

Analyst

Simultaneous quantification of uranium(VI), samarium, nitric acid, and temperature with combined ensemble learning, laser fluorescence, and Raman scattering for realtime monitoring

Journal:	Analyst
Manuscript ID	AN-ART-06-2022-000998.R1
Article Type:	Paper
Date Submitted by the Author:	02-Aug-2022
Complete List of Authors:	Sadergaski, Luke; Oak Ridge National Laboratory, Isotope and Fuel Cycle Technology Andrews, Hunter; Oak Ridge National Laboratory, Radioisotope Science and Technology Division;

SCHOLARONE[™] Manuscripts

 Analyst

Simultaneous quantification of uranium(VI), samarium, nitric acid, and temperature with combined ensemble learning, laser fluorescence, and Raman scattering for real-time monitoring

Luke R. Sadergaski,* Hunter B. Andrews

Radioisotope Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA

*sadergaskilr@ornl.gov

ABSTRACT: Laser-induced fluorescence spectroscopy (LIFS), Raman spectroscopy, and a stacked regression ensemble was developed for near real-time quantification of uranium (VI) (1- μ g·mL⁻¹), samarium (0–200 μ g·mL⁻¹) and nitric acid (0.1–4 M) with varying temperature (20°C- 45°C). LIFS applications range from fundamental lab-scale studies to real-time process monitoring at industrial levels, such as nuclear reprocessing applications, provided the phenomena

This manuscript has been authored by UT-Battelle LLC under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

affecting the fluorescence spectrum are accounted for (e.g., absorption, quenching, complexation). Multiple chemometric models were examined and compared to a more traditional multivariate regression approach called partial least squares (PLS). Results obtained on synthetic samples selected using D-optimal experimental design indicated that a stacked regression method, which included ridge regression, random forest, PLS, and an eXtreme gradient boost algorithm, successfully measured uranium (VI) concentrations directly in nitric acid without measuring luminescence lifetimes or standard addition. The top model resulted in percent root-mean-square error of prediction values of 5.2, 1.9, 3.0, and 2.3% for U(VI), Sm³⁺, HNO₃, and temperature, respectively. The approach may be useful for quantifying fluorescent fission products (e.g., Sm³⁺) to provide information on burnup of irradiated nuclear fuel. This novel framework reinforces the applicability of LIFS for real-time applications in nuclear fuel cycle applications.

KEYWORDS: uranium, samarium, machine learning, real-time monitoring, optimal designs,
ensemble learning, stacked regression, multivariate analysis

27 1. INTRODUCTION

Optical spectroscopy is a powerful option for in-line process control in many industrial applications and nuclear fuel cycle reprocessing separation schemes like PUREX (Plutonium Uranium **RE**duction EXtraction).^{1–5} PUREX is a liquid–liquid extraction process that purifies uranium and plutonium by first extracting uranium (U) and plutonium (Pu) from aqueous solutions (3–4 M nitric acid) with a hydrocarbon phase containing tributyl phosphate. This extraction step is followed by a second U and Pu partitioning stage and a third U stripping stage in dilute nitric acid.⁶ All PUREX-related tasks must be performed remotely in heavily shielded hot cell Page 3 of 37

Analyst

enclosures. Additional complications arise from radiation-induced decomposition and criticality risks, which makes this operation one of the most complicated chemical processes ever attempted. Processing must be supported by numerous analytical measurements. Traditional techniques, including radiochemistry (e.g., alpha and gamma spectroscopy) or inductively coupled plasma mass spectrometry, generally require retrieving samples which require significant dilutions (1,000–10,000-fold) and transfer out of the hot cell for analysis.² Hot cell measurements using optical spectroscopy are much faster and can be acquired in situ, in real-time using fiber-optic cables.

One form of optical spectroscopy, time-resolved laser-induced fluorescence spectroscopy (TRLIFS), was evaluated extensively for monitoring PUREX streams (e.g., raffinate) several decades ago,⁷⁻¹¹ but little work has been done in the last decade. More recently, Raman spectroscopy and UV-Vis spectrophotometry have been evaluated for monitoring applications, although these options are orders of magnitude less sensitive to uranium (VI) concentration than TRLIFS.^{1,2,12–14} TRLIFS is highly sensitive and selective to many actinide (An) species. It is often used for ultratrace analysis and complexation studies with both spectral and temporal features.^{15,16} TRLIFS can detect several actinides including UO₂²⁺, Am³⁺, Cm³⁺, Cf³⁺, Bk³⁺, and Es³⁺. Only UO_2^{2+} and Cm^{3+} have a suitably large energy gap (>10⁴ cm⁻¹) for the luminescence level, while the others have a smaller gap, resulting in luminescence quantum yields highly sensitive to specific compounds and solution types.¹⁵ It is challenging to measure the aqueous luminescence properties of other actinides like Np and Pu due to strong nonradiative quenching by the solvent (e.g., O-H band). This effect can be lessened using other solvent types such as heavy water (D_2O).¹⁷ Despite the incredible sensitivity of the time-resolved technique, the analysis time is often 10–15 minutes, which is too slow for situations where real-time feedback is required.¹⁰

Laser-induced fluorescence spectroscopy (LIFS) is useful for the qualitative and quantitative analysis of molecular species such as the free uranyl (UO_2^{2+}) and uranyl nitrate complexes $(UO_2(NO_3)_n^{(2-n)+}, n = 1 \text{ or } 2)$ in aqueous solutions or U(VI) solid-state compounds.¹⁸ Fluorescence spectra can be measured using a charge-coupled device to increase the timeliness of data collection, as opposed to single-channel photomultiplier tubes (PMTs) often used for time-resolved data. However, applying laser fluorometry is difficult in complex systems with overlapping bands, noise, matrix effects, chemical interactions, and baseline offsets.^{5,11,15,19} Although it is possible to reroute the flow during processing to maintain a constant temperature and generate U(VI) complexes to improve quantum yield (i.e., sensitivity),¹⁹ it is preferable to perform the analysis in-line (i.e., directly in nitric acid) and without complicating hot cell operations. This necessitates directly accounting for the complicating effects of a nitric acid medium and other real-world process conditions such as temperature fluctuations.

Dynamic temperatures drastically change the lifetime and intensity of U(VI) fluorescence, resulting in two highly correlated independent variables (i.e., multicollinearity), possibly the most challenging quenching phenomena.^{5,10,11,15} It is critical to account for temperature because highlevel waste solutions vary from 30°C-40°C and PUREX operations often take place at temperatures ranging from 20–40°C.⁵ Additional complicating factors arise because many fuel cycle processing streams contain a variety of fission and corrosion products with absorption or fluorescence properties that can complicate LIFS spectra.9 Lanthanide (Ln) fission products include Ce³⁺, Pr³⁺, Nd³⁺, Sm³⁺, Eu³⁺, and Gd³⁺. Ln elements such as Eu³⁺, Tb³⁺, Gd³⁺, Dy³⁺, Sm³⁺, Ce³⁺, and Tm³⁺ can be characterized by TRLIFS.^{14,20–23} Two lanthanides, Eu³⁺ and Sm³⁺, have visible luminescence properties and range from ~10 to 200 µg·mL⁻¹ in PUREX raffinate streams.⁹ The fission yield of Sm³⁺ is generally greater than Eu³⁺ and is less characterized in the literature.

Page 5 of 37

Analyst

LIFS could provide real-time feedback regarding nuclear fuel burnup and provide operational benefits compared to other optical techniques.²⁴ Multivariate regression analysis has not been used to describe U(VI) fluorescence spectra under relevant conditions. It is important to reexamine this system with modern data analytics to achieve greater success with the LIFS technique.

