

Materials Design of Sodium Chloride Solid Electrolytes Na3MCl6 for All-Solid-State Sodium-Ion Batteries

Journal:	Journal of Materials Chemistry A				
Manuscript ID	TA-ART-08-2021-007050.R1				
Article Type:	Paper				
Date Submitted by the Author:	09-Sep-2021				
Complete List of Authors:	Park, Dongsu; Korea Institute of Science and Technology, Kim, Kwangnam; Lawrence Livermore National Laboratory Chun, Gin Hyung; Korea Institute of Science and Technology, Center for Energy Storage Research Wood, Brandon; Lawrence Livermore National Laboratory Shim, Joon Hyung; Korea University, Mechanical Engineering Yu, Seungho; Korea Institute of Science and Technology, Center for Energy Storage Research				

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Materials Design of Sodium Chloride Solid Electrolytes Na₃MCl₆ for All-Solid-State Sodium-Ion Batteries

Dongsu Park,^{a,b} Kwangnam Kim,^c Gin Hyung Chun,^{a,b} Brandon C. Wood,^c Joon Hyung Shim,^{b,*} and

Seungho Yu^{a,d,*}

All-solid-state sodium-ion batteries have attracted increasing attention owing to the low cost of sodium and the enhanced safety compared to conventional Li-ion batteries. Recently, halides have been considered as promising solid electrolytes (SEs) due to their favorable combination of high ionic conductivity and chemical stability against high-voltage cathode materials. Although a wide variety of lithium chloride SEs, Li₃MCl₆, have been developed for high-voltage all-solid-state batteries, only a limited number of sodium chloride SEs have been reported. This study aims to offer a material design insight for the development of sodium chloride SEs through systematic assessment of the phase stability, electrochemical stability, and transport properties of novel Na₃MCl₆ SEs. Structural calculations indicate that Na₃MCl₆ exhibits trigonal P³1c, monoclinic $P2_1/n$, and trigonal R^3 phases, and the stable phase of Na₃MCl₆ is dependent on the type and ionic radius of M. Na₃MCl₆ typically exhibits a high oxidation potential, demonstrating good electrochemical stability against cathodes. The bond-valence site energy and ab initio molecular dynamics calculations revealed that Na₃MCl₆ with P2₁/n and R³ phases showed low ionic conductivity, whereas the P^{3} 1c phase slightly improved the ionic conductivity of Na₃MCl₆. The formation of Na vacancies by aliovalent substitution considerably increased the ionic conductivity up to four orders of magnitude for pristine Na₃MCl₆, exhibiting ~10⁻⁵ S/cm for trigonal P^3 1c and R^3 phases, which is comparable to the highest ionic conductivity among the reported Na chloride SEs. The formation of defects could further enhance the ionic conductivity of Na₃MCl₆, and the optimization of defect type and ratio can be helpful in developing superionic Na chloride SEs. The material design of Na₃MCl₆ in this study will be fundamental guidelines for the development of novel sodium halide SEs for all-solid-state sodium-ion batteries.

Introduction

The development of next-generation batteries has been widely conducted for emerging applications such as energy storage systems (ESSs) and electric vehicles.¹ All-solid-state batteries (ASSBs) are promising candidates for next-generation batteries owing to their high energy density and enhanced safety.² Solid electrolytes (SEs) in ASSBs enable the use of metallic anodes exhibiting higher energy density than graphite anodes. SEs also significantly enhance safety by replacing flammable organic liquid electrolytes in conventional Li-ion batteries.³ Recently, ASSBs employing Na-ion SEs have been considered due to the low cost of sodium and enhanced safety compared to conventional Li-ion batteries.^{4, 5} The abundance of sodium particularly facilitated the development of low-cost batteries for large-scale applications such as ESS.⁶

Among the various types of Na-ion SEs, sulfide SEs have been widely investigated owing to their high ionic conductivities.⁷⁻¹¹ For example, Na₃PS₄, Na₃SbS₄, and Na₁₁Sn₂PS₁₂ exhibited conductivities of 0.1–10 mS/cm,⁷⁻¹⁰ and W-substituted Na₃SbS₄ showed a high conductivity of 41 mS/cm.^{9, 12} However, sulfide SEs exhibit a narrow electrochemical stability window, resulting in poor compatibility with metal anodes and typical cathode materials.^{13, 14} In addition, phosphorus-based sulfide SEs are unstable against humid air and are prone to generate toxic H₂S gas.^{15, 16} Oxide SEs such as NASICONs and θ -alumina exhibit good chemical stability, but they require sintering process to address interfacial resistances.^{17, 18}

Recently, halide SEs have been considered as promising alternative SEs due to their favorable combination of high ionic conductivity, wide electrochemical stability window, and chemical stability against high-voltage cathodes.¹⁹⁻²⁸ Lithium ternary chlorides, Li₃MCl₆, exhibit high ionic conductivity (0.5–3 mS/cm for Li₃MCl₆ with M = Y, Er, In, Sc, and Yb) and chemical stability against 4 V-class oxide cathode materials.²²⁻²⁸ The ionic conductivity of Li₃MCl₆ (M = Y, Er, Fe, In, and Yb) was further improved by the aliovalent substitution of M³⁺ to Zr⁴⁺.²⁸⁻³²

^{a.} Energy Storage Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea

^{b.} School of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea

 $^{^{\}rm c}$ Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA

^{d.} Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea

^{*} Corresponding Authors

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

Theoretical studies also revealed the high ionic conductivity of Li_3MCl_6 and $Li_{3-x}M_{1-x}Zr_xCl_6$, above 10 mS/cm and high oxidation potential of approximately 4.3 V.³³⁻³⁶

Although lithium chloride SEs, Li₃MCl₆ are considered promising candidates for high-voltage ASSBs, very few investigations of sodium chloride SEs, such as Na₃MCl₆ (M = Y and Er), Na₂ZrCl₆, and Zr-substituted Na_{3-x}M_{1-x}Zr_xCl₆ (M = Y and Er),³⁷⁻⁴⁰ have been reported in the literature. Therefore, a systematic screening of Na₃MCl₆ with a broad variety of elements, M³⁺, would be a fundamental guideline for developing novel sodium chloride SEs. In this study, we provided a material design strategy for sodium chloride SEs by assessing the phase stability, electrochemical stability, and transport properties of Na₃MCl₆ SEs with 26 M³⁺ elements.

