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3 combined ensemble learning, laser fluorescence, and 

4 Raman scattering for real-time monitoring

5 Luke R. Sadergaski,* Hunter B. Andrews

6 Radioisotope Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel 

7 Valley Road, Oak Ridge, TN 37830, USA

8 *sadergaskilr@ornl.gov 

9 ABSTRACT: Laser-induced fluorescence spectroscopy (LIFS), Raman spectroscopy, and a 

10 stacked regression ensemble was developed for near real-time quantification of uranium (VI) (1–

11 100 µg∙mL-1), samarium (0–200 µg∙mL-1) and nitric acid (0.1–4 M) with varying temperature 

12 (20°C– 45°C). LIFS applications range from fundamental lab-scale studies to real-time process 

13 monitoring at industrial levels, such as nuclear reprocessing applications, provided the phenomena 
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14 affecting the fluorescence spectrum are accounted for (e.g., absorption, quenching, complexation). 

15 Multiple chemometric models were examined and compared to a more traditional multivariate 

16 regression approach called partial least squares (PLS). Results obtained on synthetic samples 

17 selected using D-optimal experimental design indicated that a stacked regression method, which 

18 included ridge regression, random forest, PLS, and an eXtreme gradient boost algorithm, 

19 successfully measured uranium (VI) concentrations directly in nitric acid without measuring 

20 luminescence lifetimes or standard addition. The top model resulted in percent root-mean-square 

21 error of prediction values of 5.2, 1.9, 3.0, and 2.3% for U(VI), Sm3+, HNO3, and temperature, 

22 respectively. The approach may be useful for quantifying fluorescent fission products (e.g., Sm3+) 

23 to provide information on burnup of irradiated nuclear fuel. This novel framework reinforces the 

24 applicability of LIFS for real-time applications in nuclear fuel cycle applications. 

25 KEYWORDS: uranium, samarium, machine learning, real-time monitoring, optimal designs, 

26 ensemble learning, stacked regression, multivariate analysis 

27 1. INTRODUCTION

28 Optical spectroscopy is a powerful option for in-line process control in many industrial 

29 applications and nuclear fuel cycle reprocessing separation schemes like PUREX (Plutonium 

30 Uranium REduction EXtraction).1–5 PUREX is a liquid–liquid extraction process that purifies 

31 uranium and plutonium by first extracting uranium (U) and plutonium (Pu) from aqueous solutions 

32 (3–4 M nitric acid) with a hydrocarbon phase containing tributyl phosphate. This extraction step 

33 is followed by a second U and Pu partitioning stage and a third U stripping stage in dilute nitric 

34 acid.6 All PUREX-related tasks must be performed remotely in heavily shielded hot cell 
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35 enclosures. Additional complications arise from radiation-induced decomposition and criticality 

36 risks, which makes this operation one of the most complicated chemical processes ever attempted. 

37 Processing must be supported by numerous analytical measurements. Traditional techniques, 

38 including radiochemistry (e.g., alpha and gamma spectroscopy) or inductively coupled plasma 

39 mass spectrometry, generally require retrieving samples which require significant dilutions 

40 (1,000–10,000-fold) and transfer out of the hot cell for analysis.2 Hot cell measurements using 

41 optical spectroscopy are much faster and can be acquired in situ, in real-time using fiber-optic 

42 cables.

43 One form of optical spectroscopy, time-resolved laser-induced fluorescence spectroscopy 

44 (TRLIFS), was evaluated extensively for monitoring PUREX streams (e.g., raffinate) several 

45 decades ago,7–11 but little work has been done in the last decade. More recently, Raman 

46 spectroscopy and UV-Vis spectrophotometry have been evaluated for monitoring applications, 

47 although these options are orders of magnitude less sensitive to uranium (VI) concentration than 

48 TRLIFS.1,2,12–14 TRLIFS is highly sensitive and selective to many actinide (An) species. It is often 

49 used for ultratrace analysis and complexation studies with both spectral and temporal features.15,16 

50 TRLIFS can detect several actinides including UO2
2+, Am3+, Cm3+, Cf3+, Bk3+, and Es3+. Only 

51 UO2
2+ and Cm3+ have a suitably large energy gap (>104 cm−1) for the luminescence level, while 

52 the others have a smaller gap, resulting in luminescence quantum yields highly sensitive to specific 

53 compounds and solution types.15 It is challenging to measure the aqueous luminescence properties 

54 of other actinides like Np and Pu due to strong nonradiative quenching by the solvent (e.g., O–H 

55 band). This effect can be lessened using other solvent types such as heavy water (D2O).17 Despite 

56 the incredible sensitivity of the time-resolved technique, the analysis time is often 10–15 minutes, 

57 which is too slow for situations where real-time feedback is required.10
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58 Laser-induced fluorescence spectroscopy (LIFS) is useful for the qualitative and quantitative 

59 analysis of molecular species such as the free uranyl (UO2
2+) and uranyl nitrate complexes 

60 (UO2(NO3)n
(2−n)+, n = 1 or 2) in aqueous solutions or U(VI) solid-state compounds.18 Fluorescence 

61 spectra can be measured using a charge-coupled device to increase the timeliness of data 

62 collection, as opposed to single-channel photomultiplier tubes (PMTs) often used for time-

63 resolved data. However, applying laser fluorometry is difficult in complex systems with 

64 overlapping bands, noise, matrix effects, chemical interactions, and baseline offsets.5,11,15,19 

65 Although it is possible to reroute the flow during processing to maintain a constant temperature 

66 and generate U(VI) complexes to improve quantum yield (i.e., sensitivity),19 it is preferable to 

67 perform the analysis in-line (i.e., directly in nitric acid) and without complicating hot cell 

68 operations. This necessitates directly accounting for the complicating effects of a nitric acid 

69 medium and other real-world process conditions such as temperature fluctuations. 

