yields well correlated results for all 

seven datasets, with Pearson coefficients ranging from 0.81 for the 4-aminopyridine benzamide-

based TYK2 inhibitors to 0.97 for the indazole-based ITK inhibitors (Spearman rank-order 

coefficients of 0.84 and 0.92, respectively). Using MIM, the indazole-based ITK inhibitors, set 

IV, achieve the best  value of 0.97. The MM/P(G)BSA methods deliver weaker overall 𝑟𝑝

Figure 8.  a) Linear plots between experimentally measured binding affinities and MIM3 
calculated binding energies for all seven datasets b) Linear plots showing correlation for 
datasets involving the ITK receptor, i.e. (II) benzothiazole-based ITK inhibitors, indazole-
based ITK inhibitors, (V) sulfonylpyridine-based ITK inhibitors

a) b)

Common receptor

b)
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correlation to experiment when compared to MIM3. The difference in performance between 

these methods is perhaps most obvious in the case of the sulfonylpyridine-based ITK inhibitors, 

as its Pearson correlation improves from 0.35, and ~−0.2 for MM/GBSA and MM/PBSA, 

respectively, to 0.86 for MIM3. While the absolute interaction energies calculated by MIM3 are 

much larger than their experimental counterparts, the overestimation of binding strength is 

clearly systematic within a group of similar ligands, as seen in the excellent correlation achieved 

by MIM3. 

Figure 8(a) shows a linear plot between experimental binding energies and MIM3 

calculated energies for all seven datasets combined together instead of individually as in Figure 

7. Since different datasets have different receptor binding sites, error cancellation is expected to 

be poor across datasets. Indeed, neglected receptor-specific effects, such as contributions to the 

energy from configurational entropy, result in different linear slopes for each dataset, leading to a 

poor overall fit in Figure 8(a). However, the complexes of set II, IV, and V, despite having 

differing ligand scaffolds share a common receptor. Linear trends for these three datasets are 

well matched, and so a predictive model can be made, as seen in Figure 8(b). Therefore, MIM 

stands as a good candidate for lead optimization, where the more relevant goal is to optimize an 

initial lead compound for a particular receptor. 

The resolution of a particular method is related to the variability of the data. Methods 

which have low standard error are considered more precise. Uncertainty estimates for 

MM/P(G)BSA methods, which sample over multiple frames, are given by the standard error, 

shown in Figure 6 and Figures S10-15. In contrast, MIM starts from a single PDB-based 

geometry and employs a well-defined protocol for structure preparation and minimization. 

Therefore, aspects such as the quality of the crystal structure and the flexibility around the 
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binding cavity will affect the resolution of the method. However, for a given dataset involving 

several ligands in a specific binding site, a single energy-minimized receptor structure is used in 

modelling. Our protocol guarantees that the overall binding pose is close to the one found in the 

PDB crystal structure. Thus, errors specific to a particular structure are expected to be mostly 

systematic across a dataset. However, such error cancellation is unlikely for comparisons across 

different receptors, as evident in the differing linear trends in Figure 8(a). 

It is important to determine whether the improved performance of MIM is indeed due to 

the accuracy of QM methods rather than the strategy of using single frames. Therefore, we  also 

performed MM/P(G)BSA calculations on single snapshots for each complex in dataset II 

(benzothiazole-based inhibitors) and dataset V (sulfonylpyridine-based ITK inhibitors). Dataset 

V was specifically chosen as correlation between theory and experiment for this set showed 

drastic improvement upon the use of MIM3. For MM/P(G)BSA calculations, the minimized 

structures used in the MD simulations were used as the single frames. PBSA calculations were 

run with . While there is a slight improvement in the correlations, the rp values (Pearson 𝜀 = 4

rank-order coefficients) for MM/GBSA (0.31 and 0.61 for sets II and V) and MM/PBSA (0.63 

and 0.31) are substantially worse than MIM3 (0.87 and 0.86). Results for these calculations are 

shown in Figures S17 and S18. Additionally, we performed low-level PM6D3 calculations on 

the 5 Å cutout used in the MIM3 protocol, i.e., using the same geometry, protonation states, 

system truncation and solvation models. Again, the rp values for PM6D3 (0.74 and 0.27) show 

that high-level methods such as MIM3 are needed for an improved correlation. Thus, MIM3 

results outperform all methods, even in the single frame case. Overall, these results suggest that 

while improvements may be seen in individual cases by using single frames, consistent high 

performance in predicting rank-orders is only obtained by using a high-level QM method. 
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Overall, MIM3 offers the strongest correlation with experiment among the three methods. 