Structural calculations indicated that Na₃MCl₆ exhibited the crystal structures of the $P\overline{3}1c$, $P2_1/n$, and $R\overline{3}$ phases, and the stable phase of Na₃MCl₆ was dependent on the type and ionic radius of M. Na₃MCl₆ typically exhibited a high oxidation potential, demonstrating good electrochemical stability at high voltages. The Na-ion migration pathways and migration energy barriers in Na₃MCl₆ from the bond-valence site energy (BVSE) method indicated that Na-ion migration in monoclinic $P2_1/n$ and trigonal $R^{\overline{3}}$ phases was slower than that in the trigonal $P^{\overline{3}}1c$ phase. Ab initio molecular dynamics (AIMD) simulations further revealed that Na₃CrCl₆ ($P\overline{3}1c$ phase) had higher ionic conductivity than Na₃ErCl₆ ($P2_1/n$ phase) and Na₃GdCl₆ ($R\overline{3}$ phase). Although the $P2_1/n$ and $R^{\overline{3}}$ phases exhibited low ionic conductivity, the aliovalent substitution of M^{3+} with Zr^{4+} significantly increased the ionic conductivity up to four orders of magnitude. Ionic substitutions in Na₃MCl₆ would be a promising approach for the enhancement of ionic transport, and the optimization of the element type and ratio of substitution can further increase the ionic conductivity of Na₃MCl₆.

Methods

First principles calculations were conducted using density functional theory (DFT) with a plane-wave basis set and the projector-augmented wave method,⁴¹ as implemented in the Vienna Ab initio Simulation Package.42, 43 The generalized gradient approximation of Perdew, Burke, and Ernzerhof was employed for the exchange-correlation energy.44 A van der Waals density functional (vdW-DF, optB86b-vdW)⁴⁵ was used to address the interaction in layered chloride structures based on previous works.³⁴ An energy cutoff of 520 eV was used for the plane-wave basis, and the k-point grids were generated using the Python Materials Genomics (Pymatgen) code,⁴⁶ where the k-point densities were at least 1000/atom. The ionic positions were relaxed until the forces were less than 0.01 eV Å⁻¹, and the convergence criterion for the electronic self-consistency loop was set to 10⁻⁵ eV. Spin-polarized calculations were performed for the transition metals and lanthanides.

The simulation cells of Na₃MCl₆ were generated using the experimental structures of Na₃MCl₆, exhibiting trigonal $P\overline{3}1c$ (space group number, S.G., #163),^{47, 48} monoclinic $P2_1/n$ (S.G. #14),^{37, 38, 49} and trigonal $R\overline{3}$ (S.G. #148)⁵⁰ crystal structures. In

addition, the experimental structures of lithium ternary chlorides Li₃MCl₆, including monoclinic C2/m (S.G. #12)^{24, 26} and trigonal $P^{\overline{3}}m1$ (S.G. #164)^{22, 35} structures were also used to generate the simulation cells of Na₃MCl₆. A total of 26 M³⁺ cations were selected for Na₃MCl₆, including 3d transition metals (Cr, V, Fe, and Ti), group 3 elements (Sc, Lu, and Y), group 13 and 15 elements (Al, Ga, In, Tl, and Bi), and lanthanides (Yb, Tm, Er, Ho, Dy, Tb, Gd, Eu, Sm, Pm, Nd, Pr, Ce, and La). For the partially occupied Na sites in the Na₃MCl₆ structures, the ionic configuration with the lowest total energy was selected for subsequent calculations.

The phase stability of Na₃MCl₆ was examined using Na-M-Cl phase diagrams in the Materials Project (MP) database.⁵¹ Competing stable decomposition phases for Na₃MCl₆ (e.g., MCl₃, NaMCl₄, and NaCl) were collected to evaluate the energy above the convex hull (E_{hull}) of Na₃MCl₆. The Na₃MCl₆ phase with an E_{hull} value below 25 meV/atom was considered as the stable phase, which can be stabilized by entropic effects. The electrochemical stability window of Na₃MCl₆ was calculated using the grand potential phase diagram as a function of the chemical potential of Na:

$$\mu_{\rm Na}(\varphi) = \mu_{\rm Na,0} - e\varphi \quad , \tag{1}$$

where $\mu_{Na,0}$ is the chemical potential of Na metal, e is the elementary charge, and φ is the applied potential referenced to the Na metal anode. The Pymatgen code was used to generate the grand phase diagram and determine the electrochemical stability window. The total energies of Na₃MCl₆ were recalculated using consistent settings in the MP for the electrochemical stability calculations.

Na-ion migration pathway and its energy barrier were predicted using the BVSE method as implemented in the SoftBV software.⁵² Na site energies were calculated for a dense grid with a resolution of 0.1 Å using the Morse type interaction potential. The Na-ion migration path was identified based on the isosurface of the Na site energy, whereas the minimum energy required to connect a migration path was calculated for the migration energy barrier.

Na-ion diffusivity in Na₃MCl₆ was obtained using AIMD simulations. Because AIMD simulations require significant computational effort, a lower energy cut-off of 350 eV, gamma point-only k-point grid, and the NVT ensemble with a Nosé-Hoover thermostat were employed. The mean squared displacement (MSD) was evaluated at 700, 750, 800, 900, and 1000 K for the 40–75 ps window, and the time step for all AIMD calculations was 2 fs. The diffusion coefficient, *D*, was calculated using the MSD of the Na ions:

$$D = \frac{1}{2dt} \langle [\mathbf{r}(t+t_0) - \mathbf{r}(t_0)]^2 \rangle$$
(2)

where d is the dimensionality of the system, t_0 is the initial time, t is the time for MSD, and the angled brackets indicate the average overall Na ions. For the statistical reliability of the AIMD simulations, the average diffusion coefficient and its standard deviation were evaluated using three independent AIMD simulations at each temperature. The ionic conductivity of Na, σ , was calculated using the Nernst–Einstein equation:

