

Direct synthesis of barium titanium oxyhydride for use as a hydrogen-permeable electrode

Journal:	Journal of Materials Chemistry A
Manuscript ID	TA-COM-07-2021-005783.R1
Article Type:	Communication
Date Submitted by the Author:	23-Aug-2021
Complete List of Authors:	Uchimura, Tasuku; National Institutes of Natural Sciences - Okazaki Campus, Institute for Molecular Science; The Graduate University for Advanced Studies, Department of Structural Molecular Science Takeiri, Fumitaka; National Institutes of Natural Sciences - Okazaki Campus, Institute for Molecular Science; The Graduate University for Advanced Studies, Department of Structural Molecular Science Okamoto, Kei; National Institutes of Natural Sciences - Okazaki Campus, Institute for Molecular Science; The Graduate University for Advanced Studies, Department of Structural Molecular Science Saito, Takashi; Institute of Material Structure Science; The Graduate University for Advanced Studies, Department of Materials Structural Science Kamiyama, Takashi ; Institute of Material Structure Science; The Graduate University for Advanced Studies, Department of Materials Structural Science Kobayashi, Genki; National Institutes of Natural Sciences - Okazaki Campus, Institute for Molecular Science; The Graduate University for Advanced Studies, Department of Structure Sciences - Okazaki Campus, Institute for Molecular Science; The Graduate University for Advanced Studies, Department of Structural Sciences - Okazaki Campus, Institute for Molecular Science; The Graduate University for Advanced Studies, Department of Structural Molecular Science

SCHOLARONE[™] Manuscripts

COMMUNICATION

Direct synthesis of barium titanium oxyhydride for use as a hydrogen permeable electrode

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Barium titanium oxyhydride BaTiO_{3-x}H_x is a promising functional material that exhibits H^-/e^- mixed conduction. Here we firstly report a direct synthesis of BaTiO_{3-x}H_x by a mechanochemical method. The prepared polycrystalline sample was able to work as hydrogen permeable electrodes.

Oxyhydrides, wherein hydride ions (H⁻) stabilized in oxide frameworks, have recently become a new topic of materials science. Representative examples are the first case of transition-metal oxyhydride LaSrCoO₃H_{0.7},¹ unusual pnictide superconductor LaFeAsO_{1-x}H_x,^{2,3} and pure H⁻ conductor La_{2-x-y}Sr_{x+y}LiH_{1-x+y}O_{3-y}.⁴ In particular, perovskite-type BaTiO_{3-x}H_x is an important piece that exhibits metallic electronic conduction,⁵ H⁻ diffusion,⁶ and high anion exchangeability.^{7,8} Such properties afford valuable chemical functions represented by catalytic activity for NH₃ synthesis and CO₂ reduction.^{9,10} Furthermore, the H⁻/e⁻ mixed conducting nature should be promising for the use of electrodes capable of hydrogen transmission in electrochemical devices for chemical/energy conversion.

The polycrystalline titanium-based oxyhydrides, $ATiO_{3-x}H_x$ (A = Ba, Sr, Ca, Eu), are previously prepared by solid-state topochemical reactions, in which a mixture of the corresponding oxide precursors $ATiO_3$ and calcium hydride (CaH₂) are heated under vacuum.^{5,11,12} The hydrogen concentration x can be varied depending on the reaction conditions including sintering temperature and period. However, preparation of a single phase $ATiO_{3-x}H_x$ with controlled x value, which is a critical matter for the abovementioned chemical functions, is still a challenge. It is because that not only thermodynamic but also kinetic factors, such as particle size of precursor oxides¹¹ and anion diffusivity in the lattice,^{13,14} should be considered. Moreover, the washing process to remove the residual CaH₂ and byproduct CaO are inevitable in the topochemical reaction. Such a complex and multi-step process might result in less reproducibility of functional performance and be unsuitable for future applicable use.

Mechanochemical synthesis through dry milling without heating can use mechanical energy for chemical reactions, and thus is used for preparing nanoparticles¹⁵, hydrogen storage materials,^{16,17} and metastable phases such as glass-ceramics.^{18,19} Herein, we show a direct preparation of BaTiO₃₋ xH_x by only 90 minutes of ball-milling, which is the first report of mechanochemical synthesis of oxyhydrides.