70 Dynamic temperatures drastically change the lifetime and intensity of U(VI) fluorescence, 

71 resulting in two highly correlated independent variables (i.e., multicollinearity), possibly the most 

72 challenging quenching phenomena.5,10,11,15 It is critical to account for temperature because high-

73 level waste solutions vary from 30°C–40°C and PUREX operations often take place at 

74 temperatures ranging from 20–40°C.5 Additional complicating factors arise because many fuel 

75 cycle processing streams contain a variety of fission and corrosion products with absorption or 

76 fluorescence properties that can complicate LIFS spectra.9 Lanthanide (Ln) fission products 

77 include Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+. Ln elements such as Eu3+, Tb3+, Gd3+, Dy3+, Sm3+, 

78 Ce3+, and Tm3+ can be characterized by TRLIFS.14,20–23 Two lanthanides, Eu3+ and Sm3+, have 

79 visible luminescence properties and range from ~10 to 200 µg∙mL-1 in PUREX raffinate streams.9 

80 The fission yield of Sm3+ is generally greater than Eu3+ and is less characterized in the literature. 
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81 LIFS could provide real-time feedback regarding nuclear fuel burnup and provide operational 

82 benefits compared to other optical techniques.24 Multivariate regression analysis has not been used 

83 to describe U(VI) fluorescence spectra under relevant conditions. It is important to reexamine this 

84 system with modern data analytics to achieve greater success with the LIFS technique.

85 This work explores the use of multivariate chemometrics, or machine learning, to account for 

86 these multifaceted effects. One of the most traditional supervised techniques is called partial least 

87 squares regression (PLSR).25–28 This factor analysis method iteratively relates two data matrices, 

88 the independent X (i.e., spectra) and dependent Y (i.e., concentrations), using combinations of 

89 latent variables (LV). PLSR models are built using a training set that covers the expected 

90 conditions and a validation set that tests the model’s ability to predict samples not included in the 

91 training set. These samples can be selected using optimal experimental designs that are the most 

92 flexible and effective option when a small number of experimental runs is desired.29–33 

93 Although PLSR has been used with great success to model systems with overlapping spectral 

94 features in numerous systems,27 it does not always account for systems with a high degree of 

95 multicollinearity.34,35 Multicollinearity must be accounted for in a LIFS system for monitoring 

96 U(VI) concentration because two independent variables (i.e., U(VI) concentration and 

97 temperature) are highly correlated in the regression model. To address this, ensemble learning 

98 combines multiple models to make a prediction in classification or regression problems to improve 

99 robustness and accuracy compared to single models. This process can be divided into three phases: 

100 (1) develop a set of candidate models (i.e., generation phase); (2) select a subset of the models 

101 (i.e., pruning phase); and (3) combine models to generate predictions (i.e., integration phase). In 

102 addition to PLSR, several advanced models are considered in this article, including ridge 

103 regression (RR), random forest (RF), and an eXtreme gradient boost (XGB) algorithm.36–42 These 
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104 are evaluated individually and compared to a stacked regression approach, a form of ensemble 

105 learning. The primary goal of this work is to demonstrate how ensemble learning methods can be 

106 used to handle the dynamic, overlapping, covarying, and nonlinear spectral response to provide a 

107 new U(VI) analysis method independent of time-resolved fluorescence spectra.   

108 Here, we demonstrate how to combine ensemble learning, LIFS, and Stokes Raman scattering 

109 to account for varying temperature, conditions that historically limit the timeliness of U(VI) 

110 monitoring applications. This work also includes the simultaneous quantification of a lanthanide 

111 fission product (i.e., Sm3+). Calibration and validation fluorescence spectral data sets were selected 

112 by determinant(D)-optimal designs to minimize the samples required in the training set, which 

113 spanned U(VI) (1–100 µg∙mL-1), Sm3+ (0–200 µg∙mL-1), HNO3 (0.1–4 M) concentrations and 

114 temperatures (20°C–45°C), conditions highly applicable to the nuclear fuel cycle. Specific points 

115 of scientific advancement covered in this work include: (1) the ensemble method allows for 

116 quantitative U(VI) predictions and varying temperature without recording lifetimes, 

117 (2) simultaneous quantification of  a fluorescent lanthanide (i.e., Sm3+) in the milligram-per-liter 

118 range, (3) stacked regression that combines LIFS and Raman spectroscopy, and (4) the augmented 

119 D-optimal design allows training/validation set samples to be effectively selected without user bias 

120 while minimizing the number of  samples. Many spectroscopy-enabled online monitoring studies 

121 tend to neglect the temperature variable and include too many user-selected samples to be easily 

122 implemented in restrictive hot cell environments.26 This work clearly articulates the challenges 

123 that arise due to fluctuating temperature and best practices to correct for such phenomena; this is 

124 applicable to many optical spectroscopy online monitoring applications extending within and 

125 beyond nuclear fuel cycle applications.  
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126 2. METHODS

127 All chemicals were commercially obtained (ACS grade) and used as received unless otherwise 

128 stated. Concentrated HNO3 (70%) was purchased from Sigma-Aldrich. Certified 10,000 µg∙mL-1 

129 uranium (238U, depleted) and samarium inductively coupled plasma optical emission spectroscopy 

130 standard solutions in 5% nitric acid were purchased from SPEX CertiPrep and Inorganic Ventures, 

131 respectively. Samples were prepared using deionized water with Milli-Q purity (18.2 MΩ∙cm at 

132 25°C).

133 2.1 Sample preparation

134 Calibration and validation samples contained uranium (1–100 µg∙mL-1), samarium (0–200 

135 µg∙mL-1), and HNO3 (0.1–4 M) and chosen to cover the anticipated solution conditions. Samples 

136 were prepared gravimetrically using volumetric pipettes. Each sample was prepared in individual 

137 2 mL plastic microcentrifuge tubes (VWR Scientific, 525-1160) prior to spectroscopic analysis. A 

138 fluorescence 3-in-1 flow cuvette, purchased from Hellma (584.4-Q-1) with 5 × 2.5 mm optical 

139 path lengths, was used for each measurement to ensure consistent optical quality. The cuvette was 

140 periodically rinsed with 2% nitric acid and stored with ultrapure water on lint-free Kimwipes. The 

141 cuvette Z-height of 8.5 mm was necessary to accommodate Quantum Northwest’s qpod 2e 

142 temperature-controlled sample compartment holder purchased from Avantes (CUV-UV/Vis-TC). 