Fig. 1 (a) Crystal structures of sodium chlorides Na₃MCl₆ (M=Cr, Er, and Gd) with NaCl₆ polyhedra (yellow) and MCl₆ octahedra. (b-d) Structural preference of Na₃MCl₆ among the trigonal $P^{\overline{3}}1c$, monoclinic $P2_1/n$, and trigonal $R^{\overline{3}}$ systems. (b) Energy differences among the crystal structures of $P^{\overline{3}}1c$, $P2_1/n$, and $R^{\overline{3}}$, as a function of the effective ionic radii of M. (c-d) Energy difference between (c) trigonal $P^{\overline{3}}1c$ and monoclinic $P2_1/n$, and (d) monoclinic $P2_1/n$ and trigonal $R^{\overline{3}}$ structures of Na₃MCl₆, as a function of the volume of structures. The values in (b-d) were divided into four groups based on M: 3d transition metals, group 3 elements, group 13 and 15 elements, and lanthanides

$$\sigma = \frac{(ze)^2 cD}{k_{\rm B}T} \tag{3}$$

where z is the valence of the Na ion, e is the elementary charge, c is the concentration of the Na ion, and D is the diffusion coefficient of Na ions. The ionic trajectories of Na during the AIMD simulations were recorded using a grid with dimensions of $25 \times 25 \times 25$ to visualize Na-ion migration. Isosurfaces of the ionic probability densities were obtained with respect to the mean ionic probability density (P₀).

Results

The structure of sodium chloride Na₃MCl₆ was determined by comparing the total energy among the trigonal $P^{\overline{3}}1c$, monoclinic $P2_1/n$, and trigonal $R^{\overline{3}}$ phases based on the experimental structures of Na₃MCl₆. The crystal structures of the $P^{\overline{3}}1c$, $P2_1/n$, and $R^{\overline{3}}$ phases (from Na₃CrCl₆, Na₃ErCl₆, and Na₃GdCl₆, respectively), are presented in Figure 1(a) with NaCl₆ polyhedra (yellow) and MCl₆ octahedra. The structural preference of Na₃MCl₆ was evaluated by calculating the total energy differences (ΔE) between the phases (ΔE between

trigonal $R^{\overline{3}}$ and monoclinic $P2_1/n$ ($E_{R\overline{3}} - E_{P2_1/n}$) phases, and between trigonal $R^{\overline{3}}$ and trigonal $P^{\overline{3}}1c$ ($E_{R\overline{3}} - E_{P\overline{3}1c}$) phases), as shown in Figure 1(b). The negative values of ΔE in Figure 1(b) indicate the preference of the trigonal $R^{\overline{3}}$ phase, whereas the positive values of ΔE demonstrate the preference of the $P^{\overline{3}1c}$ and $P2_1/n$ phases compared to the $R^{\overline{3}}$ phase. The values of ΔE decreased as the size of M increased, indicating that Na₃MCl₆ with relatively large M cations preferred the trigonal $R^{\overline{3}}$ phase. The energy differences among the phases in Figure 1(b) are also presented as a function of the volume of the structures in Figure S1. The values of ΔE decreased as the volume of Na₃MCl₆ increased, suggesting a preference for the trigonal $R^{\overline{3}}$ phase for Na₃MCl₆ with relatively large M cations. The values of ΔE and volume of Na₃MCl₆ for the $P^{\overline{3}}1c$, $P2_1/n$, and $R^{\overline{3}}$ phases are listed in Tables S1 and S2, respectively.

The structural preference of the monoclinic $P2_1/n$ phase compared to the trigonal $P\overline{3}1c$ and $R\overline{3}$ phases was examined using the values of ΔE , as shown in Figures 1(c) and (d), respectively. As shown in Figure 1(c), Na₃MCl₆ generally preferred the monoclinic $P2_1/n$ phase as the volume of Na₃MCl₆ increased. Na₃MCl₆ with relatively large M cations, such as group

ARTICLE

Table 1. Stable phase, E_{hull} , and decomposition phases of Na₃MCl₆.

м	м	M _{Radii} (pm)	Na ₃ MCl ₆	Stable phase	E _{hull} (meV/atom)	Stability	Decomp. phases
3d transition metal	Cr	61.5	Na₃CrCl ₆	P ³ 1c	14	Meta-Stable	CrCl ₃ , NaCl
	V	64	Na ₃ VCl ₆	P21/n	22	Meta-Stable	VCl ₃ , NaCl
	Fe	64.5	Na₃FeCl ₆	P21/n	27	Unstable	NaFeCl ₄ , NaCl
	Ti	67	Na ₃ TiCl ₆	P21/n	26	Unstable	TiCl₃, NaCl
Group 3	Sc	74.5	Na₃ScCl ₆	P2 ₁ /n	-5	Stable	N/A
	Lu	86.1	Na₃LuCl ₆	P21/n	-7	Stable	N/A
	Y	90	Na ₃ YCl ₆	R ³	-11	Stable	N/A
Group 13	Al	53.5	Na ₃ AlCl ₆	Р ³ 1с	22	Meta-Stable	NaAlCl ₄ , NaCl
	Ga	62	Na ₃ GaCl ₆	Р ³ 1с	41	Unstable	NaGaCl ₄ , NaCl
	In	80	Na₃InCl ₆	Р ³ 1с	-4	Stable	N/A
	TI	88.5	Na ₃ TICI ₆	P31c	-2	Stable	N/A
Group 15	Bi	103	Na ₃ BiCl ₆	R ³	-10	Stable	N/A
Lanthanide	Yb	86.8	Na ₃ YbCl ₆	P2 ₁ /n	-10	Stable	N/A
	Tm	88	Na ₃ TmCl ₆	P21/n	-6	Stable	N/A
	Er	89	Na ₃ ErCl ₆	R ³	-3	Stable	N/A
	Но	90.1	Na ₃ HoCl ₆	R ³	1	Meta-Stable	HoCl ₃ , NaCl
	Dy	91.2	Na ₃ DyCl ₆	R ³	6	Meta-Stable	DyCl ₃ , NaCl
	Tb	92.3	Na₃TbCl ₆	R ³	6	Meta-Stable	NaTbCl ₄ , NaCl
	Gd	93.5	Na ₃ GdCl ₆	R3	15	Meta-Stable	GdCl ₃ , NaCl
	Eu	94.7	Na₃EuCl ₆	R ³	22	Meta-Stable	EuCl ₃ , NaCl
	Sm	95.8	Na ₃ SmCl ₆	R ³	30	Unstable	SmCl ₃ , NaCl
	Pm	97	Na ₃ PmCl ₆	R ³	36	Unstable	PmCl ₃ , NaCl
	Nd	98.3	Na ₃ NdCl ₆	R ³	43	Unstable	NdCl ₃ , NaCl
	Pr	99	Na ₃ PrCl ₆	R ³	50	Unstable	PrCl ₃ , NaCl
	Ce	101	Na ₃ CeCl ₆	R ³	57	Unstable	CeCl ₃ , NaCl
	La	103.2	Na₃LaCl ₆	R3	53	Unstable	LaCl ₃ , NaCl