Commercial reagents of BaH₂, BaO, TiO₂, and TiH₂ were used as starting materials. Those reagents were mixed in an Ar-filled glovebox using an agate mortar, following equation (1) with the nominal composition of $x_{nom} = 0.1, 0.25, 0.5, 1$.

$$xBaH_2 + (1 - x)BaO + TiO_2 \rightarrow BaTiO_{3 - x}H_x + 0.5xH_2$$
 (1)

For the nominal composition of $x_{nom} = 2$, TiH₂ was used instead of BaH₂ and TiO₂ as following the equation (2).

$$BaO + TiH_2 \rightarrow BaTiOH_2 \tag{2}$$

The mixtures of 1 g were sealed in a ZrO_2 container together with ZrO_2 balls. Mechanical activation was performed at 600, 800, and 1100 rpm for 90 min without intervals using high-energy ball milling equipment (Emax, Retsch).

Figure 1 shows laboratory X-ray diffraction patterns of x_{nom} = 0.5 samples with various milling conditions. For the sample after hand-milling, only profiles derived from the raw materials of BaO, BaH₂, and TiO₂ were detected. After ball-milling at 600 rpm, the peaks were broadened, and new peaks appeared at 800 rpm with a relatively high background. In contrast, at 1100 rpm, clear peaks indexable with a cubic unit cell of *a* = 4.0252 Å

^{a.} Department of Materials Molecular Science, Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585, Japan. E-mail: gkobayashi@ims.ac.jp

^{b.} SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585, Japan.

^c PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.

^{d.} Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki 319-1106, Japan.

^{e.} SOKENDAI (The Graduate University for Advanced Studies), Tokai, Ibaraki 319-1106, Japan.

^{*}Electronic supplementary information (ESI) available: See DOI: 10.1039/x0xx00000x

Tasuku Uchimura,^{ab} Fumitaka Takeiri,^{abc} Kei Okamoto,^{ab} Takashi Saito^{de}, Takashi Kamiyama^{de}, and Genki Kobayashi*^{ab}

COMMUNICATION

were observed without any other peaks, indicating a formation of simple perovskite in a single phase. The powder color changed from white to black, suggesting the presence of reduced Ti³⁺ from Ti⁴⁺, and the obtained cubic phase was stable in air. Such features are the same with those for previous reported $BaTiO_{3-x}H_x$ prepared by topochemical reaction using CaH₂.⁵ Thermal desorption spectroscopy (TDS) measurement was performed to estimate hydrogen content in the obtained sample. Figure 2 (inset) shows the spectrum corresponding to desorbed H_2 molecule (m/z = 2) upon heating. The H_2 desorption gradually occurred above 200 °C and sharply increased around 480 °C. The hydrogen content x in BaTiO_{3-x}H_x estimated by integrating the total peak area was x = 0.427 in BaTiO_{3-x}H_x. Scanning electron microscopy (SEM) image of the obtained powder indicates a broad particle size distribution of 0.1-2 μ m (Fig. S1), possibly inducing the H₂ desorption at a wide range of temperatures.

Fig. 1 XRD patterns of the products of $BaTiO_{3-x}H_x$ ($x_{nom} = 0.5$) at hand mill, 600 rpm, 800 rpm, and 1100 rpm. Selected *hkl* reflections with relatively intense peaks are indexed.

The crystal structure and composition of the $x_{nom} = 0.5$ product were estimated by Rietveld refinement. Powder synchrotron X-ray and neutron diffraction (SXRD and ND) data collected at room temperature were refined using RIETAN-FP²⁰ and Z-Rietveld program,²¹ respectively. ND refinement assuming a cubic perovskite BaTiO_{3-x}H_x converged well with H and O occupancies of g(H) = 0.1413(18) and g(O) = 0.8588(12), yielding the composition of BaTiO_{2.58}H_{0.42} with no significant anion vacancies. This result is consistent with both the SXRD refinement yielding a sizable amount of anion vacancy of $\delta \approx$ 0.42 for BaTiO_{3- δ} (Fig. S2 and Table S2) and hydrogen content estimated by TDS. A slight decrease of hydrogen concentration from the nominal composition ($x_{nom} = 0.5$) could be derived from oxygen contamination in the raw material BaH₂ or/and during milling using a ZrO_2 pot and balls. From these results, we conclude that barium titanium oxyhydride BaTiO_{3-x}H_x was successfully synthesized by mechanochemical reaction without significant hydrogen loss.