143 Two collimating lenses (CUV-TC-QCL-UV) were placed at 90° in the sample compartment. 

144 Fluorescence measurements were performed at varying temperatures (i.e., 20°C–50°C) with an 

145 accuracy of ±0.05°C. Sample solutions were thermally equilibrated for at least 2 min prior to 

146 recording each spectrum to eliminate spectral variations due to temperature fluctuation. A syringe 

147 was used to inject the rinse and sample solutions.  
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148 2.2 Fluorescence and Raman spectroscopy

149 Laser fluorescence and Stokes Raman spectra were collected with a fully automated imaging 

150 iHR 320 spectrometer (Horiba Scientific) and a CW (continuous wave) LBX 405 nm laser 

151 (Oxxius) operating at 100 mW. Two multimode fibers—a 105 µm core diameter (M105L02S-A) 

152 and a 600 µm core diameter fiber (M134L01)—were used on the excitation and emission side, 

153 respectively. Static measurements were recorded in triplicate from 410 to 790 nm using a 600 

154 grooves mm-1 grating and a 100 µm slit size. Each spectrum comprised 5,585 data points. 

155 Lifetimes were collected using a Fluorolog-QM spectrometer (Horiba) and a DeltaTime kit for 

156 a DeltaDiode 405 nm laser (DD-405L) source operating with an average power of 2 mW and 

157 average pulse width of 50 ps. Single-photon-counting statistics with time-correlated single-photon 

158 counting were used to calculate lifetimes using a single-channel R928P PMT. The lifetime analysis 

159 depends on a model or fitting function that describes the decay of luminescence intensity. The 

160 lifetime was calculated using a fitting algorithm D(t) with the PowerFit-10 application in Horiba 

161 software by Equation 1:

162 ,                                                                                                                  (1) 𝐷(𝑡) =  ∑𝑎𝑖exp{ ―𝑡
τ𝑖 }

163 where ai is the preexponential factor, t is time, and τi is the fluorescence lifetime. The room 

164 temperature was stable at 22°C during lifetime measurements. Excitation spectra were acquired in 

165 steady state using a 75 W Xenon arc lamp (see Supporting Information [SI]).

166 2.3 Design of experiments

167 Experimental designs were built using Design-Expert (v.11.0.5.0) by Stat-Ease Inc., within the 

168 Unscrambler software package by Camo Analytics. Optimal designs incorporate mixture and 

169 process variables, contain different high and low components, and feature constraints with factor 

Page 8 of 37Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



170 limits. D-optimal samples were chosen by iteratively minimizing the determinant of the variance–

171 covariance matrix XTX using a quadratic process order.25 A combination of point and coordinate 

172 exchange search options was used to select points. Fraction of design space (FDS) was used to 

173 evaluate the model and calculated by mean error type: δ = 2, σ = 1, and α = 0.05.33 

174 A minimum of 10 model points was required for three numeric factors (i.e., U(VI), Sm, and 

175 HNO3 concentrations). The design was augmented with 15 additional lack-of-fit (LOF) points, 

176 which were included either as calibration or validation samples. LOF points are chosen to 

177 maximize the distance to other runs while maintaining the optimality criterion.32 Temperature was 

178 treated in a separate design. At least three model points were required for a single numeric factor 

179 (i.e., temperature), and the design was augmented using 2 LOF points. Combining the two designs 

180 resulted in a total of 125 samples. 

181 2.4 Multivariate analysis and preprocessing

182 Several chemometric methods were evaluated including PLSR, RR, RF, an XGB algorithm, and 

183 combining multiple methods through stacked regressions. PLSR iteratively relates two data 

184 matrices, the independent X (i.e., spectra) and dependent Y (i.e., concentrations), using 

185 combinations of latent variables. The optimal number of latent variables is selected through cross 

186 validation (CV); the optimal number typically includes up to the last latent variable that marks a 

187 significant increase in the explained variance (or a significant reduction in the error of prediction). 

188 PLSR can be implemented in two forms, the first (PLS-1) models the response of only a single 

189 factor and the second (PLS-2) models the response of multiple factors simultaneously. PLS-2 is 

190 typically used to model systems with multicollinearity; however, in some cases multiple PLS-1 

191 models can have better predictive capabilities by leveraging different preprocessing strategies (i.e., 

192 trimming, smoothing, derivatives, etc.). RR is similar to ordinary least squares regression; 
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193 however, instead of simply minimizing the sum of squared error, there is an additional factor, α, 

194 that penalizes the slope of the regression.39,41 This factor is selected through CV and must be 

195 greater than zero. RR is typically useful when analyzing data with high multicollinearity (i.e., 

196 correlated independent variables). RF is a supervised form of machine learning that fits a user-

197 defined number of independent decision trees to the data and then combines the predictions of the 

198 many trees to provide a single prediction.39,40 The XGB algorithm is an open-source 

199 implementation of the gradient boosting algorithm that uses a loss function to prevent overfitting. 

200 XGB also uses a multitude of decision trees like RF, but actively uses residual information to 

201 optimize the model.39

202 Stacked regression is an ensemble machine learning method in which a final metamodel is 

203 trained on the outputs of several submodels to provide a single combined estimate. The final model 

204 regression is built using CV of the submodel predictions, learning the best way to combine the 

205 submodel predictions.36,40,42 This allows for multiple, typically different, regression methods to be 

206 employed simultaneously on a single data set, allowing the strengths of each model to be retained 

207 while mitigating the error of the individual regressions.36,42 Ensemble methods, like RF, help to 

208 mitigate issues of overfitting and typically provide more accurate predictions than the single 

209 models. 