This work explores the use of multivariate chemometrics, or machine learning, to account for these multifaceted effects. One of the most traditional supervised techniques is called partial least squares regression (PLSR).^{25–28} This factor analysis method iteratively relates two data matrices, the independent X (i.e., spectra) and dependent Y (i.e., concentrations), using combinations of latent variables (LV). PLSR models are built using a training set that covers the expected conditions and a validation set that tests the model's ability to predict samples not included in the training set. These samples can be selected using optimal experimental designs that are the most flexible and effective option when a small number of experimental runs is desired.^{29–33}

Although PLSR has been used with great success to model systems with overlapping spectral features in numerous systems,²⁷ it does not always account for systems with a high degree of multicollinearity.^{34,35} Multicollinearity must be accounted for in a LIFS system for monitoring U(VI) concentration because two independent variables (i.e., U(VI) concentration and temperature) are highly correlated in the regression model. To address this, ensemble learning combines multiple models to make a prediction in classification or regression problems to improve robustness and accuracy compared to single models. This process can be divided into three phases: (1) develop a set of candidate models (i.e., generation phase); (2) select a subset of the models (i.e., pruning phase); and (3) combine models to generate predictions (i.e., integration phase). In addition to PLSR, several advanced models are considered in this article, including ridge regression (RR), random forest (RF), and an eXtreme gradient boost (XGB) algorithm.^{36–42} These

> are evaluated individually and compared to a stacked regression approach, a form of ensemble learning. The primary goal of this work is to demonstrate how ensemble learning methods can be used to handle the dynamic, overlapping, covarying, and nonlinear spectral response to provide a new U(VI) analysis method independent of time-resolved fluorescence spectra.

Here, we demonstrate how to combine ensemble learning, LIFS, and Stokes Raman scattering to account for varying temperature, conditions that historically limit the timeliness of U(VI) monitoring applications. This work also includes the simultaneous quantification of a lanthanide fission product (i.e., Sm³⁺). Calibration and validation fluorescence spectral data sets were selected by determinant(D)-optimal designs to minimize the samples required in the training set, which spanned U(VI) (1-100 µg·mL⁻¹), Sm³⁺ (0-200 µg·mL⁻¹), HNO₃ (0.1-4 M) concentrations and temperatures (20°C–45°C), conditions highly applicable to the nuclear fuel cycle. Specific points of scientific advancement covered in this work include: (1) the ensemble method allows for quantitative U(VI) predictions and varying temperature without recording lifetimes, (2) simultaneous quantification of a fluorescent lanthanide (i.e., Sm^{3+}) in the milligram-per-liter range, (3) stacked regression that combines LIFS and Raman spectroscopy, and (4) the augmented D-optimal design allows training/validation set samples to be effectively selected without user bias while minimizing the number of samples. Many spectroscopy-enabled online monitoring studies tend to neglect the temperature variable and include too many user-selected samples to be easily implemented in restrictive hot cell environments.²⁶ This work clearly articulates the challenges that arise due to fluctuating temperature and best practices to correct for such phenomena; this is applicable to many optical spectroscopy online monitoring applications extending within and beyond nuclear fuel cycle applications.

Page 7 of 37

Analyst

2. **METHODS**

All chemicals were commercially obtained (ACS grade) and used as received unless otherwise stated. Concentrated HNO₃ (70%) was purchased from Sigma-Aldrich. Certified 10.000 µg·mL⁻¹ uranium (²³⁸U, depleted) and samarium inductively coupled plasma optical emission spectroscopy standard solutions in 5% nitric acid were purchased from SPEX CertiPrep and Inorganic Ventures, respectively. Samples were prepared using deionized water with Milli-O purity (18.2 M Ω ·cm at

25°C).

2.1 Sample preparation

Calibration and validation samples contained uranium (1–100 µg·mL⁻¹), samarium (0–200 $\mu g \cdot m L^{-1}$), and HNO₃ (0.1–4 M) and chosen to cover the anticipated solution conditions. Samples were prepared gravimetrically using volumetric pipettes. Each sample was prepared in individual 2 mL plastic microcentrifuge tubes (VWR Scientific, 525-1160) prior to spectroscopic analysis. A fluorescence 3-in-1 flow cuvette, purchased from Hellma (584.4-Q-1) with 5×2.5 mm optical path lengths, was used for each measurement to ensure consistent optical quality. The cuvette was periodically rinsed with 2% nitric acid and stored with ultrapure water on lint-free Kimwipes. The cuvette Z-height of 8.5 mm was necessary to accommodate Quantum Northwest's gpod 2e temperature-controlled sample compartment holder purchased from Avantes (CUV-UV/Vis-TC). Two collimating lenses (CUV-TC-QCL-UV) were placed at 90° in the sample compartment. Fluorescence measurements were performed at varying temperatures (i.e., 20°C-50°C) with an accuracy of $\pm 0.05^{\circ}$ C. Sample solutions were thermally equilibrated for at least 2 min prior to recording each spectrum to eliminate spectral variations due to temperature fluctuation. A svringe was used to inject the rinse and sample solutions.

2.2 Fluorescence and Raman spectroscopy

Laser fluorescence and Stokes Raman spectra were collected with a fully automated imaging iHR 320 spectrometer (Horiba Scientific) and a CW (continuous wave) LBX 405 nm laser (Oxxius) operating at 100 mW. Two multimode fibers—a 105 μ m core diameter (M105L02S-A) and a 600 μ m core diameter fiber (M134L01)—were used on the excitation and emission side, respectively. Static measurements were recorded in triplicate from 410 to 790 nm using a 600 grooves mm⁻¹ grating and a 100 μ m slit size. Each spectrum comprised 5,585 data points.

Lifetimes were collected using a Fluorolog-QM spectrometer (Horiba) and a DeltaTime kit for a DeltaDiode 405 nm laser (DD-405L) source operating with an average power of 2 mW and average pulse width of 50 ps. Single-photon-counting statistics with time-correlated single-photon counting were used to calculate lifetimes using a single-channel R928P PMT. The lifetime analysis depends on a model or fitting function that describes the decay of luminescence intensity. The lifetime was calculated using a fitting algorithm D(t) with the PowerFit-10 application in Horiba software by Equation 1:

162
$$D(t) = \sum a_i \exp\left\{\frac{-t}{\tau_i}\right\},\tag{1}$$

where a_i is the preexponential factor, t is time, and τ_i is the fluorescence lifetime. The room temperature was stable at 22°C during lifetime measurements. Excitation spectra were acquired in steady state using a 75 W Xenon arc lamp (see Supporting Information [SI]).

2.3

Design of experiments

Experimental designs were built using Design-Expert (v.11.0.5.0) by Stat-Ease Inc., within the Unscrambler software package by Camo Analytics. Optimal designs incorporate mixture and process variables, contain different high and low components, and feature constraints with factor Page 9 of 37

Analyst

170 limits. D-optimal samples were chosen by iteratively minimizing the determinant of the variance– 171 covariance matrix $X^T X$ using a quadratic process order.²⁵ A combination of point and coordinate 172 exchange search options was used to select points. Fraction of design space (FDS) was used to 173 evaluate the model and calculated by mean error type: $\delta = 2$, $\sigma = 1$, and $\alpha = 0.05$.³³

A minimum of 10 model points was required for three numeric factors (i.e., U(VI), Sm, and HNO₃ concentrations). The design was augmented with 15 additional lack-of-fit (LOF) points, which were included either as calibration or validation samples. LOF points are chosen to maximize the distance to other runs while maintaining the optimality criterion.³² Temperature was treated in a separate design. At least three model points were required for a single numeric factor (i.e., temperature), and the design was augmented using 2 LOF points. Combining the two designs resulted in a total of 125 samples.