3 elements and lanthanides, exhibited a monoclinic $P2_1/n$ phase. Na₃MCl₆ with 3d transition metals slightly preferred the monoclinic $P2_1/n$ phase, whereas Na₃MCl₆ with a relatively small Cr preferred the trigonal $P\overline{3}1c$ phase, which was consistent with the experimental results.⁴⁸ The preference tendency of the monoclinic phase was slightly different for Na₃MCl₆ with group 13 elements (Al, Ga, In, and Tl), exhibiting trigonal $P\overline{3}1c$. The preference tendency of the trigonal $R\overline{3}$ phase compared to the monoclinic $P2_1/n$ phase for Na₃MCl₆ is illustrated in Figure 1(d). Na₃MCl₆ with relatively large M cations exhibited a trigonal $R\overline{3}$ phase, and the transition from the monoclinic to trigonal phase occurred with an ionic radius of 90 pm. The phase transition to the trigonal $R\overline{3}$ phase was consistent among the elements of groups 3, 13, and 15, and lanthanides.

The most stable phase of Na₃MCl₆ among the trigonal $P\overline{3}1c$, monoclinic $P2_1/n$, and trigonal $R\overline{3}$ phases is shown in Table 1. Na₃MCl₆ with relatively small M cations (Cr) and group 13 elements (Al, Ga, In, and Tl) preferred the trigonal $P\overline{3}1c$ phase, whereas Na₃MCl₆ with relatively large M cations (> 90 pm, Y, Bi, Er, Ho, Dy, Tb, Gd, Eu, Sm, Pm, Nd, Pr, Ce, and La) preferred the trigonal $R\overline{3}$ phase. Monoclinic $P2_1/n$ was the preferred phase of Na₃MCl₆, with M cations exhibiting moderate ionic radii, such as V, Fe, Ti, Sc, Lu, Yb, and Tm. Additionally, the stability of Na₃MCl₆ structures with monoclinic C2/m or trigonal $P\overline{3}m1$ phases from the Li₃MCl₆ structures was also investigated by comparing the total energy differences among the phases. Table S3 shows the most stable phase of Na₃MCl₆ among the $P\overline{3}1c$, $P2_1/n$, and $R\overline{3}$ phases, and the energy differences of the Na₃MCl₆ phase against the C2/m and $P\overline{3}m1$ phases. The positive values of ΔE indicate that the Na₃MCl₆ structures with the C2/m and $P\overline{3}m1$ phases were unstable phases, compared to the Na₃MCl₆ structures based on the $P\overline{3}1c$, $P2_1/n$, and $R\overline{3}$ phases. The values of ΔE were 5–45 meV/atom, suggesting that C2/m and $P\overline{3}m1$ from Li₃MCl₆ structures are unfavorable phases for Na₃MCl₆.

The phase stability of Na₃MCl₆ was determined using the E_{hull} of Na₃MCl₆ against competing decomposition phases, as shown in Table S4. The decomposition phases generally consisted of NaCl and MCl_3 (Tables S5 and S6), and $NaMCl_4$ (M = Fe, Sc, Lu, Al, Ga, Tm, and Tb) phases were also considered as stable decomposition phases. In Table 1, Na₃MCl₆ phases with E_{hull} values higher than 25 meV/atom, such as Na₃MCl₆ (M = Fe, Ti, Ga, Sm, Pm, Nd, Pr, Ce, and La) were considered as unstable phases, whereas Na₃MCl₆ phases with a positive value of E_{hull} below 25 meV/atom such as Na₃MCl₆ (M= Cr, V, Al, Ho, Dy, Tb, Gd, and Eu) were considered as metastable phases, which can be stabilized by entropic effects. Na₃MCl₆ with Sc, Lu, Y, In, Tl, Bi, Yb, Tm, and Er exhibited negative values of E_{hull} indicating that these phases were stable against the decomposition phases. The heat map in Figure 2 presents the E_{hull} of Na₃MCl₆ among the crystal structures of $P\overline{3}1c$, $P2_1/n$, $R\overline{3}$, C2/m, and $P\overline{3}$

*m*1, where the most stable phase is indicated by a black box. Stable Na_3MCl_6 phases were colored with light blue, and changed to light green, yellow, orange, and red, as E_{hull} increased.

The electrochemical stability window of Na₃MCl₆ was examined using the grand potential diagram as a function of the Na chemical potential, as shown in Figure 3. The most stable phase of Na₃MCl₆ (Table 1) was used to calculate the electrochemical stability of Na_3MCl_6 against reduction and oxidation. The oxidation potential of most Na_3MCl_6 was approximately 3.8 V, suggesting good stability against oxidation. Phase decomposition by oxidation reactions occurs at a higher voltage than that from these theoretical thermodynamic calculations, owing to the kinetic barrier of the reaction and protective decomposition layers. The high oxidation potential of Na₃MCl₆ enables its use in cathodes, demonstrating a considerable advantage compared to sulfide SEs, which exhibit low oxidation potentials (e.g., 2.49 V for Na₃PS₄ and 2.35 V for Na₃SbS₄)⁵³. The oxidation potential of Na₃VCl₆ was lower (2.8 V) than that of Na₃MCl₆ because of the decomposition phase of VCl₄.