The R2 (square of the Pearson coefficient) values for MIM3 calculated energies range between 

0.66 and 0.94, with six of the seven datasets achieving R2 values above 0.7. The strength of 

correlation achieved by the MIM3 method as compared to MM/P(G)BSA methods demonstrates 

the advantages of QM potentials when it comes to studying important interactions in the protein–

ligand complexes. Moreover, the MIM method calls for a well-defined protocol, which makes it 

particularly attractive for studying large datasets.

It is important to note that there are some significant differences in the protocols used in 

our QM-based MIM model and MM-based P(G)BSA models. A particularly noteworthy aspect 

is that excellent performance is obtained with MIM3 despite our use of only a single energy-

minimized structure. We have found that by using a well-resolved crystal structure as a template 

for a series of congeneric ligands binding to a common receptor, high correlation with 

experiment has been obtained by MIM, even without sampling. This suggests that other factors 

such as conformational change or entropy change are significantly conserved in our comparisons 

between different ligands binding to the same receptor site.  This is fortunate since the use of a 

QM-based method such as MIM will be computationally prohibitive to explore in conjunction 

with extensive sampling. In this context, a few MM-based studies have also explored the 

possibility of using a single energy-minimized structure for the calculation of free energies. A 

2008 study showed that reasonable accuracy could be achieved for the calculation of free 

energies of reactions in proteins using QM/MM-MMPBSA, even when no sampling was 

performed.11 Similarly, a 2009 study showed that using a single minimized protein-ligand 

structure in binding free energy calculations resulted in accuracies similar to those obtained after 

averaging over multiple MD snapshots.20 Furthermore, the authors found that the use of a single 
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structure proved effective and useful when applied to a virtual screening experiment. It will be 

interesting to explore the validity of such ideas in future work. Nevertheless, for a class of 

structurally similar ligands bound to a common target receptor, a common scenario in lead 

optimization, MIM is a promising option.

4.  Computational efficiency of MIM

Reduction of computational cost is central to the MIM method. By fragmenting the 

complex and treating the full low-level calculation with semiempirical methods, the method 

achieves substantially improved scaling. Parallelization of fragment calculations lends added 

efficiency to MIM. The larger fragments in the middle layer of the MIM3 fragmentation scheme 

are typically the bottleneck in the calculations. As the size of the protein–ligand complex  grows, 

the ratio between fragment size and full system size shrinks, revealing MIM’s true computational 

advantage. As an illustration, for the first complex in dataset II at the B97D3/6-311++G(d,p) 

level, the computational cost for the costliest fragment is 1.5% of the full system high-level 

calculation. Nevertheless, MIM calculations are still computationally demanding so that only 

single-point energy evaluations on selected structures are feasible, as carried out in this study.

5.  Conclusions

In the context of drug discovery, the ability to quickly rank binding strengths necessitates 

a method which is capable of capturing the important physics of a problem at a reasonable rate. 

By taking advantage of chemical fragmentation and QM potentials, the MIM method is able to 

provide a physically accurate description of electronic structure at a fraction of the typical cost. 

Moreover, when applied to the problem of structurally similar ligands bound to a common target 

receptor, the MIM method proves extremely effective. In this study we test our method against 

two popular endpoint methods for computing and ranking protein–ligand binding strengths, 
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MM/PBSA and MM/GBSA. In total, we have calculated binding energies for nearly 100 

chemically diverse ligands using the three methods mentioned. 

Overall, the MM/GBSA method gave results more closely correlated with experiment 

than MM/PBSA. Most notably, however, the MIM method outperforms both MM/GBSA and 

MM/PBSA methods. MM/P(G)BSA methods involve extensive sampling over a MD trajectory 

using MM methods, while the MIM method uses QM potentials and considers only a single 

energy-minimized structure. Because we limit our studies to a set of structurally similar ligands 

bound to a common target receptor, where conformational and entropic changes are expected to 

be conserved, the use of a single energy-minimized structure proves sufficient and yields good 

correlation with experiment. To summarize, our results show the advantage of using a well-

defined QM-based protocol where the computational cost is greatly reduced via molecular 

fragmentation. 
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Description of molecular dynamics simulations as well as Tables and Figures.
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