2.4 Multivariate analysis and preprocessing

Several chemometric methods were evaluated including PLSR, RR, RF, an XGB algorithm, and combining multiple methods through stacked regressions. PLSR iteratively relates two data matrices, the independent X (i.e., spectra) and dependent Y (i.e., concentrations), using combinations of latent variables. The optimal number of latent variables is selected through cross validation (CV); the optimal number typically includes up to the last latent variable that marks a significant increase in the explained variance (or a significant reduction in the error of prediction). PLSR can be implemented in two forms, the first (PLS-1) models the response of only a single factor and the second (PLS-2) models the response of multiple factors simultaneously. PLS-2 is typically used to model systems with multicollinearity; however, in some cases multiple PLS-1 models can have better predictive capabilities by leveraging different preprocessing strategies (i.e., trimming, smoothing, derivatives, etc.). RR is similar to ordinary least squares regression;

however, instead of simply minimizing the sum of squared error, there is an additional factor, α , that penalizes the slope of the regression.^{39,41} This factor is selected through CV and must be greater than zero. RR is typically useful when analyzing data with high multicollinearity (i.e., correlated independent variables). RF is a supervised form of machine learning that fits a user-defined number of independent decision trees to the data and then combines the predictions of the many trees to provide a single prediction.^{39,40} The XGB algorithm is an open-source implementation of the gradient boosting algorithm that uses a loss function to prevent overfitting. XGB also uses a multitude of decision trees like RF, but actively uses residual information to optimize the model.³⁹

Stacked regression is an ensemble machine learning method in which a final metamodel is trained on the outputs of several submodels to provide a single combined estimate. The final model regression is built using CV of the submodel predictions, learning the best way to combine the submodel predictions.^{36,40,42} This allows for multiple, typically different, regression methods to be employed simultaneously on a single data set, allowing the strengths of each model to be retained while mitigating the error of the individual regressions.^{36,42} Ensemble methods, like RF, help to mitigate issues of overfitting and typically provide more accurate predictions than the single models.

210 Spectral data was preprocessed prior to modeling including smoothing, derivatives, and 211 trimming to optimize performance. Smoothing removes instrument noise, and the use of 212 derivatives makes calibration models more resistant to baseline shifts expected in monitoring 213 applications. The smoothing and derivatives were performed using several Savitzky–Golay (SG) 214 filters. SG derivatives fit a polynomial to the data based on a user-defined number of left/right 215 smoothing points and polynomial order. Higher than first and second derivatives were not included Page 11 of 37

Analyst

 here because they suppressed the relatively broad spectral features needed for regression. Numerous derivative orders, polynomial orders, and smoothing points were tested.³⁰ Trimming the spectra reduces the dimensionality of large spectra files and can help reduce the error of prediction in multivariate modeling. The trimmed region included in the chemometric model was varied based on the behavior being modeled. All regression models and data preprocessing were completed in Python 3 using modules from the Scikit Learn and XGBoost packages.^{38,40}

222 2.5 Statistical comparison

Model performance was evaluated using calibration, CV, and validation (i.e., prediction) metrics. The most important calibration/validation statistics typically include R^2 correlation values, root mean square error (RMSE) of the calibration (RMSEC), and RMSE of the CV (RMSECV). Although these statistics may suggest that a PLSR model is satisfactory, testing the prediction performance of PLSR models on samples not included in the training set is important because RMSECV is only an estimate.⁵ Prediction statistics typically include RMSE of the prediction (RMSEP), RMSEP%, bias, and standard error of prediction. RMSEs for the calibration, CV, and validation were calculated using Equation 2:

231 RMSE =
$$\sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}}$$
, (2)

where \hat{y}_i is the predicted concentration, y_i is the measured concentration, and *n* is the number of samples. RMSEP% was calculated by dividing the RMSEP by the median model values using Equation 3:

$$RMSEP\% = \frac{RMSEP}{y_{med}} \times 100\%, \tag{3}$$

where y_{med} represents the median of each analyte concentration range. Each RMSE value is in units of analyte concentration. In general, lower RMSEC, RMSECV, RMSEP, and RMSEP% values

indicate better model performance. A Tukey-Kramer significance test was used to statistically
 compare the RMSEP values for multiple regression models following a method outlined
 previously.^{29,30} Additional details can be found in the SI.

3. **RESULTS AND DISCUSSION**

3.1 Fluorescence and Raman spectra

The absorption and photoluminescence spectrum of the uranyl ion (UO_2^{2+}) is extensively characterized in the literature.¹³ Each electron in this nearly linear moiety is paired, thus the ground-state electronic level is a singlet.¹⁸ Higher-energy levels occur when one of the bonding electrons is transferred to the 5f nonbonding atomic orbitals of the uranium ion $\sim 20,000$ cm⁻¹ (500 nm) above the ground singlet. Photoexcitation occurs when photons with a higher energy than the first excited electronic level are absorbed. The excited uranyl ion relaxes rapidly by a nonradiative process to the first excited electronic level, followed by fluorescence to the symmetric and asymmetric vibrational levels associated with the ground-state singlet. This process is described by a notional energy-level diagram in Figure 1a.

The Sm³⁺ emission spectrum consists of four bands near 563, 596, 643, and 720 nm, corresponding to the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$, ${}^{6}H_{7/2}$, ${}^{6}H_{9/2}$ and ${}^{6}H_{11/2}$ transitions, respectively (Figure 1b). The electronic structures of lanthanides elements are characterized primarily by the 4f orbital.²¹ The 4f orbitals are shielded by the filled 5s and 5p shells, indicating that the surrounding matrix has a minimal effect on 4f^h energy levels and corresponding optical transitions.²¹ As a result, 4f electrons do not play a significant role in chemical bonding, and wavelength-dependent shifts due to the host medium are minimal. Most research on lanthanide luminescence in aqueous environments has been concerned with Eu³⁺ and Tb³⁺. The other two visibly luminescent ions, Sm³⁺ and Dv³⁺, have

Page 13 of 37

Analyst

 received less attention because they have inferior luminescence quantum yields (i.e., more efficient
 nonradiative relaxation). Three out of the four Sm³⁺ emission bands significantly overlap with the
 uranyl fluorescence spectrum (see Figure 1).

With increasing temperature, the fluorescence intensity of U(VI) decreases dramatically (i.e., via dynamic quenching) because the molecular collisional rate increases (Figure 1a). The shape of the fluorescence spectrum changes minimally with increasing temperature (Figure S1). This implies that the change in temperature has a minimal effect on the nature of the UO_2^{2+} species. The temperature-induced radiative deexcitation rate of UO_2^{2+} is likely due to a chemical process involving hydrogen abstraction from the solvent molecules coordinating $UO_2^{2+.5}$ On the other hand, the fluorescence spectrum of Sm³⁺ changes slightly in wavelength position and intensity as a function of temperature. These thermochromic shifts likely correspond to slight variations in the coordination environment surrounding Sm³⁺.²³

Figure 1. Laser fluorescence spectra ($\lambda_{ex} = 405 \text{ nm}$) of an aqueous solution containing 100 µg·mL⁻¹ uranium (a) or 100 µg·mL⁻¹ Sm³⁺ (b) in 1 M HNO₃ from 20°C–50°C. A notional uranyl energylevel diagram is included in the figure, and each Sm³⁺ transition is labeled. The Raman NO₃⁻ symmetric N–O stretch and the O–H stretching band appeared at 421 nm and 455–475 nm, respectively.