The reduction potential of Na₃MCl₆ with group 3 elements and lanthanides was approximately 0.5 V, exhibiting a wide electrochemical stability window (0.5-3.8 V). The reduction potential of Na_3MCl_6 with p-block elements (M = Al, In, Tl, and Bi) and 3d transition metals (Cr and V) was higher than 1.5 V, indicating that these elements were unstable against reduction reaction in contact with anodes. These results are in agreement with those of previous studies for lithium chlorides, Li₃MCl₆, which revealed the wide electrochemical window (0.7-4.3 V) of Li₃MCl₆ with group 3 elements and lanthanides, whereas Li₃MX₆ with p-block elements (M = In, Bi, and Tl) was unstable against reduction reaction in contact with anodes.³⁴ Although Na₃MCl₆ with group 3 elements and lanthanides showed wide electrochemical window with low reduction potential of approximately 0.5 V, the reduction products of Na₃MCl₆ included metal M, which enable to conduct electrons, resulting in continuous reduction reactions.⁵⁴ Na₃MCl₆ also exhibited the instability against the Na metal, and reduction products included metal M, as shown in Table S7. Therefore, adequate coatings should be considered to stabilize the interface between Na₃MCl₆ and anodes.⁵⁵ The reduction and oxidation

potentials of Na_3MCl_6 , and their corresponding phase equilibria are listed in Table S8.

ARTICLE

The chemical stability of Na₃MCl₆ against cathode materials was evaluated by calculating the reaction energy between Na₃MCl₆ and four cathode materials (NaCrO₂, NaMnO₂, NaCoO₂, and NaNiO₂) as shown in Figure S2. Na₃MCl₆ exhibited the reaction energy approximately 0.1 eV/atom, which was significantly lower than that of sulfide SE, Na₃PS₄. Although the negative value of reaction energy suggested the thermodynamically favorable reaction between Na₃MCl₆ and cathode materials, kinetic barrier could prevent the decomposition due to the low reaction energy, while decomposition phases at the interface could also prevent further decomposition of the bulk phase.

The Na-ion migration pathway in Na₃MCl₆ was predicted using the BVSE method, as shown in Figure 4. The Na-ion migration paths within Na₃CrCl₆ (trigonal $P\overline{3}1c$), Na₃ErCl₆ (monoclinic $P2_1/n$), and Na₃GdCl₆ (trigonal $R\overline{3}$) are illustrated in Figures 4(a), (b), and (c), respectively, using the isosurface (light blue) of the Na site energy. The trigonal $P\overline{3}1c$ and $R\overline{3}$ phases exhibited a one-dimensional migration path along the z-axis between octahedral sites (Oct.–Oct.), and three-dimensional migration paths between octahedral sites via tetrahedral interstitial sites (Oct.–Tet.–Oct.). The monoclinic $P2_1/n$ phase included the Na-ion migration path between octahedral and

Fig. 3 Electrochemical stability window of sodium chlorides (Na $_3MCI_6$) and sulfide SEs (Na $_3PS_4$ and Na $_3SbS_4$).

ARTICLE

Page 6 of 9

Fig. 4 Na-ion migration pathway in (a) Na₃CrCl₆ (trigonal $P^{\overline{3}}1c$), (b) Na₃ErCl₆ (monoclinic $P2_1/n$), and (c) Na₃GCCl₆ (trigonal $R^{\overline{3}}$) predicted by the BVSE method: (a, c) one-dimensional path between octahedral sites (Oct.–Oct.), and three-dimensional path between octahedral sites via tetrahedral interstitial sites (Oct.– Tet.–Oct.); (b) migration paths between octahedral and prism sites (Oct.–Prism), and migration paths between octahedral and prism sites via tetrahedral interstitial sites (Oct.–Tet.–Prism). Details of migration pathways are shown in Figures S3–5. (d-f) Na-ion migration energy barriers along the migration paths in (d) Na₃CrCl₆, (e) Na₃ErCl₆, and (f) Na₃GCl₆.

prism sites (Oct.–Prism), and between octahedral and prism sites via tetrahedral interstitial sites (Oct.–Tet.–Prism), which was in good agreement with a previous study.³⁷ Details of Na-ion migration paths for trigonal $P\overline{3}1c$, monoclinic $P2_1/n$, and trigonal $R\overline{3}$ phases are presented in Figures S3, S4, and S5, respectively.

The energy barriers of Na-ion migration through the paths in Figures 4(a-c) were evaluated using the BVSE method, as shown in Figures 4(d-f). The energy barriers of Na-ion migration through face sharing octahedral sites (Na-i1) and octahedral sites via interstitial tetrahedral sites (i1-i2-Na) in the trigonal $P\overline{3}$ 1c were 0.34 and 0.41 eV, respectively. The energy barriers of Na-ion migration in monoclinic $P2_1/n$ and trigonal $R\overline{3}$ phases were considerably higher than those in trigonal $P\overline{3}1c$. The energy barriers of migration in the monoclinic $P2_1/n$ phase were 0.58 eV for the direct migration path between octahedral and prism sites (Na1-Na2), 0.49 eV for the migration path between octahedral and prism sites via two tetrahedral interstitial sites (Na2-i1-i2-Na1), and 0.60 eV for the migration path between octahedral and prism sites via tetrahedral interstitial sites (Na1i3-Na2). The trigonal $R^{\overline{3}}$ phase exhibited the energy barriers of 0.52 for the migration path through face sharing octahedral sites (Na1-Na2) and 0.56 eV for octahedral sites via interstitial tetrahedral site (Na1-i1-Na2). Based on the values of the energy barrier, the Na-ion diffusivity in the trigonal $P\overline{3}1c$ phase would be higher than that in the monoclinic $P2_1/n$ and trigonal $R^{\overline{3}}$ phases. As the BVSE method is a simplified empirical energy calculation that often underestimates or overestimates the activation energy,^{33, 56} the relative height of the migration barrier among the three phases was emphasized in this study. Na-ion migration in Na₃MCl₆ was further investigated using AIMD calculations.