Fig. 2 Rietveld refinement profile for ND data of $x_{nom} = 0.5$ product. Final observed, calculated, and residual differences are shown in black circles, red solid line, and blue solid line, respectively. Green vertical marks indicate the positions of Bragg reflections. The inset shows TDS curve corresponding to H₂ desorption upon heating.

Laboratory XRD patterns of products for $x_{nom} = 0.1, 0.25, 0.5,$ 1.0, 2.0 after ball-milling at 1100 rpm are summarized in Fig. 3a. Although byproducts mainly indexed for BaH_2 appeared in x_{nom} = 2.0, cubic perovskites were observed in all compositions. As x_{nom} increases, the XRD profiles were shifted toward lower angles, e.g. 112 peaks magnified in Fig. 3b. Figure 3c plots the calculated lattice volumes for each nominal composition x_{nom} , showing a nearly linear correlation. Given the previous studies on BaTiO_{3-x}H_x with a roughly positive correlation between the lattice constants and x,⁸ hydrogen concentration in mechanochemically prepared oxyhydrides could be tuned by appropriate settings of nominal compositions. In fact, the product of $x_{nom} = 0.25$ was estimated to be BaTiO_{2.71}H_{0.29} from Rietveld analysis (Fig. S3-4 and Table S3-4). The lattice constant of 4.0384 Å for $x_{nom} = 2$ is somewhat larger than that for BaTiO_{2.40}H_{0.60} (4.0321 Å), which is a heavily hydrogenexchanged composition prepared by CaH₂ reduction.⁷ The hydrogen solubility limit in the titanium oxyhydrides might be expanded by the mechanochemical method.

In order to evaluate the electrode property for BaTiO_{3-x}H_x prepared by the mechanochemical method, we constructed a symmetric cell where H⁻ conductor, LaSrLiH₂O₂, sandwiched by BaTiO_{3-x}H_x and performed electrochemical impedance spectroscopy (EIS) measurements under H₂ gas flow in the temperature range of 150 – 325 °C. The $x_{nom} = 0.5$ product (BaTiO_{2.58}H_{0.42}) was selected for electrodes since metallic electronic conductivity was reported in 0.35 ≤ x ≤ 0.58 for BaTiO_{3-x}H_x.²² We checked the electrical resistivity of the hotpressed BaTiO_{3-x}H_x ($x_{nom} = 0.5$) and obtained a value of 17.9 $\Omega \cdot cm^{-1}$ at room temperature (Fig. S5). The electrolyte, LaSrLiH₂O₂, was prepared by sintering under ambient pressure,

Journal Name

according to the previous report.²³ The cell was prepared by sintering a three-layered pellet composed with BaTiO₃₋ $_xH_x$ |LaSrLiH₂O₂|BaTiO_{3-x}H_x at 400 °C under uniaxial pressure of 300 MPa.

Figure 4a presents a typical impedance spectrum obtained at 325 °C, composed of at least three semicircles that can be attributed to responses from the sum of bulk and grain boundary ("bulk+gb"), electrolyte/electrode interface ("interface"), and electrode, respectively at high-, middle-, and low-frequency regions. The spectrum was analyzed by fitting with the equivalent circuit shown in Fig. 4a, and an acceptable fit was obtained. The validity of this model was confirmed by analyzing the spectrum of the cell with a thicker electrolyte using the same equivalent circuit (Fig. S6). It should be noted that $BaTiO_{3-x}H_x$ was stable without significant side reactions such as H_2 desorption during EIS measurements (see XRD patterns for the product of $x_{nom} = 0.5$ before and after EIS as shown in Fig. S7).

Fig. 3 (a) XRD patterns of mechanochemically prepared $BaTiO_{3-x}H_x$ and (b) the enlarged view at $2\theta = 54-58^{\circ}$ wherein the (112) peak exists. Arrows in $x_{nom} = 2$ indicate peaks derived from BaH₂. (c) Volume of the unit cell estimated from lab-XRD depending on x_{nom} (red circles). Black circle is that of BaTiO₃ (ICSD 67519).