The U(VI) spectrum changes significantly as a function of acid concentration (Figure 2a) due to the formation of free uranyl species (UO_2^{2+}) and uranyl nitrate complexes $(UO_2(NO_3)_n^{(2-n)+}, n = 1$ or 2) at acid concentrations >~0.1 M HNO₃, which coexist in various proportions. Each species—

Page 15 of 37

Analyst

281	UO_2^{2+} , $UO_2NO_3^+$ and $UO_2(NO_3)^{2+}$ —has a unique spectrum contribution. The maximum intensity
282	of U(VI) fluorescence from ~0.5 to 5 M is relatively consistent; however, the lifetime changes
283	significantly from 3.1–1.1 μs over this range and continues to decrease at even higher HNO ₃
284	concentrations (see SI). The Sm ³⁺ emission spectrum is also highly sensitive to changes in nitric
285	acid concentration and likely corresponds to the formation of nitrate complexes (Figure 2b). To
286	use the entire spectrum for regression, multivariate chemometrics must be applied to account for
287	the overlapping and covarying spectral features.
288	The electronic transitions of Sm ³⁺ vary in spectral shape and intensity with changing nitric acid
289	concentration. Despite these solvatochromic shifts, the lifetime remains relatively constant from 1
290	to 5 M HNO ₃ at 3.2–3.6 μ s. (Figure S3). Different energy levels in lanthanide fluorescence spectra
291	occur due to several interactions within the ion, including the Coulombic interaction (10^4 cm^{-1}) ,
292	spin-orbit coupling (10^3 cm ⁻¹), and crystal field splitting (10^2 cm ⁻¹). ²¹ These free ion levels are
293	described by the term symbols $^{(2S+1)}L_J$ where $2S + 1$ denotes the total spin multiplicity, L the total
294	orbital angular momentum, and J denotes the total angular momentum of the f electrons. The
295	electric field in a coordinating environment further splits individual J-levels. This splitting appears
296	as fine structure on each band. This information is only visible with higher-resolution

297	spectrometers and is often ignored in the literature. However, fine structure is useful for
298	determining symmetry and coordination environment. ¹⁵ The fine structure in the Sm ³⁺ emission
299	bands is particularly evident in the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ emission line near 596 nm. The shoulder near
300	604 nm becomes less pronounced with increasing acidity. This suggests that the transitions acquire
301	strength at least in part due to the coordinating environment and have electric dipole (ED)
302	character. ED-allowed transitions are more sensitive to the coordinating environment, and stronger
303	ligand fields lead to more intense transitions.

Figure 2. Example laser fluorescence spectra ($\lambda_{ex} = 405 \text{ nm}$) of solutions containing 100 µg·mL⁻¹ 306 U(VI) (a) and 100 µg·mL⁻¹ Sm³⁺ (b) with varying nitric acid concentration (0.1 M–5 M HNO₃).

307 The Raman nitrate (NO_3) symmetric N–O stretch peak is labeled (b).

In addition to U(VI) and Sm³⁺ emission peaks, Stokes Raman scattering features corresponding to free acid (H⁺), nitrate anions (NO₃⁻), and the O–H stretching region were identified simultaneously.^{26,30} Unperturbed nitrate ions have three Raman active bands including v₁ (~1048 cm⁻¹), v₃ (~1415 cm⁻¹), and v₄ (~717 cm⁻¹). The O–H vibrational stretching region consists of several overlapping bands attributed to various H₂O and O–H (free and bound) vibrations (455– 475 nm). An isosbestic point at 461.9 nm was observed with increasing nitric acid concentration

(Figure 2). This Raman band is sensitive to the presence of cation, anions, ion strength, and temperature and is generally best described using multivariate data analysis.^{25,26}

One advantage of using an excitation wavelength of 405 nm is that the water band at ~460 nm does not overlap significantly with the absorption spectrum of U(VI) (see SI). Either 337 nm or 355 nm laser excitation sources are normally used for U(VI) fluorescence studies.⁸ These wavelengths coincide with absorption bands of nitric acid, uranium, or several fission products, complicating measurement due to self-absorption effects.^{5,9} The fluorescence signal is dependent on the optical pathlength for laser excitation and the pathlength for emission collection.¹⁰ The complications that arise due to self-absorption are minimized in this work, which utilizes a 405 nm laser and a smaller pathlength cuvette (i.e., 5×2.5 mm) instead of the more common 10×10 mm.

3.2 Univariate Analysis to LOD and LOQ

A key component of a quality analytical chemistry paper includes the transparent calculation of limit of detection (LOD) and limit of quantification (LOQ). For this experiment, spectra were collected at room temperature (22°C) using a 4 s integration time and 100 mW laser power at 405 nm. Calibration regression curves were generated for the primary 510 nm U(VI) peak, the most intense Sm³⁺ emission line 595 nm peak, and the most resolved line relative to uranium at 702 nm (see SI). The calibration curves for each emission line were used to calculate LOD and LOQ by Equations 4 and 5:

$$333 \quad LOD = \frac{3 \cdot s}{m} \tag{4}$$

$$1 \quad 334 \quad LOQ = \frac{10 \cdot s}{m} \tag{5}$$

The variable s refers to standard deviation or noise of the blank, and m is the slope obtained by plotting the intensity of the peak versus concentration. LOD and LOO values are shown in Table 1. Sample U(VI) and Sm³⁺ concentrations ranged from 1 to 8 μ g·mL⁻¹ in 1.0 M nitric acid (Figure S2). LODs could improve using longer integration times, higher laser power, or more efficient optics. LODs for Sm³⁺ would improve at higher acidity (Figure 2), and U(VI) would decrease at higher temperatures. These LOD and LOO values do not reflect the exact detection limits for multivariate regression models but serve as a benchmark for the system used in this study. Due to the complicated nature of the emission bands, multivariate approaches were applied to the measurements. Table 1. LOD and LOQ of U(VI) and Sm³⁺ in 1 M HNO₃ using a 405 nm laser at 22°C and 4 s

integration time.

Species	LOD (µg·mL ⁻¹)	LOQ (µg·mL ⁻¹)	slope (m)
U(VI) 510.3 nm	0.019	0.064	132
Sm ³⁺ 595.2 nm	0.062	0.21	27.4
Sm ³⁺ 702.0 nm	0.75	2.5	7.32

3.3 **D-optimal design sample selection**

Models were built using calibration and validation sets selected by D-optimal experimental designs. Recent work has shown that this approach can minimize resource consumption while maintaining or improving PLSR prediction performance. Selecting training sets using a one-factor-at-a-time approach generally results in many samples, particularly when more than two factors are considered. The expected application of this work is monitoring in a restrictive glove box or hot cell environment. Therefore, D-optimal designs were evaluated to minimize the number of samples

354	in the training set as well as minimize time and resource consumption. ⁵ A D-optimal design (25
355	points) was used to select the concentrations studied in this work. This design comprised 10
356	required model points and was augmented with 15 LOF points. Inclusion of LOF points generally
357	indicates that a higher-order process model is needed. To achieve an FDS of 0.99, five LOF points
358	were included in the calibration set. The 10 remaining LOF points were used as the validation set.
359	U(VI) concentration spanned the conditions expected in raffinate waste streams (1–100 μ g·mL ⁻
360	¹). ^{5,9} Detecting less than 1 μ g·mL ⁻¹ uranium generally is not cause for concern in most applications.
361	The model covered the acid concentration range from 0.1 to 4 HNO ₃ , which covers both a raffinate
362	stream (i.e., 3–4 M HNO ₃) and low-acid-strip solutions. ⁵ Sm ³⁺ concentrations were chosen based
363	on potential burnups.9 Generally, Sm3+ is found in raffinate solutions at a higher acid
364	concentration. Accounting for acid dependence in this data set adds complexity, which tests the
365	limits of the modeling approach. It was included in some model points and not included in others
366	to determine if it strengthened U(VI) model predictions, particularly with varying temperature.
367	Table 2. D-optimal selected concentrations with space and build type.