The Na-ion diffusivity in Na₃MCl₆ (M = Cr, Er, and Gd) was calculated using the MSD derived from the AIMD simulations. Na₃ErCl₆ and Na₃GdCl₆ exhibited negligible values of Na-ion MSD (~1 Å) during 100 ps at 1000 K (Figure S6), indicating the poor ionic conductivity of Na3ErCl6 and Na3GdCl6. Earlier theoretical studies for non-conductive materials suggested that the ionic conductivity was assumed as approximately 10⁻⁹ S/cm at room temperature, when inter-site hopping was not found in the MSD plot at 900 K.57 Based on the low values of Na-ion MSD for Na₃ErCl₆ and Na₃GdCl₆, the diffusion barriers for these materials would exhibit 0.5 eV or higher values.⁵⁷ Using these upper bound values, the ionic conductivities at room temperature were estimated by the extrapolation of Arrhenius relation, resulting in 2×10^{-8} S/cm for Na₃GdCl₆ and Na₃ErCl₆. When the experimental activation energy of Na₃ErCl₆ (0.65 eV) was used for the calculation,37 the ionic conductivity was estimated to be 3×10⁻¹⁰ S/cm, which is in good agreement with the experimental ionic conductivity of 10⁻⁹ S/cm.³⁷ In contrast, the Na-ion MSD was improved in Na₃CrCl₆, as shown in Figure S7, indicating a higher Na-ion diffusivity of the trigonal $P\overline{3}1c$ phase compared to the monoclinic $P2_1/n$ and trigonal $R^{\overline{3}}$ phases. These results are in good agreement with the energy barrier calculations obtained using the BVSE method, as shown in Figure 4. The Arrhenius plot of Na-ion diffusivity in Figure 5 indicates an activation energy of 0.57 eV for Na₃CrCl₆, resulting in an ionic conductivity of 2×10^{-7} S/cm at room temperature.

Based on the relatively low ionic conductivities of Na_3MCl_6 , an additional material design strategy should be applied to improve the ionic conductivity of Na_3MCl_6 . One meaningful approach to increase the ionic conductivity is the formation of Na vacancies in Na_3MCl_6 by the aliovalent substitution of M^{3+}

ARTICLE

Fig. 5 Arrhenius plots of Na-ion (a) diffusivity and (b) conductivity for Na_3CrCl_6 , $Na_{2.5}Cr_{0.5}Zr_{0.5}Cl_6$ (NCZC), $Na_{2.5}Er_{0.5}Zr_{0.5}Cl_6$ (NEZC), $Na_{2.5}Gd_{0.5}Zr_{0.5}Cl_6$ (NGZC). The open symbols in (b) denote the ionic conductivities obtained using the extrapolation of the Arrhenius plots for high temperature data.

with Zr⁴⁺, which resulted in an increase of the ionic conductivity of Na₃ErCl₆ (10⁻⁹ S/cm) by approximately four orders of magnitude compared to that of Na_{2.4}Er_{0.4}Zr_{0.6}Cl₆ (4×10⁻⁵ S/cm).³⁷ The phase stability of Zr-substituted Na₃MCl₆ (Na_{3-x}M_{1-x}Zr_xCl₆) was determined as a function of the substitution levels (x= 0, 0.25, 0.5, 0.75, and 1), as listed in Table S9. All the Zr-substituted phases, Na_{3-x}M_{1-x}Zr_xCl₆ (M= Cr, Er, and Gd), were considered as stable compounds (E_{hull} < 25 meV) against competing decomposition phases NaCl, MCl₃, and ZrCl₄. Zr-substitution in Na₃MCl₆ (M= Er and Gd) increased the reduction potential to 1.7 V (Table S10), while the effect of Zr substitution on the oxidation potential of Na₃MCl₆ was negligible.

The Arrhenius plots of the Na-ion diffusivities of Na_{2.5}M_{0.5}Zr_{0.5}Cl₆ were obtained using AIMD calculations, as shown in Figure 5 for Na_{2.5}Cr_{0.5}Zr_{0.5}Cl₆ (NCZC), Na_{2.5}Er_{0.5}Zr_{0.5}Cl₆ (NEZC), and Na_{2.5}Gd_{0.5}Zr_{0.5}Cl₆ (NGZC). The activation energy of Na_{2.5}M_{0.5}Zr_{0.5}Cl₆ was 0.44, 0.46, and 0.43 eV for NCZC, NEZC, and NGZC, respectively, suggesting that aliovalent substitution is a promising method to enhance the ionic diffusion in Na₃MCl₆. The predicted Na-ion conductivities at room temperature were 1.3×10⁻⁵, 2.2×10⁻⁶, and 1.3×10⁻⁵ S/cm for NCZC, NEZC, and NGZC,

Fig. 6 Isosurfaces of the Na-ion probability densities (blue) from 40-ps AIMD calculations at 1000 K plotted using an isosurface value of $4P_0$ for (a) Na₃CrCl₆, (b) Na₃ErCl₆, (c) Na₃GdCl₆, (d) Na_{2.5}Cr_{0.5}Zr_{0.5}Cl₆, (e) Na_{2.5}Er_{0.5}Zr_{0.5}Cl₆, and (f) Na_{2.5}Gd_{0.5}Zr_{0.5}Cl₆. The purple, cyan-green, magenta, and orange colors correspond to Cr, Er, Gd, and Zr octahedra, respectively.

respectively, exhibiting ionic conductivities up to four orders of magnitude higher than that in the pristine Na₃MCl₆. The predicted ionic conductivities of Zr-substituted Na₃MCl₆ phases (approximately 10^{-5} S/cm) are comparable to the highest ionic conductivity among the reported Na chloride SEs.³⁷⁻³⁹

Na-ion trajectories were obtained to visualize Na-ion diffusion in Na_3MCl_6 and $Na_{2.5}M_{0.5}Zr_{0.5}Cl_6$, as shown in Figure 6. The isosurfaces of the Na-ion probability densities during 40 ps AIMD calculations at 1000 K were plotted using an isosurface value of $4P_0$. Na-ion isosurfaces for Na₃ErCl₆ and Na₃GdCl₆ exhibited localized displacements, confirming the lower Na-ion mobility in Na₃ErCl₆ and Na₃GdCl₆. Na-ion isosurfaces were more connected through the migration path in Na₃CrCl₆ compared to that in Na₃ErCl₆ and Na₃GdCl₆, which was consistent with the higher diffusivity of Na₃CrCl₆. Na-ion paths were improved in $Na_{3-x}M_{1-x}Zr_xCl_6$, indicating that Na vacancies by the aliovalent substitution facilitated Na-ion diffusion. The difference in size between the M and Zr octahedra also led to the disorder of the diffusion path, increasing the Na-ion mobility. Based on the improvement of ionic mobility by ionic substitutions, the optimization of defects in Na₃MCl₆ is a promising strategy for developing superionic Na chloride SEs. Na₃MCl₆ with the aliovalent substitution of Ti⁴⁺ and Hf⁴⁺ also exhibited good phase stability (*E*_{hull} < 30 meV) as listed in Table S11, indicating that Ti and Hf can be potential candidates for the substitution in Na₃MCl₆.