210 Spectral data was preprocessed prior to modeling including smoothing, derivatives, and 

211 trimming to optimize performance. Smoothing removes instrument noise, and the use of 

212 derivatives makes calibration models more resistant to baseline shifts expected in monitoring 

213 applications. The smoothing and derivatives were performed using several Savitzky–Golay (SG) 

214 filters. SG derivatives fit a polynomial to the data based on a user-defined number of left/right 

215 smoothing points and polynomial order. Higher than first and second derivatives were not included 
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216 here because they suppressed the relatively broad spectral features needed for regression. 

217 Numerous derivative orders, polynomial orders, and smoothing points were tested.30 Trimming 

218 the spectra reduces the dimensionality of large spectra files and can help reduce the error of 

219 prediction in multivariate modeling. The trimmed region included in the chemometric model was 

220 varied based on the behavior being modeled. All regression models and data preprocessing were 

221 completed in Python 3 using modules from the Scikit Learn and XGBoost packages.38,40

222 2.5 Statistical comparison

223 Model performance was evaluated using calibration, CV, and validation (i.e., prediction) 

224 metrics. The most important calibration/validation statistics typically include R2 correlation values, 

225 root mean square error (RMSE) of the calibration (RMSEC), and RMSE of the CV (RMSECV). 

226 Although these statistics may suggest that a PLSR model is satisfactory, testing the prediction 

227 performance of PLSR models on samples not included in the training set is important because 

228 RMSECV is only an estimate.5 Prediction statistics typically include RMSE of the prediction 

229 (RMSEP), RMSEP%, bias, and standard error of prediction. RMSEs for the calibration, CV, and 

230 validation were calculated using Equation 2:

231 (2)RMSE =  
∑n

i = 1(yi ― yi)2

n  ,

232 where  is the predicted concentration,  is the measured concentration, and n is the number of 𝑦𝑖 𝑦𝑖

233 samples. RMSEP% was calculated by dividing the RMSEP by the median model values using 

234 Equation 3:

235 (3)RMSEP% =  
𝑅𝑀𝑆𝐸𝑃

𝑦𝑚𝑒𝑑
 ×  100%,

236 where ymed represents the median of each analyte concentration range. Each RMSE value is in units 

237 of analyte concentration. In general, lower RMSEC, RMSECV, RMSEP, and RMSEP% values 
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238 indicate better model performance. A Tukey-Kramer significance test was used to statistically 

239 compare the RMSEP values for multiple regression models following a method outlined 

240 previously.29,30 Additional details can be found in the SI. 

241 3. RESULTS AND DISCUSSION

242 3.1 Fluorescence and Raman spectra

243 The absorption and photoluminescence spectrum of the uranyl ion (UO2
2+) is extensively 

244 characterized in the literature.13 Each electron in this nearly linear moiety is paired, thus the 

245 ground-state electronic level is a singlet.18 Higher-energy levels occur when one of the bonding 

246 electrons is transferred to the 5f nonbonding atomic orbitals of the uranium ion ~20,000 cm−1 (500 

247 nm) above the ground singlet. Photoexcitation occurs when photons with a higher energy than the 

248 first excited electronic level are absorbed. The excited uranyl ion relaxes rapidly by a nonradiative 

249 process to the first excited electronic level, followed by fluorescence to the symmetric and 

250 asymmetric vibrational levels associated with the ground-state singlet. This process is described 

251 by a notional energy-level diagram in Figure 1a. 

252 The Sm3+ emission spectrum consists of four bands near 563, 596, 643, and 720 nm, 

253 corresponding to the 4G5/2 → 6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions, respectively (Figure 1b). The 

254 electronic structures of lanthanides elements are characterized primarily by the 4f orbital.21 The 4f 

255 orbitals are shielded by the filled 5s and 5p shells, indicating that the surrounding matrix has a 

256 minimal effect on 4fn energy levels and corresponding optical transitions.21 As a result, 4f electrons 

257 do not play a significant role in chemical bonding, and wavelength-dependent shifts due to the host 

258 medium are minimal. Most research on lanthanide luminescence in aqueous environments has 

259 been concerned with Eu3+ and Tb3+. The other two visibly luminescent ions, Sm3+ and Dy3+, have 
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260 received less attention because they have inferior luminescence quantum yields (i.e., more efficient 

261 nonradiative relaxation). Three out of the four Sm3+ emission bands significantly overlap with the 

262 uranyl fluorescence spectrum (see Figure 1). 

263 With increasing temperature, the fluorescence intensity of U(VI) decreases dramatically (i.e., via 

264 dynamic quenching) because the molecular collisional rate increases (Figure 1a). The shape of the 

265 fluorescence spectrum changes minimally with increasing temperature (Figure S1). This implies 

266 that the change in temperature has a minimal effect on the nature of the UO2
2+ species. The 

267 temperature-induced radiative deexcitation rate of UO2
2+ is likely due to a chemical process 

268 involving hydrogen abstraction from the solvent molecules coordinating UO2
2+.5 On the other 

269 hand, the fluorescence spectrum of Sm3+ changes slightly in wavelength position and intensity as 

270 a function of temperature. These thermochromic shifts likely correspond to slight variations in the 

271 coordination environment surrounding Sm3+.23 
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272

273 Figure 1. Laser fluorescence spectra (λex = 405 nm) of an aqueous solution containing 100 µg∙mL-1 

274 uranium (a) or 100 µg∙mL-1 Sm3+ (b) in 1 M HNO3 from 20°C–50°C. A notional uranyl energy-

275 level diagram is included in the figure, and each Sm3+ transition is labeled. The Raman NO3
− 

276 symmetric N–O stretch and the O–H stretching band appeared at 421 nm and 455–475 nm, 

277 respectively. 