	U(VI)	HNO ₃	Sm ³⁺ (µg·		
Run	(µg∙mL⁻¹)	(M)	mL-1)	Space type	Build type
$1^{*\dagger}$	100.00	3.22	160.00	Plane	Lack of fit
2	100.00	0.10	0.00	Vertex	Model
3	82.18	1.66	119.00	Interior	Lack of fit
4	55.45	0.12	0.10	Interior	Lack of fit
5	3.97	0.12	108.74	Interior	Lack of fit
6*	30.70	1.11	55.00	Interior	Lack of fit
7	13.38	4.00	87.00	Plane	Lack of fit
8^*	63.41	4.00	130.00	Plane	Lack of fit
9	52.48	4.00	40.00	Plane	Lack of fit
10	61.39	2.48	199.00	Interior	Lack of fit
11	1.00	4.00	0.00	Vertex	Model
12	100.00	1.50	200.00	Edge	Model
13	15.85	2.36	0.00	Plane	Lack of fit

Analyst

	14†	30.70	1.27	163.00	Interior	Lack of fit
	15	59.91	2.42	0.00	Plane	Model
	16	100.00	4.00	70.27	Edge	Model
	17	1.00	2.42	119.00	Plane	Model
	18	36.15	4.00	200.00	Edge	Model
	19*†	44.32	2.50	104.00	Interior	Lack of fit
	20†	100.00	0.20	86.82	Plane	Lack of fit
	21	60.26	0.10	120.00	Plane	Model
	22	1.00	0.10	0.00	Vertex	Model
	23*	1.00	3.03	200.00	Edge	Lack of fit
	24	100.00	1.84	33.00	Plane	Lack of fit
• • • •	25	1.00	0.10	200.00	Vertex	Model

368 369 Note: Abbreviations used in this table are derivative (Der.) and polynomial (Poly.). *LOF points included in the construction of the original calibration models. *Optimal LOF points for U(VI) calibration model. Required model points are bolded.

A second D-optimal design was generated for temperature from 20°C to 45°C (see SI). This design included three required model points at 20°C, 32.5°C, and 45°C and two LOF points at 26.25°C and 38.75°C. Although it is possible to combine temperature as a fourth factor in the concentration design, the number of temperature points in such a design may not account for the variation necessary to model it. Additionally, a four-factor design would create additional concentrations, resulting in more samples. Thus, the variable temperature, which is unique relative to concentration, was treated separately.

³⁷ 377 **3.4**

3.4 Stacked regression model development

In addition to the required model points, five LOF samples (1, 6, 8, 19, and 23) were arbitrarily chosen and included in the training set to begin building models. All five temperature levels were used to best model the effect on analyte spectral signatures. Each model was optimized by minimizing the RMSEP through numerous reiterations. PLSR (PLS-2) was attempted first, as it is one of the most widely applied techniques to correlate convoluted and covarying spectral features to analyte concentration.^{2,3,27,28} The global PLSR model was built using most of the spectrum (410– 384 750 nm) after applying a first derivative with a first-order polynomial and 31 smoothing points (1,

1, 31). Eight latent variables (i.e., factors) were included in the model based on the RMSECV versus latent variable plot (Figure S6). The number of latent variables was chosen based on when there was the last significant reduction in RMSECV (>10%) when an additional latent variable was added. The addition of the eighth latent variable corresponds to a 20, 69, 84, and 3.2% reduction in the RMSECV for U(VI), HNO₃, Sm³⁺, and temperature, respectively. The global PLSR model predicted Sm³⁺ and HNO₃ concentration relatively well (see Table 3). The model was unable to account for the multicollinear effects of temperature and U(VI) concentration on the spectral intensity. Parity plots showing the wide spread of temperature and U(VI) predictions against the reference values are shown in Figure S7.

Individual PLSR models (PLS-1) were built using only the spectral regions most related to each species to reduce issues of multicollinearity. As denoted in Table 3, fewer factors were needed in the individual PLSR models due to trimming and reducing the signal dimensionality.³⁷ This lowered the RMSEP: 18, 63, and 60% difference for Sm³⁺, HNO₃, and temperature (20%). However, this exercise only slightly lowered U(VI) predictions (11% difference), clearly stressing that U(VI) predictions are impacted the most by multicollinearity. A Tukey-Kramer test was performed at a 95% confidence level to verify there was a significant difference between the global and trimmed PLSR models. The two models showed similar levels of prediction bias for all factors and showed a significant improvement in prediction error for all factors except for Sm³⁺. A description of the Tukey-Kramer test can be found in the Supporting Information along with plots of the bias and standard error of prediction confidence bands (Figure S8).

405 Next, other regression methods, including RR, RF, XGB, and stacked models, were investigated.
406 Each regression model was optimized by tuning the preprocessing hyperparameters and trimming
407 limits. The optimal models for Sm³⁺ and HNO₃ were developed using trimmed spectra (580–

Page 23 of 37

Analyst

408 750 nm) and RR. This removed most of the neighboring U(VI) signal from inhibiting the Sm³⁺ 409 predictions. Similarly, the HNO₃ model only used the wavelength range from 400 to 480 nm, using 410 only the Raman nitrite peak and O–H stretching band for prediction. The RR model only slightly 411 outperformed the seven-factor PLSR model for HNO₃, but RR provided the benefit of not requiring 412 the user to perform latent variable selection.

The temperature model was built using the second derivative of the wavelength range 415–500 nm. This range included the Raman O-H stretching band and the highest-energy U(VI) peak. This stacked regression model comprised an RR and PLSR serving as the submodels, and their predictions were analyzed by a 1,000-tree RF regression model. The resultant model had a strong predictive capability. The calibration and CV statistics for these three models are shown in Table 3 as part of the overall ensemble. One interesting observation during CV was that RMSECV was much larger than the RMSEC. This was due to Sample 16, an edge sample with U(VI) and HNO₃ levels at their maximum, being predicted poorly when left out of the model (Figure 5), indicating its importance to the model. Sample 16 was located at the edge of the experimental design space, which explains why it would not be well predicted when left out of the calibration set.

The U(VI) signal was the most influenced by changes in temperature and system acidity. The models developed to characterize temperature and acidity were used to correct the U(VI) signal. Using six D-optimal model point calibration samples (Table 2), the 510.3 nm peak intensity was plotted as a function of temperature. The peak intensity was then normalized to the maximum 510.3 nm peak of that sample (i.e., at 20° C), and the temperature was normalized to the model temperature range. The empirically derived plot (Figure 3) reveals a similar exponential relationship between the intensity and temperature. The coefficients of this relationship, shown as A and b in Figure 3, change only with acidity, not with U(VI) concentration. This relationship

431 allowed an additional preprocessing step for the U(VI) model where the trimmed spectra (450– 432 550 nm) were transformed to their respective I_{max} values by scaling them using the relationship

433 shown in Figure 3, taking into consideration their temperature and acidity.

Figure 3. Temperature dependence of the 510.3 nm U(VI) fluorescence peak for six required
model points. The coefficients of the exponential fit were determined to be functions of acidity: *A*

438 = $-0.0033 \times C_{HNO3}^2 + 0.0334 \times C_{HNO3} + 0.2038$ and $b = 0.0152 \times C_{HNO3}^2 - 0.1416 \times C_{HNO3} + 1.5773$.

This step was essential to build an optimal U(VI) model, which also used a stacked regression. The submodels in the stacked ensemble included XGB, PLSR, and RR. Each submodel regressed the temperature and acid-adjusted preprocessed spectra to provide an individual U(VI) prediction. The submodels' estimates were then regressed themselves by the final model, in this case RR, which provided the final U(VI) concentration estimates. The final model is typically referred to as a metamodel, as it regresses the submodel predictions, rather than the spectra, to provide a final prediction. The calibration, CV, and validation statistics shown in Table 3 were calculated using

the known temperatures and acidities for the adjustment. The final ensemble model included
combining all four models into one flow sheet where the temperature, HNO₃, and Sm³⁺
concentrations would be predicted first, and then these predictions were used for scaling the spectra
before regression by the U(VI) model (Figure 4). The predictions of the final ensemble model are
visualized in Figure 5.