Conclusions

Halide SEs have been reported as promising alternative SEs to other types of SEs owing to their high ionic conductivity and wide electrochemical stability window. In this study, systematic assessments of the phase stability, electrochemical stability, and transport properties of Na₃MCl₆ were performed to provide design insights for sodium chloride SEs. Structural calculations revealed that sodium chloride Na₃MCl₆ exhibited the crystal structures of the $P\overline{3}1c$, $P2_1/n$, and $R\overline{3}$ phases, and that the phase preference was dependent on the types and ionic radii of M. Na₃MCl₆ with relatively small M cations and group 13 elements preferred the trigonal $P\overline{3}1c$ phase, whereas Na₃MCl₆ with

6.

7.

8.

Journal Name

ARTICLE

moderate ionic radii preferred the monoclinic $P2_1/n$ phase. Na_3MCl_6 generally showed a preference for the trigonal R^3 phase with relatively large M cations above 90 pm. Phase stability calculations indicated that Na_3MCl_6 (M = Cr, V, Sc, Lu, Y, Al, In, Tl, Bi, Yb, Tm, Er, Ho, Dy, Tb, Gd, and Eu) can be considered as stable structures. Na₃MCl₆ typically exhibits a high oxidation potential, demonstrating considerable advantages compared to sulfide SEs. The electrochemical stability window was wide (0.5–3.8 V) for Na_3MCl_6 with group 3 elements and lanthanides, whereas the reduction potential of Na₃MCl₆ with p-block elements and 3d transition metals was higher than 1.5 V. The Na-ion migration pathway and energy barriers in Na₃MCl₆ were predicted using the BVSE method. The energy barriers in the monoclinic $P2_1/n$ and trigonal $R^{\overline{3}}$ phases were higher than those in the trigonal $P\overline{3}1c$ phase. AIMD simulations were performed to examine Na-ion diffusion in Na₃MCl₆. Na₃CrCl₆ had a higher ionic conductivity than Na₃ErCl₆ and Na₃GdCl₆, but all Na₃MCl₆ phases exhibited low ionic conductivity. The aliovalent substitution of M^{3+} with Zr^{4+} increased the ionic conductivity up to four orders of magnitude compared to that of the pristine phase, suggesting that Na vacancy formation in Na₃MCl₆ is a crucial approach to improve the ionic conductivity.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science & ICT of Korea (2017M1A2A2044482); by the Development Program of Core Industrial Technology funded by the Ministry of Trade, Industry & Energy of Korea (No. 20012318); and by the institutional program of the Korea Institute of Science and Technology (Project No. 2E30992). The work by K.K. and B.W. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract Number DE-AC52-07NA27344. B.W. acknowledges additional support from the Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy.

References

- 1. D. Larcher and J. M. Tarascon, *Nature Chemistry*, 2015, **7**, 19-29.
- 2. P. Albertus, S. Babinec, S. Litzelman and A. Newman, *Nature Energy*, 2018, **3**, 16-21.
- J. B. Goodenough and Y. Kim, *Chemistry of Materials*, 2010, 22, 587-603.
- 4. W. Hou, X. Guo, X. Shen, K. Amine, H. Yu and J. Lu, *Nano Energy*, 2018, **52**, 279-291.
- Y. Lu, L. Li, Q. Zhang, Z. Niu and J. Chen, *Joule*, 2018, 2, 1747-1770.

- Y. Wang, S. Song, C. Xu, N. Hu, J. Molenda and L. Lu, *Nano Materials Science*, 2019, **1**, 91-100.
- T. Krauskopf, C. Pompe, M. A. Kraft and W. G. Zeier, *Chemistry of Materials*, 2017, **29**, 8859-8869.
- A. Banerjee, K. H. Park, J. W. Heo, Y. J. Nam, C. K. Moon, S. M. Oh, S.-T. Hong and Y. S. Jung, *Angewandte Chemie International Edition*, 2016, **55**, 9634-9638.
- 9. A. Hayashi, N. Masuzawa, S. Yubuchi, F. Tsuji, C. Hotehama, A. Sakuda and M. Tatsumisago, *Nature Communications*, 2019, **10**, 5266.
- 10. Z. Zhang, E. Ramos, F. Lalère, A. Assoud, K. Kaup, P. Hartman and L. F. Nazar, *Energy & Environmental Science*, 2018, **11**, 87-93.
- 11. J.-J. Kim, K. Yoon, I. Park and K. Kang, *Small Methods*, 2017, **1**, 1700219.
- 12. T. Fuchs, S. P. Culver, P. Till and W. G. Zeier, *ACS Energy Letters*, 2020, **5**, 146-151.
- 13. H. Park, S. Yu and D. J. Siegel, ACS Energy Letters, 2021, 6, 150-157.
- 14. Y. Xiao, Y. Wang, S.-H. Bo, J. C. Kim, L. J. Miara and G. Ceder, Nature Reviews Materials, 2020, **5**, 105-126.
- 15. H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama and M. Tatsumisago, *Solid State Ion.*, 2011, **182**, 116-119.
- Y. Lee, J. Jeong, H.-D. Lim, S.-O. Kim, H.-G. Jung, K. Y. Chung and S. Yu, ACS Sustainable Chemistry & Engineering, 2021, 9, 120-128.
- N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, V. Radha and M. Vithal, *Journal of Materials Science*, 2011, 46, 2821-2837.
- M.-C. Bay, M. Wang, R. Grissa, M. V. F. Heinz, J. Sakamoto and C. Battaglia, *Advanced Energy Materials*, 2020, 10, 1902899.
- 19. J. Liang, X. Li, K. R. Adair and X. Sun, Accounts of Chemical Research, 2021, **54**, 1023-1033.
- S. Zhang, F. Zhao, S. Wang, J. Liang, J. Wang, C. Wang, H. Zhang, K. Adair, W. Li, M. Li, H. Duan, Y. Zhao, R. Yu, R. Li, H. Huang, L. Zhang, S. Zhao, S. Lu, T.-K. Sham, Y. Mo and X. Sun, Advanced Energy Materials, 2021, n/a, 2100836.
- X. Li, J. Liang, X. Yang, K. R. Adair, C. Wang, F. Zhao and X. Sun, Energy & Environmental Science, 2020, 13, 1429-1461.
- 22. T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki and S. Hasegawa, *Advanced Materials*, 2018, **30**, 1803075.
- R. Schlem, S. Muy, N. Prinz, A. Banik, Y. Shao-Horn, M. Zobel and W. G. Zeier, *Advanced Energy Materials*, 2020, 10, 1903719.
- X. Li, J. Liang, J. Luo, M. Norouzi Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao, Y. Hu, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, K. R. Adair and X. Sun, *Energy & Environmental Science*, 2019, **12**, 2665-2671.
- X. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T.-K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li and X. Sun, *Angewandte Chemie International Edition*, 2019, 58, 16427-16432.
- J. Liang, X. Li, S. Wang, K. R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Mo and X. Sun, *Journal of the American Chemical Society*, 2020, 142, 7012-7022.
- L. Zhou, C. Y. Kwok, A. Shyamsunder, Q. Zhang, X. Wu and L. F. Nazar, *Energy & Environmental Science*, 2020, 13, 2056-2063.
 - J. Park, D. Han, H. Kwak, Y. Han, Y. J. Choi, K.-W. Nam and Y. S. Jung, *Chemical Engineering Journal*, 2021, **425**, 130630.