278 The U(VI) spectrum changes significantly as a function of acid concentration (Figure 2a) due to 

279 the formation of free uranyl species (UO2
2+) and uranyl nitrate complexes (UO2(NO3)n

(2−n)+, n = 1 

280 or 2) at acid concentrations >~0.1 M HNO3, which coexist in various proportions. Each species—
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281 UO2
2+, UO2NO3

+ and UO2(NO3)2+—has a unique spectrum contribution. The maximum intensity 

282 of U(VI) fluorescence from ~0.5 to 5 M is relatively consistent; however, the lifetime changes 

283 significantly from 3.1–1.1 µs over this range and continues to decrease at even higher HNO3 

284 concentrations (see SI). The Sm3+ emission spectrum is also highly sensitive to changes in nitric 

285 acid concentration and likely corresponds to the formation of nitrate complexes (Figure 2b).  To 

286 use the entire spectrum for regression, multivariate chemometrics must be applied to account for 

287 the overlapping and covarying spectral features.  

288 The electronic transitions of Sm3+ vary in spectral shape and intensity with changing nitric acid 

289 concentration. Despite these solvatochromic shifts, the lifetime remains relatively constant from 1 

290 to 5 M HNO3 at 3.2–3.6 µs. (Figure S3). Different energy levels in lanthanide fluorescence spectra 

291 occur due to several interactions within the ion, including the Coulombic interaction (104 cm−1), 

292 spin-orbit coupling (103 cm−1), and crystal field splitting (102 cm−1).21 These free ion levels are 

293 described by the term symbols (2S + 1)LJ where 2S + 1 denotes the total spin multiplicity, L the total 

294 orbital angular momentum, and J denotes the total angular momentum of the f electrons. The 

295 electric field in a coordinating environment further splits individual J-levels. This splitting appears 

296 as fine structure on each band. This information is only visible with higher-resolution 
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297 spectrometers and is often ignored in the literature. However, fine structure is useful for 

298 determining symmetry and coordination environment.15 The fine structure in the Sm3+ emission 

299 bands is particularly evident in the 4G5/2 → 6H7/2 emission line near 596 nm. The shoulder near 

300 604 nm becomes less pronounced with increasing acidity. This suggests that the transitions acquire 

301 strength at least in part due to the coordinating environment and have electric dipole (ED) 

302 character. ED-allowed transitions are more sensitive to the coordinating environment, and stronger 

303 ligand fields lead to more intense transitions. 
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304

305 Figure 2. Example laser fluorescence spectra (λex = 405 nm) of solutions containing 100 µg∙mL-1 

306 U(VI) (a) and 100 µg∙mL-1 Sm3+ (b) with varying nitric acid concentration (0.1 M–5 M HNO3). 

307 The Raman nitrate (NO3
-) symmetric N–O stretch peak is labeled (b). 

308 In addition to U(VI) and Sm3+ emission peaks, Stokes Raman scattering features corresponding 

309 to free acid (H+), nitrate anions (NO3
−), and the O–H stretching region were identified 

310 simultaneously.26,30 Unperturbed nitrate ions have three Raman active bands including ν1 (~1048 

311 cm−1), ν3 (~1415 cm−1), and ν4 (~717 cm−1). The O–H vibrational stretching region consists of 

312 several overlapping bands attributed to various H2O and O–H (free and bound) vibrations (455–

313 475 nm). An isosbestic point at 461.9 nm was observed with increasing nitric acid concentration 
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314 (Figure 2). This Raman band is sensitive to the presence of cation, anions, ion strength, and 

315 temperature and is generally best described using multivariate data analysis.25,26 

316 One advantage of using an excitation wavelength of 405 nm is that the water band at ~460 nm 

317 does not overlap significantly with the absorption spectrum of U(VI) (see SI). Either 337 nm or 

318 355 nm laser excitation sources are normally used for U(VI) fluorescence studies.8 These 

319 wavelengths coincide with absorption bands of nitric acid, uranium, or several fission products, 

320 complicating measurement due to self-absorption effects.5,9 The fluorescence signal is dependent 

321 on the optical pathlength for laser excitation and the pathlength for emission collection.10 The 

322 complications that arise due to self-absorption are minimized in this work, which utilizes a 405 

323 nm laser and a smaller pathlength cuvette (i.e., 5 × 2.5 mm) instead of the more common 10 × 10 

324 mm.  

325 3.2 Univariate Analysis to LOD and LOQ

326 A key component of a quality analytical chemistry paper includes the transparent calculation of 

327 limit of detection (LOD) and limit of quantification (LOQ). For this experiment, spectra were 

328 collected at room temperature (22°C) using a 4 s integration time and 100 mW laser power at 

329 405 nm. Calibration regression curves were generated for the primary 510 nm U(VI) peak, the 

330 most intense Sm3+ emission line 595 nm peak, and the most resolved line relative to uranium at 

331 702 nm (see SI). The calibration curves for each emission line were used to calculate LOD and 

332 LOQ by Equations 4 and 5:  

333      (4)𝐿𝑂𝐷 =
3 ∙ s
𝑚

334  (5)𝐿𝑂𝑄 =
10 ∙ s 

𝑚
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335 The variable s refers to standard deviation or noise of the blank, and m is the slope obtained by 

336 plotting the intensity of the peak versus concentration. LOD and LOQ values are shown in Table 1. 

337 Sample U(VI) and Sm3+ concentrations ranged from 1 to 8 µg∙mL-1 in 1.0 M nitric acid (Figure S2). 

338 LODs could improve using longer integration times, higher laser power, or more efficient optics. 

339 LODs for Sm3+ would improve at higher acidity (Figure 2), and U(VI) would decrease at higher 

340 temperatures. These LOD and LOQ values do not reflect the exact detection limits for multivariate 

341 regression models but serve as a benchmark for the system used in this study. Due to the 

342 complicated nature of the emission bands, multivariate approaches were applied to the 

343 measurements. 