The validation statistics in Table 3 show that the overall ensemble provides a strong predictive capability for all four factors, overcoming the issues of multicollinearity. The overall ensemble model's RMSEP values were significantly reduced compared to the trimmed PLSR models for all

species: 95, 22, 10, and 164% difference for U(VI), Sm³⁺, HNO₃, and temperature, respectively.
Again, a Tukey-Kramer test at a 95% confidence level was performed and for all four factors the
overall ensemble model showed a statistically significant difference compared to the global and
trimmed PLSR models (Figure S8).^{29,30}
The RMSEP% for Sm³⁺, HNO₃, and temperature all fall below the goal level of 5%. While the

461 U(VI) RMSEP% misses this objective, the ensemble model vastly improves the prediction 462 accuracy compared to the initial PLSR models. Although not shown in Table 3, the trimmed PLSR 463 and ensemble models for U(VI) were reconstructed with and without scaling to investigate the 464 impact of this step. The results showed that scaling improved the trimmed PLSR U(VI) RMSEP 465 by 60%; however, the final ensemble model still offered a 10% relative reduction in RMSEP over 466 the scaled and trimmed PLSR model.

Another note is that these models were developed with 10 model points and 5 randomly selected
LOF points; given the complexity of the system more LOF points may improve the validation
statistics. Similarly, an alternate set of LOF points may be better suited for the calibration set if
they capture important features within the design space.

471 Table 3. PLSR and overall ensemble models' calibration and validation statistics for each analyte
472 derived from multiple preprocessing strategies.

Model Global PLSR		Trimmed PLSRs	Overall ensemble	
Preprocessing				
U(VI)		(1,1,31), 450–550 nm, 7 LVs	(1,1,51), 450–550 nm, SR1	
Sm^{3+}	(1,1,31), 410-	(1,1,31), 580–750 nm, 6 LVs	(1,1,31), 580–750 nm, RR	
HNO ₃	750 nm, 8 LVs	(1,1,31), 410–480 nm, 7 LVs	(1,3,51), 410–480 nm, RR	
°C		(1,1,31), 415–500 nm, 8 LVs	(2,5,51), 415–500 nm, SR2	
Calibration/CV	V statistics			
R^2 (U(VI))	0.9672	0.9718	0.998	
RMSEC	7.0	6.5	1.7	

2				
3 1	RMSECV	14	10	2.8
5	R^2 (Sm ³⁺)	0.9988	0.9995	0.999
б	RMSEC	2.7	1.61	0.37
7	RMSECV	3.4	2.23	1.87
8 9	R^2 (HNO ₃)	0.9976	0.9996	0.999
10	RMSEC	0.075	0.031	0.007
11	RMSECV	0.13	0.043	0.036
12 13	<i>R</i> ² (°C)	0.9318	0.9939	0.999
14	RMSEC	2.3	0.69	0.003
15 16	RMSECV	3.2	1.1	0.74
17	Validation statistic	s		
18	RMSEP (U(VI))	9.4	8.4	3.0
19 20	RMSEP%	19%	17%	6.2%
20	RMSEP (Sm ³⁺)	3.0	2.5	2.0
22	RMSEP%	3.0%	2.5%	2.0%
23 24	RMSEP (HNO ₃)	0.14	0.073	0.066
25	RMSEP%	7.2%	3.7%	3.4%
26	RMSEP (°C)	2.6	1.4	0.14
27 20	RMSEP%	21%	11%	1.1%

473Note: R^2 of the calibration, RMSE of the calibration (C), cross validation (CV), and prediction (P). Preprocessing information474includes derivative information (order, polynomial, smoothing points); wavelength regions regressed by the model; and number of475latent variables (LVs) or regression type. The first PLSR model employs the PLS-2 implementation and the trimmed PLS models476utilize the PLS-1 implementation of PLSR. SR1 refers to scaling (Figure 3) and stacked regression (base models = PLSR, RR,477XGB; final model = RR). SR2 refers to stacked regression (base models = PLSR, RR; final model = RF).

Figure 5. Predicted (a) U(VI), (b) HNO_{3} , (c) Sm^{3+} concentrations, and (d) temperature as 480 determined by the overall ensemble model compared to normalized reference (known) values.

3.6 Optimizing LOF points

To find the minimal number of samples in the training set and determine which LOF points improved the calibration, each combination of 1–5 LOF points was tested in the training set, and the remaining LOF points were treated as the validation set. This power set resulted in 4,944 combinations that were evaluated in two ways including which LOF combinations best improved the overall RMSEP and which LOF combinations best improved the U(VI) RMSEP. The top overall combination and U(VI) combinations for each level of LOF inclusion are detailed in Table

Analyst

S3 in the SI. The top U(VI) model used only four LOF points (1, 14, 19, 20) and resulted in RMSEP% values of 5.2%, 1.9%, 3.0%, and 2.3% for U(VI), Sm³⁺, HNO₃, and temperature, respectively. This combination improved U(VI) prediction significantly with the trade-off of losing some temperature accuracy; however, given that U(VI) is the primary analyte of interest, this combination of model and LOF points would be best used to recalibrate a model in a new environment such as a hot cell.

Another benefit of considering all the top combinations was that the most important LOF points in the design space could be inferred. For overall prediction accuracy, Samples 1, 19, 20, 23, and 24 were found to be the most beneficial. For U(VI) prediction accuracy, Samples 1, 14, 19, 20, and 24 were found to be the most beneficial. Interestingly, samples 1, 19, 20, and 24 are represented in both lists; Samples 1, 20, and 24 are all plane points with the maximum U(VI) concentration, and sample 19 is an interior point nearly at the center of the overall design space.

500 4. CONCLUSIONS

The stacked regression approach built upon several multivariate analytical methods can account for nonlinear temperature fluctuations in uranyl fluorescence spectra without measuring luminescence lifetimes or using a separate temperature probe. Raman spectral fingerprints were combined with LIFS to improve acid and temperature predictions. The real-time feedback afforded by this novel approach makes it possible to study separation system dynamics prior to equilibrium. In addition, by simultaneously quantifying Sm³⁺, a common fission product, it may be possible to characterize fuel burnup using the LIFS technique.

508 The work presented here was essential to demonstrate key concepts related to minimizing the 509 number of samples in the training set and building stacked regression models to account for

temperature fluctuations, prior to characterizing a more complicated system. To demonstrate

greater applicability in real-world processing solutions, future work will include additional factors

in the training set to account for self-absorption, quenching, and additional peak overlap

effects.^{11,43} These species may include fission products (e.g., Zr, Mo, Ru); lanthanides (e.g., Eu³⁺,

Ce³⁺, Nd³⁺); corrosion products (e.g., Ni²⁺, Cr³⁺, Fe³⁺) and phosphorous-containing breakdown

products. This method will also be applied to a more challenging validation set that includes a flow

Extended statistical methods section, lifetime decay curves, and additional experimental results

The manuscript was written using contributions of all authors. All authors have given approval to

Supporting Information. The files noted below are available free of charge.

*Telephone: +1 (865) 574-1167; email address: sadergaskilr@ornl.gov

2
3
4
5
6
7
/
8
9
10
11
11
12
13
14
15
16
17
17
18
19
20
21
 22
-∠ 22
23
24
25
26
27
20
20
29
30
31
32
22
24
54
35
36
37
38
20
22
40
41
42
43
44
15
45
46
47
48
49
50
50
21
52
53
54
55
56
50
5/
57
F O

1

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

59 60 loop demonstration.