28.

- Journal Name
- 29. K.-H. Park, K. Kaup, A. Assoud, Q. Zhang, X. Wu and L. F. Nazar, ACS Energy Letters, 2020, **5**, 533-539.
- H. Kwak, D. Han, J. Lyoo, J. Park, S. H. Jung, Y. Han, G. Kwon,
 H. Kim, S.-T. Hong, K.-W. Nam and Y. S. Jung, Advanced Energy Materials, 2021, 11, 2003190.
- B. Helm, R. Schlem, B. Wankmiller, A. Banik, A. Gautam, J. Ruhl, C. Li, M. R. Hansen and W. G. Zeier, *Chemistry of Materials*, 2021, 33, 4773-4782.
- 32. S. Y. Kim, K. Kaup, K.-H. Park, A. Assoud, L. Zhou, J. Liu, X. Wu and L. F. Nazar, ACS Materials Letters, 2021, **3**, 930-938.
- D. Park, H. Park, Y. Lee, S.-O. Kim, H.-G. Jung, K. Y. Chung, J. H. Shim and S. Yu, *ACS Applied Materials & Interfaces*, 2020, 12, 34806-34814.
- K. Kim, D. Park, H.-G. Jung, K. Y. Chung, J. H. Shim, B. C. Wood and S. Yu, *Chemistry of Materials*, 2021, **33**, 3669-3677.
- S. Wang, Q. Bai, A. M. Nolan, Y. Liu, S. Gong, Q. Sun and Y. Mo, Angewandte Chemie International Edition, 2019, 58, 8039-8043.
- 36. Y. Liu, S. Wang, A. M. Nolan, C. Ling and Y. Mo, Advanced Energy Materials, 2020, **10**, 2002356.
- 37. R. Schlem, A. Banik, M. Eckardt, M. Zobel and W. G. Zeier, ACS Applied Energy Materials, 2020, **3**, 10164-10173.
- E. A. Wu, S. Banerjee, H. Tang, P. M. Richardson, J.-M. Doux, J. Qi, Z. Zhu, A. Grenier, Y. Li, E. Zhao, G. Deysher, E. Sebti, H. Nguyen, R. Stephens, G. Verbist, K. W. Chapman, R. J. Clément, A. Banerjee, Y. S. Meng and S. P. Ong, *Nature Communications*, 2021, **12**, 1256.
- H. Kwak, J. Lyoo, J. Park, Y. Han, R. Asakura, A. Remhof, C. Battaglia, H. Kim, S.-T. Hong and Y. S. Jung, *Energy Storage Materials*, 2021, **37**, 47-54.
- 40. Y. Qie, S. Wang, S. Fu, H. Xie, Q. Sun and P. Jena, *The Journal of Physical Chemistry Letters*, 2020, **11**, 3376-3383.
- 41. P. E. Blöchl, *Physical Review B*, 1994, **50**, 17953-17979.
- 42. G. Kresse and J. Furthmüller, *Physical Review B*, 1996, **54**, 11169-11186.
- 43. G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758-1775.
- 44. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, **77**, 3865-3868.
- 45. J. Klimeš, D. R. Bowler and A. Michaelides, *Journal of Physics: Condensed Matter*, 2009, **22**, 022201.
- 46. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson and G. Ceder, *Computational Materials Science*, 2013, **68**, 314-319.
- 47. G. Friedrich, H. Fink and H. J. Seifert, *Zeitschrift für* anorganische und allgemeine Chemie, 1987, **548**, 141-150.
- 48. M. Beran and G. Meyer, *Crystals*, 2011, **1**.
- 49. G. Meyer, S. Peter Ax, T. Schleid and M. Irmler, *Zeitschrift für anorganische und allgemeine Chemie*, 1987, **554**, 25-33.
- 50. G. Meyer, Zeitschrift für anorganische und allgemeine Chemie, 1984, **517**, 191-197.
- A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, *APL Materials*, 2013, 1, 011002.
- 52. H. Chen, L. L. Wong and S. Adams, *Acta Crystallographica* Section B, 2019, **75**, 18-33.
- H. Tang, Z. Deng, Z. Lin, Z. Wang, I.-H. Chu, C. Chen, Z. Zhu,
 C. Zheng and S. P. Ong, *Chemistry of Materials*, 2018, **30**, 163-173.
- 54. L. M. Riegger, R. Schlem, J. Sann, W. G. Zeier and J. Janek, Angewandte Chemie International Edition, 2021, **60**, 6718-

6723.

- 55. S. Yu, H. Park and D. J. Siegel, ACS Applied Materials & Interfaces, 2019, **11**, 36607-36615.
- 56. R. Xiao, H. Li and L. Chen, *Scientific Reports*, 2015, **5**, 14227.
- 57. A. D. Sendek, E. D. Cubuk, E. R. Antoniuk, G. Cheon, Y. Cui and E. J. Reed, *Chemistry of Materials*, 2019, **31**, 342-352.

This journal is © The Royal Society of Chemistry 20xx