344 Table 1. LOD and LOQ of U(VI) and Sm3+ in 1 M HNO3 using a 405 nm laser at 22°C and 4 s 

345 integration time.  

Species LOD (µg∙mL-1) LOQ (µg∙mL-1) slope (m)
U(VI) 510.3 nm 0.019 0.064 132
Sm3+ 595.2 nm 0.062 0.21 27.4
Sm3+ 702.0 nm 0.75 2.5 7.32

346

347 3.3 D-optimal design sample selection 

348 Models were built using calibration and validation sets selected by D-optimal experimental 

349 designs. Recent work has shown that this approach can minimize resource consumption while 

350 maintaining or improving PLSR prediction performance. Selecting training sets using a one-factor-

351 at-a-time approach generally results in many samples, particularly when more than two factors are 

352 considered. The expected application of this work is monitoring in a restrictive glove box or hot 

353 cell environment. Therefore, D-optimal designs were evaluated to minimize the number of samples 
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354 in the training set as well as minimize time and resource consumption.5 A D-optimal design (25 

355 points) was used to select the concentrations studied in this work. This design comprised 10 

356 required model points and was augmented with 15 LOF points. Inclusion of LOF points generally 

357 indicates that a higher-order process model is needed. To achieve an FDS of 0.99, five LOF points 

358 were included in the calibration set. The 10 remaining LOF points were used as the validation set. 

359 U(VI) concentration spanned the conditions expected in raffinate waste streams (1–100 µg∙mL-

360 1).5,9 Detecting less than 1 µg∙mL-1 uranium generally is not cause for concern in most applications. 

361 The model covered the acid concentration range from 0.1 to 4 HNO3, which covers both a raffinate 

362 stream (i.e., 3–4 M HNO3) and low-acid-strip solutions.5 Sm3+ concentrations were chosen based 

363 on potential burnups.9 Generally, Sm3+ is found in raffinate solutions at a higher acid 

364 concentration. Accounting for acid dependence in this data set adds complexity, which tests the 

365 limits of the modeling approach. It was included in some model points and not included in others 

366 to determine if it strengthened U(VI) model predictions, particularly with varying temperature. 

367 Table 2. D-optimal selected concentrations with space and build type.   

Run
U(VI) 

(µg∙mL-1)
HNO3 

(M)
Sm3+ (µg∙ 

mL-1) Space type Build type
1*† 100.00 3.22 160.00 Plane Lack of fit
2 100.00 0.10 0.00 Vertex Model
3 82.18 1.66 119.00 Interior Lack of fit
4 55.45 0.12 0.10 Interior Lack of fit
5 3.97 0.12 108.74 Interior Lack of fit
6* 30.70 1.11 55.00 Interior Lack of fit
7 13.38 4.00 87.00 Plane Lack of fit
8* 63.41 4.00 130.00 Plane Lack of fit
9 52.48 4.00 40.00 Plane Lack of fit
10 61.39 2.48 199.00 Interior Lack of fit
11 1.00 4.00 0.00 Vertex Model
12 100.00 1.50 200.00 Edge Model
13 15.85 2.36 0.00 Plane Lack of fit
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14† 30.70 1.27 163.00 Interior Lack of fit
15 59.91 2.42 0.00 Plane Model
16 100.00 4.00 70.27 Edge Model
17 1.00 2.42 119.00 Plane Model
18 36.15 4.00 200.00 Edge Model

19*† 44.32 2.50 104.00 Interior Lack of fit
20† 100.00 0.20 86.82 Plane Lack of fit
21 60.26 0.10 120.00 Plane Model
22 1.00 0.10 0.00 Vertex Model
23* 1.00 3.03 200.00 Edge Lack of fit
24 100.00 1.84 33.00 Plane Lack of fit
25 1.00 0.10 200.00 Vertex Model

368 Note: Abbreviations used in this table are derivative (Der.) and polynomial (Poly.). *LOF points included in the construction of the 
369 original calibration models. †Optimal LOF points for U(VI) calibration model. Required model points are bolded. 

370 A second D-optimal design was generated for temperature from 20°C to 45°C (see SI). This 

371 design included three required model points at 20°C, 32.5°C, and 45°C and two LOF points at 

372 26.25°C and 38.75°C. Although it is possible to combine temperature as a fourth factor in the 

373 concentration design, the number of temperature points in such a design may not account for the 

374 variation necessary to model it. Additionally, a four-factor design would create additional 

375 concentrations, resulting in more samples. Thus, the variable temperature, which is unique relative 

376 to concentration, was treated separately. 

377 3.4 Stacked regression model development

378 In addition to the required model points, five LOF samples (1, 6, 8, 19, and 23) were arbitrarily 

379 chosen and included in the training set to begin building models. All five temperature levels were 

380 used to best model the effect on analyte spectral signatures. Each model was optimized by 

381 minimizing the RMSEP through numerous reiterations. PLSR (PLS-2) was attempted first, as it is 

382 one of the most widely applied techniques to correlate convoluted and covarying spectral features 

383 to analyte concentration.2,3,27,28 The global PLSR model was built using most of the spectrum (410–

384 750 nm) after applying a first derivative with a first-order polynomial and 31 smoothing points (1, 
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385 1, 31). Eight latent variables (i.e., factors) were included in the model based on the RMSECV 

386 versus latent variable plot (Figure S6). The number of latent variables was chosen based on when 

387 there was the last significant reduction in RMSECV (>10%) when an additional latent variable 

388 was added. The addition of the eighth latent variable corresponds to a 20, 69, 84, and 3.2% 

389 reduction in the RMSECV for U(VI), HNO3, Sm3+, and temperature, respectively. The global 

390 PLSR model predicted Sm3+ and HNO3 concentration relatively well (see Table 3). The model was 

391 unable to account for the multicollinear effects of temperature and U(VI) concentration on the 

392 spectral intensity. Parity plots showing the wide spread of temperature and U(VI) predictions 

393 against the reference values are shown in Figure S7. 