(MS Word)

ASSOCIATED CONTENT

AUTHOR INFORMATION

Corresponding Author

Author Contributions

Funding Sources

the final version of the manuscript.

Page 31 of 37

1

Analyst

2 3 4	528	Funding for this work was provided by the National Nuclear Security Administration's (NNSA)			
5 6	529	Office of Defense Nuclear Nonproliferation Research and Development mission under contract			
7 8	530	DE-AC05-00OR22725. This work used resources at the Radiochemical Engineering			
9 10 11 12 13 14 15 16 17 18 19 20 21 20	531	Development Center operated by the US Department of Energy's Oak Ridge National			
	532	Laboratory (ORNL).			
	533	Notes			
	534	The authors declare no competing financial interest.			
	535	ACKNOWLEDGMENT			
23 24	536	The authors wish to thank Alexander Braatz for helpful discussions on nuclear fuel processing.			
25 26	537	This work was supported by the NNSA and performed at ORNL.			
27 28 29 30 31 32 33 34 35	538	REFERENCES			
	539	1. J-Y. C. Colle, D. Manara, T. Geisler and R. J. M. Konings, Advances in the application of Raman			
	540	spectroscopy in the nuclear field. Spectrosc. Eur. 2020, 32 (6), 9-13.			
36 37	541	2. D. Kirsanov, A. Rudnitskaya, A. Legin and V. Babain, UV-VIS spectroscopy with chemometric			
38 39	542	data treatment: An option for on-line control in nuclear industry. J. Radioanal. Nucl. Chem. 2017,			
40 41	543	312 , 461–470.			
42 43	544	3. L. R. Sadergaski, D. W. DePaoli and K. G. Myhre, Monitoring the Caustic Dissolution of			
44 45	545	Aluminum Alloy in a Radiochemical Hot Cell Using Raman Spectroscopy. Appl. Spectrosc. 2020,			
46 47	546	74 (10), 1252–1262.			
48 49	547	4. G. J. Lumetta, J. R. Allred, S. A. Bryan, G. B. Hall, T. G. Levitskaia, A. M. Lines and S. I. Sinkov,			
50 51	548	Simulant Testing of a Co-Decontamination (CoDCon) Flowsheet for a Product with a Controlled			
52 53	549	Uranium-to-Plutonium Ratio. Sep. Sci. Technol. 2019, 54 (12), 1977–1984.			
54 55 56 57 58 59 60					

3 4	550	5.	B. H. Deniau, P. Decambox, P. Mauchien and C. Moulin, Time-Resolved Laser-Induced
5 6	551		Spectrofluorometry of UO ₂ ²⁺ in Nitric Acid Solutions. Preliminary Results for On-Line Uranium
7 8	552		Monitoring Applications. Radiochim. Acta 1993, 61, 23-28.
9 10	553	6.	R. A. Peterson, E. C. Buck, J. Chun, R. C. Daniel, D. L. Herting, E. S. Ilton, G. J. Lumetta and S.
11 12	554		B. Clark, Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford
13 14	555		Site. Environ. Sci. Technol. 2018, 52, 381–396.
15 16	556	7.	H. Fujimori, T. Matsui, and K. Suzuki, K. Fluorometry of UO_2^{2+} Ion in Nitric Acid Solutions. J
17 18	557		Nucl. Sci. Technol. 1986, 23, 1069–1074.
19 20 21	558	8.	C. Moulin, P. Decambox, L. Couston and D. Pouyat, Time-Resolved Laser-Induced Fluorescence
21 22 23	559		of UO_2^{2+} in Nitric Acid Solutions. Comparison between Nitrogen and Tripled Nd-YAG laser. J
24 25	560		Nucl. Sci. Technol. 1994, 31 , 691–699.
26 27	561	9.	T. Matusi, H. Fujimori and K. Suzuki, Effects of Coexisting Ions upon UO ₂ ²⁺ Fluorescence in Fuel
28 29	562		Reprocessing Solutions. J Nucl. Sci. Technol. 1988, 25, 868-874.
30 31	563	10.	C. Moulin, P. Decambox and P. Mauchien, Direct Uranium(VI) and Nitrate Determinations in
32 33	564		Nuclear Reprocessing by Time-Resolved laser-Induced Fluorescence. Anal. Chem. 1996, 68,
34 35	565		3204–3209.
36 37	566	11.	T. Matsui, T. Kitamori, H. Fujimori, K. Suzuki and M. Sakagami, In-Line Uranium Monitoring in
30 39 40	567		Reprocessing Waste Solution by Time-Resolved Laser-Induced Fluorometry. J Nucl. Sci. Technol.
40 41 42	568		1992, 29 , 664–670.
43 44	569	12.	N. S. Smith, G. S. Cerefice and K. R. Czerwinski, Fluorescence and absorbance spectroscopy of
45 46	570		the uranyl ion in nitric acid for process monitoring applications. J. Radioanal. Nucl. Chem. 2013,
47 48	571		295 , 1553–1560.
49 50	572	13.	L. M. Colletti, R. Copping, K. Garduno, E. J. W. Lujan, A. K. Mauser, A. Mechler-Hickson, I.
51 52	573		May, S. D. Reilly, D. Rios, J. Rowley and A. B. Schroeder. The application of visible absorption
53 54	574		spectroscopy to the analysis of uranium in aqueous solutions. <i>Talanta</i> , 2017, 175 , 390–405.
55 56			
57 58			
59 60			
υu			

Analyst

2			
3	575	14.	T. Saito, N. Aoyagi and T. Kimura. Time-resolved laser-induced fluorescence spectroscopy
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	576		combined with parallel factor analysis: a robust technique for UO ₂ ²⁺ . J. Radioanal. Nucl. Chem.
	577		2015, 303 , 1129–1132.
	578	15.	I. N. Izosimov, N. G. Firsin, N. G. Gorshkov and S. N. Nekhoroshkov. Detection of lanthanides
	579		and actinides in solutions based on laser-induced luminescence and chemiluminescence. Hyperfine
	580		Interact. 2014, 227 , 271–281.
	581	16.	T. Kimura, R. Nagaishi, T. Ozaki, M. Arisaka and Z. Yoshida, Uranium(VI) Speciation at Elevated
	582		Temperatures and Pressures by Time-resolved Laser-induced Fluorescence Spectroscopy. J Nucl.
	583		Sci. Technol. 2002, 3 , 233–239.
	584	17.	C. Talbot-Eeckelaers, S. J. A. Pope, A. J. Hynes, R. Copping, C. J. Jones, R. J. Taylor, S. Faulkner,
	585		D. Sykes, F. R. Livens and I. May. Luminescence from Neptunyl(VI) Species in Solution. J. Am.
	586		Chem. Soc. 2007, 129, 2442–2443.
	587	18.	R. G. Denning, Electronic Structure and Bonding in Actinyl Ions and their Analogs. J. Phys. Chem.
	588		<i>A</i> 2007, 111 , 4125–4143.
	589	19.	S. Ganesh, F. Khan, M. K. Ahmed, P. Velavendan, N. K. Pandey, K. Mudali and S. K. Pandey,
	590		Determination of ultra traces amount of uranium in raffinates of Purex process by laser fluorimetry.
	591		J. Radioanal. Nucl. Chem. 2012, 292, 331–334.
	592	20.	D. Y. Chung, E. H. Lee, J. H. Yoo and T. Kimura, Laser-Induced Fluorescence Studies on Sm(III)
	593		and Cm(III) Complexes in the HNO ₃ /DHDECMP Extraction System. J. Nucl. Sci. 2002, 3, 332-
42 43 44	594		335.
45 46	595	21.	W. T. Carnall, P. R. Fields and K. Rajnak, Electronic Energy Levels in the Trivalent Lanthanide
47 48	596		Aquo Ions. I. Pr ³⁺ , Nd ³⁺ , Pm ³⁺ , Sm ³⁺ , Dy ³⁺ , Ho ³⁺ , Er ³⁺ , and Tm ³⁺ . J. Chem. Phys. 1968, 49 , 4424–
49 50	597		4442.
51 52	598	22.	K. B. Hong, K. W. Jung and KH. Jung, Application of Laser-Induced Fluorescence for
53 54	599		Determination of Trace Uranium, Europium and Samarium. Talanta 1989, 36, 1095–1099.
55 56			
57 58			
59 60			

3 4	600	23.	S. Goderski, M. Runowski, P. Wozny, V. Lavin and S. Lis, Lanthanide Upconverted
5 6	601		Luminescence for Simultaneous Contactless Optical Thermometry and Manometry – Sensing
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	602		under Extreme Conditions of Pressure and Temperature. CS Appl. Mater. Interfaces 2020, 12,
	603		40475–40485.
	604	24.	U. K. Maity, P. Manoravi, M. Joseph and N. Sivaraman, Laser-induced breakdown spectroscopy
	605		for simultaneous determination of lighter lanthanides in actinide matrix in aqueous medium.
	606		Spectrochim. Acta B: At. Spectrosc. 2022, 190, 106393.
	607	25.	A. M. Lines, G. L. Nelson, J. M. Casella, J. M. Bello, S. E. Clark and S. A. Bryan, Multivariate
	608		Analysis to Quantify Species in the Presence of Direct Interferents: Micro-Raman Analysis of
21 22 23	609		HNO ₃ in Microfluidic Devices. Anal. Chem. 2018, 90 (4), 2548–2554.
24 25	610	26.	A. J. Casella, T. G. Levitskaia, J. M. Peterson and S. A. Bryan, Water O-H Stretching Raman
26 27 28 29 30 31 32 33 34 35 36 37	611		Signature for Strong Acid Monitoring via Multivariate Analysis. Anal. Chem. 2013, 85 (8), 4120-
	612		4128.
	613	27.	P. Tse, J. Shafer, S. A. Bryan, G. L. Nelson and A. M. Lines. Measuring Nd(III) Solution
	614		Concentration in the Prescence of Interfering Er(III) and Cu(II) Ions: A Partial Least Squares
	615		Analysis of Ultraviolet-Visible Spectra. Appl. Spectrosc. 2022, 76, 173-183.
	616	28.	P. Tse, J. Shafer, S. A. Bryan and A. M. Lines, Quantification of Raman-Interfering Polyoxoanions
30 39 40	617		for Process Analysis" Comparison of Different Chemometric Models and a Demonstration on Real
40 41 42	618		Hanford Waste. Environ. Sci. Technol. 2021, 55, 12943-12950.
43 44	619	29.	L. R. Sadergaski, G. K. Toney, L. H. Delmau and K. G. Myhre. Chemometrics and Experimental
45 46	620		Design for the Quantification of Nitrate Salts in Nitric Acid: Near-Infrared Spectroscopy
47 48	621		Absorption Analysis. Appl. Spectrosc. 2021, 75 (9), 1155–1167.
49 50 51 52	622	30.	L. R. Sadergaski, T. J. Hagar and H. B. Andrews. Design of Experiments, Chemometrics, and
	623		Raman Spectroscopy for the Quantification of Hydroxylammonium, Nitrate, and Nitric Acid. ACS
53 54 55 56 57 58	624		<i>Omega</i> , 2022, 7 , 7287–7296.

Analyst

1 2			
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	625	31.	V. Czitrom. One-Factor-at-a-Time Versus Designed Experiments. Am. Stat. 1999, 53 (2), 126-131.
	626	32.	B. Smucker, M. Krzywinski and N. Altman, Optimal experimental design. Nat. Methods 2018, 15,
	627		559–560.
	628	33.	A. Zahran, C. M. Anderson-Cook and R. H. Myers, Fraction of Design Space to Assess Prediction
	629		Capability of Response Surface Designs. J. Qual. Tech. 2003, 35 (4), 377-386.
	630	34.	P. Shan, Y. Zhao, Q. Wang, X. Sha, X. Lv, S. Peng and Y. Ying. Stacked ensemble extreme
	631		learning machine coupled with Partial Least Squares-based weighting strategy for nonlinear
	632		multivariate calibration. Spectrochim. Acta A: Mol. and Biomol. Spectrosc., 2019, 215, 97-111.
	633	35.	R. Lascola, P. E. O'Rourke and E. A. Kyser. A Piecewise Local Partial Least Squares (PLS)
	634		Method for the Quantitative Analysis of Plutonium Nitrate Solutions. Appl. Spectrosc. 2017, 7
	635		(12), 2579–2594.
	636	36.	M. Mancini, VM. Taavitsainen and G. Toscano. Comparative study between Partial Least
28 29	637		Squares and Rational function Ridge Regression models for the prediction of moisture content of
30 31 32 33 34 35	638		woodchip samples using a handheld spectrophotometer. J. Chemometr. 2021, 35, e3337. DOI:
	639		10.1002/cem.3337.
	640	37.	H. B. Andrews and K. G. Myhre. Quantification of Lanthanides in a Molten Salt Reactor Surrogate
36 37	641		Off-Gas Stream Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 2022,
 38 39 40 41 42 43 44 45 46 	642		doi:10.1177/00037028211070323.
	643	38.	L. Wei, Z. Yuan, Y. Zhong, L. Yang, X. Hu and Y. Zhang. An improved gradient boosting
	644		regression tree estimation model for soil heavy metal (arsenic) pollution monitoring using
	645		hyperspectral remote sensing. Appl. Sci. 2019, 9 (9), 1943.
47 48 49	646	39.	L. Wei, Z. Yuan, M. Yu, C. Huang and L. Cao. Estimation of Arsenic Content in Soil Based on
50 51 52 53 54 55 56 57 58	647		Laboratory and Field Reflectance Spectroscopy. Sensors 2019, 19 (18), 3904,
	648		doi:10.3390/s19183904.

1			
2 3 4	649	40.	F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
5 6	650		Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.
7 8	651		Perrot and É. Duchesnay. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12,
9 10 11	652		2825–2830.
12 13	653	41.	T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd
14 15	654		SIGKDD Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August
16 17	655		13-17, 2016; ACM, New York, 2016, 785-794.
18 19	656	42.	D. Wang and X. Yue. The weighted multiple meta-models stacking method for regression problem.
20 21	657		In Proceedings of the 2019 Chinese Control Conference (CCC), 2019, 7511-7516.
22 23	658	43.	L. R. Sadergaski, K. G. Myhre, L. H. Delmau, Multivariate chemometric methods and Vis-NIR
24 25 26	659		spectrophotometry for monitoring plutonium-238 anion exchange column effluent in a
26 27 28	660		radiochemical hot cell. Talanta Open 2022, 5, 100120.
29 30 31	661		
32 33 34 35 36	662		
37 38 39 40 41 42	663		
43 44 45 46 47 48 49	664		
50 51 52 53 54 55 56 57 58 59 60	665		

1		
2 3		
4		
5	666	
6 7		
8		
9 10		
11		
12	667	
13 14		
15		
16	668	
17 18	000	
19		
20		
21 22		
23		
24 25		
26		
27		
28 29		
30		
31		
32 33		
34		
35 36		
30 37		
38		
39 40		
41		
42 42		
45 44		
45		
46 47		
48		
49		
50 51		
52		
53		
54 55		
56		
57 50		
58 59		