394 Individual PLSR models (PLS-1) were built using only the spectral regions most related to each 

395 species to reduce issues of multicollinearity. As denoted in Table 3, fewer factors were needed in 

396 the individual PLSR models due to trimming and reducing the signal dimensionality.37 This 

397 lowered the RMSEP: 18, 63, and 60% difference for Sm3+, HNO3, and temperature (20%). 

398 However, this exercise only slightly lowered U(VI) predictions (11% difference), clearly stressing 

399 that U(VI) predictions are impacted the most by multicollinearity. A Tukey-Kramer test was 

400 performed at a 95% confidence level to verify there was a significant difference between the global 

401 and trimmed PLSR models. The two models showed similar levels of prediction bias for all factors 

402 and showed a significant improvement in prediction error for all factors except for Sm3+. A 

403 description of the Tukey-Kramer test can be found in the Supporting Information along with plots 

404 of the bias and standard error of prediction confidence bands (Figure S8).

405 Next, other regression methods, including RR, RF, XGB, and stacked models, were investigated. 

406 Each regression model was optimized by tuning the preprocessing hyperparameters and trimming 

407 limits. The optimal models for Sm3+ and HNO3 were developed using trimmed spectra (580–
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408 750 nm) and RR. This removed most of the neighboring U(VI) signal from inhibiting the Sm3+ 

409 predictions. Similarly, the HNO3 model only used the wavelength range from 400 to 480 nm, using 

410 only the Raman nitrite peak and O–H stretching band for prediction. The RR model only slightly 

411 outperformed the seven-factor PLSR model for HNO3, but RR provided the benefit of not requiring 

412 the user to perform latent variable selection.

413 The temperature model was built using the second derivative of the wavelength range 415–500 

414 nm. This range included the Raman O– H stretching band and the highest-energy U(VI) peak. This 

415 stacked regression model comprised an RR and PLSR serving as the submodels, and their 

416 predictions were analyzed by a 1,000-tree RF regression model. The resultant model had a strong 

417 predictive capability. The calibration and CV statistics for these three models are shown in Table 

418 3 as part of the overall ensemble. One interesting observation during CV was that RMSECV was 

419 much larger than the RMSEC. This was due to Sample 16, an edge sample with U(VI) and HNO3 

420 levels at their maximum, being predicted poorly when left out of the model (Figure 5), indicating 

421 its importance to the model. Sample 16 was located at the edge of the experimental design space, 

422 which explains why it would not be well predicted when left out of the calibration set. 

423 The U(VI) signal was the most influenced by changes in temperature and system acidity. The 

424 models developed to characterize temperature and acidity were used to correct the U(VI) signal. 

425 Using six D-optimal model point calibration samples (Table 2), the 510.3 nm peak intensity was 

426 plotted as a function of temperature. The peak intensity was then normalized to the maximum 

427 510.3 nm peak of that sample (i.e., at 20°C), and the temperature was normalized to the model 

428 temperature range. The empirically derived plot (Figure 3) reveals a similar exponential 

429 relationship between the intensity and temperature. The coefficients of this relationship, shown as 

430 A and b in Figure 3, change only with acidity, not with U(VI) concentration. This relationship 
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431 allowed an additional preprocessing step for the U(VI) model where the trimmed spectra (450–

432 550 nm) were transformed to their respective Imax values by scaling them using the relationship 

433 shown in Figure 3, taking into consideration their temperature and acidity. 

434

435

436 Figure 3. Temperature dependence of the 510.3 nm U(VI) fluorescence peak for six required 

437 model points. The coefficients of the exponential fit were determined to be functions of acidity: A 

438 = −0.0033×CHNO32 + 0.0334 × CHNO3 + 0.2038 and b = 0.0152×CHNO32 − 0.1416×CHNO3 + 1.5773.

439 This step was essential to build an optimal U(VI) model, which also used a stacked regression. 

440 The submodels in the stacked ensemble included XGB, PLSR, and RR.  Each submodel regressed 

441 the temperature and acid-adjusted preprocessed spectra to provide an individual U(VI) prediction. 

442 The submodels’ estimates were then regressed themselves by the final model, in this case RR, 

443 which provided the final U(VI) concentration estimates. The final model is typically referred to as 

444 a metamodel, as it regresses the submodel predictions, rather than the spectra, to provide a final 

445 prediction. The calibration, CV, and validation statistics shown in Table 3 were calculated using 
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446 the known temperatures and acidities for the adjustment. The final ensemble model included 

447 combining all four models into one flow sheet where the temperature, HNO3, and Sm3+ 

448 concentrations would be predicted first, and then these predictions were used for scaling the spectra 

449 before regression by the U(VI) model (Figure 4). The predictions of the final ensemble model are 

450 visualized in Figure 5.

451

452 Figure 4. Overall ensemble scheme detailing how each model is connected. 

453 The validation statistics in Table 3 show that the overall ensemble provides a strong predictive 

454 capability for all four factors, overcoming the issues of multicollinearity. The overall ensemble 

455 model’s RMSEP values were significantly reduced compared to the trimmed PLSR models for all 
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456 species: 95, 22, 10, and 164% difference for U(VI), Sm3+, HNO3, and temperature, respectively. 

457 Again, a Tukey-Kramer test at a 95% confidence level was performed and for all four factors the 

458 overall ensemble model showed a statistically significant difference compared to the global and 

459 trimmed PLSR models (Figure S8).29,30 

460 The RMSEP% for Sm3+, HNO3, and temperature all fall below the goal level of 5%. While the 

461 U(VI) RMSEP% misses this objective, the ensemble model vastly improves the prediction 

462 accuracy compared to the initial PLSR models. Although not shown in Table 3, the trimmed PLSR 

463 and ensemble models for U(VI) were reconstructed with and without scaling to investigate the 

464 impact of this step. The results showed that scaling improved the trimmed PLSR U(VI) RMSEP 

465 by 60%; however, the final ensemble model still offered a 10% relative reduction in RMSEP over 

466 the scaled and trimmed PLSR model.

467 Another note is that these models were developed with 10 model points and 5 randomly selected 

468 LOF points; given the complexity of the system more LOF points may improve the validation 

469 statistics. Similarly, an alternate set of LOF points may be better suited for the calibration set if 

470 they capture important features within the design space.

471 Table 3. PLSR and overall ensemble models’ calibration and validation statistics for each analyte 

472 derived from multiple preprocessing strategies.

Model Global PLSR Trimmed PLSRs Overall ensemble
Preprocessing
U(VI) (1,1,31), 450–550 nm, 7 LVs (1,1,51), 450–550 nm, SR1
Sm3+ (1,1,31), 580–750 nm, 6 LVs (1,1,31), 580–750 nm, RR
HNO3 (1,1,31), 410–480 nm, 7 LVs (1,3,51), 410–480 nm, RR
°C

(1,1,31), 410–
750 nm, 8 LVs

(1,1,31), 415–500 nm, 8 LVs (2,5,51), 415–500 nm, SR2
Calibration/CV statistics
R2 (U(VI)) 0.9672 0.9718 0.998
RMSEC 7.0 6.5 1.7
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RMSECV 14 10 2.8
R2 (Sm3+) 0.9988 0.9995 0.999
RMSEC 2.7 1.61 0.37
RMSECV 3.4 2.23 1.87
R2 (HNO3) 0.9976 0.9996 0.999
RMSEC 0.075 0.031 0.007
RMSECV 0.13 0.043 0.036
R2 (°C) 0.9318 0.9939 0.999
RMSEC 2.3 0.69 0.003
RMSECV 3.2 1.1 0.74
Validation statistics
RMSEP (U(VI)) 9.4 8.4 3.0
RMSEP% 19% 17% 6.2%
RMSEP (Sm3+) 3.0 2.5 2.0
RMSEP% 3.0% 2.5% 2.0%
RMSEP (HNO3) 0.14 0.073 0.066
RMSEP% 7.2% 3.7% 3.4%
RMSEP (°C) 2.6 1.4 0.14
RMSEP% 21% 11% 1.1%

473 Note: R2 of the calibration, RMSE of the calibration (C), cross validation (CV), and prediction (P). Preprocessing information 
474 includes derivative information (order, polynomial, smoothing points); wavelength regions regressed by the model; and number of 
475 latent variables (LVs) or regression type. The first PLSR model employs the PLS-2 implementation and the trimmed PLS models 
476 utilize the PLS-1 implementation of PLSR. SR1 refers to scaling (Figure 3) and stacked regression (base models = PLSR, RR, 
477 XGB; final model = RR). SR2 refers to stacked regression (base models = PLSR, RR; final model = RF).

Page 27 of 37 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



478

479 Figure 5. Predicted (a) U(VI), (b) HNO3, (c) Sm3+ concentrations, and (d) temperature as 

480 determined by the overall ensemble model compared to normalized reference (known) values. 

481 3.6 Optimizing LOF points

482 To find the minimal number of samples in the training set and determine which LOF points 

483 improved the calibration, each combination of 1–5 LOF points was tested in the training set, and 

484 the remaining LOF points were treated as the validation set. This power set resulted in 4,944 

485 combinations that were evaluated in two ways including which LOF combinations best improved 

486 the overall RMSEP and which LOF combinations best improved the U(VI) RMSEP. The top 

487 overall combination and U(VI) combinations for each level of LOF inclusion are detailed in Table 
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488 S3 in the SI. The top U(VI) model used only four LOF points (1, 14, 19, 20) and resulted in 

489 RMSEP% values of 5.2%, 1.9%, 3.0%, and 2.3% for U(VI), Sm3+, HNO3, and temperature, 

490 respectively. This combination improved U(VI) prediction significantly with the trade-off of 

491 losing some temperature accuracy; however, given that U(VI) is the primary analyte of interest, 

492 this combination of model and LOF points would be best used to recalibrate a model in a new 

493 environment such as a hot cell.

494 Another benefit of considering all the top combinations was that the most important LOF points 

495 in the design space could be inferred. For overall prediction accuracy, Samples 1, 19, 20, 23, and 

496 24 were found to be the most beneficial. For U(VI) prediction accuracy, Samples 1, 14, 19, 20, 

497 and 24 were found to be the most beneficial. Interestingly, samples 1, 19, 20, and 24 are 

498 represented in both lists; Samples 1, 20, and 24 are all plane points with the maximum U(VI) 

499 concentration, and sample 19 is an interior point nearly at the center of the overall design space. 

500 4. CONCLUSIONS

501 The stacked regression approach built upon several multivariate analytical methods can account 

502 for nonlinear temperature fluctuations in uranyl fluorescence spectra without measuring 

503 luminescence lifetimes or using a separate temperature probe. Raman spectral fingerprints were 

504 combined with LIFS to improve acid and temperature predictions. The real-time feedback afforded 

505 by this novel approach makes it possible to study separation system dynamics prior to equilibrium. 

506 In addition, by simultaneously quantifying Sm3+, a common fission product, it may be possible to 

507 characterize fuel burnup using the LIFS technique. 

508 The work presented here was essential to demonstrate key concepts related to minimizing the 

509 number of samples in the training set and building stacked regression models to account for 
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510 temperature fluctuations, prior to characterizing a more complicated system. To demonstrate 

511 greater applicability in real-world processing solutions, future work will include additional factors 

512 in the training set to account for self-absorption, quenching, and additional peak overlap 

513 effects.11,43 These species may include fission products (e.g., Zr, Mo, Ru); lanthanides (e.g., Eu3+, 

514 Ce3+, Nd3+); corrosion products (e.g., Ni2+, Cr3+, Fe3+) and phosphorous-containing breakdown 

515 products. This method will also be applied to a more challenging validation set that includes a flow 

516 loop demonstration.   
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