Temperature dependence of H⁻ conductivity of the electrolyte (LaSrLiH₂O₂) estimated from the bulk and grain boundary resistance is comparable to the reported one (grey dashed line) using deposited Au as hydrogen blocking electrodes,²³ as shown in Fig. 4b. The activation energy for H⁻ diffusion was estimated as 66.9 kJ/mol, which is smaller than the reported one of 80.7 kJ/mol,²³ probably derived from the effect of hot-pressing. Furthermore, observation of the clear

semicircle corresponding to electrode response, i.e., hydrogen charge transfer (H₂ + 2e⁻ \Leftrightarrow 2H⁻), is similar to the EIS measurement of H⁻-conducting BaH₂ with hydrogen permeable Pd film electrodes.²⁴ This result firstly and clearly shows a capability of BaTiO_{3-x}H_x as a hydrogen-permeable electrode derived from its H⁻/e⁻ mixed conducting property. The relatively large and broad semicircle for the electrolyte/electrode interfacial resistance might reflect the intrinsic complexity of the solid-heterointerface of the powder samples, including the variable contact area and compositional distribution.²⁵

Fig. 4 (a) Impedance spectrum of a three-layered symmetric cell composed of electrolyte LaSrLiH₂O₂ sandwiched by BaTiO_{2.5}H_{0.5} electrodes at 325 °C. The Equivalent circuit used for fitting the spectrum is shown in (a). *R* and *Q* represent resistance and constant phase element (CPE). The red solid line is fitting result. (b) Arrhenius plots for the total conductivity of LaSrLiH₂O₂ (open circle) and its linear fitting (red solid line). Grey dashed line indicates the reported data using deposited Au electrodes.¹⁹

In summary, we have succeeded in direct synthesis of barium titanium oxyhydride $BaTiO_{3-x}H_x$ by mechanochemical reaction, allowing gram-scale and speedy preparation of the functional material. Its unique reaction condition without external heating might be suitable for materials exploration of oxyhydrides. We also confirmed that the prepared polycrystalline $BaTiO_{3-x}H_x$ worked as a hydrogen-permeable electrode. This result suggests that H^-/e^- mixed conducting oxyhydrides are promising for electrode use in electrochemical chemical/energy conversion devices.

This work was supported by JSPS, KAKENHI (Grants No. 18H05516, 18H02066, 19K15661, 20H02828) and JST, PRESTO (JPMJPR20T2). Synchrotron and neutron radiation experiments

were approved by JASRI (2019A1084, 2020A1659) and IMSS, $\$ 13 KEK (2019S10).

Conflicts of interest

There are no conflicts to declare.

Notes and references

- M. A. Hayward, E. J. Cussen, J. B. Claridge, M. Bieringer, M. J. Rosseinsky, C. J. Kiely, S. J. Blundell, I. M. Marshall and F. L. Pratt, *Science (80-.).*, 2002, **295**, 1882–1884.
- 2 S. limura, S. Matuishi, H. Sato, T. Hanna, Y. Muraba, S. W. Kim, J. E. Kim, M. Takata and H. Hosono, *Nat. Commun.*, , DOI:10.1038/ncomms1913.
- M. Hiraishi, S. Iimura, K. M. Kojima, J. Yamaura, H. Hiraka,
 K. Ikeda, P. Miao, Y. Ishikawa, S. Torii, M. Miyazaki, I.
 Yamauchi, A. Koda, K. Ishii, M. Yoshida, J. Mizuki, R.
 Kadono, R. Kumai, T. Kamiyama, T. Otomo, Y. Murakami, S.
 Matsuishi and H. Hosono, *Nat. Phys.*, 2014, **10**, 300–303.
- 4 G. Kobayashi, Y. Hinuma, S. Matsuoka, A. Watanabe, M. Iqbal, M. Hirayama, M. Yonemura, T. Kamiyama, I. Tanaka and R. Kanno, *Science (80-.).*, 2016, **351**, 1314–1317.
- 5 Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. E. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano and H. Kageyama, *Nat. Mater.*, 2012, **11**, 507–511.
- X. Liu, T. S. Bjørheim and R. Haugsrud, J. Mater. Chem. A, 2017, 5, 1050–1056.
- T. Yajima, F. Takeiri, K. Aidzu, H. Akamatsu, K. Fujita, W.
 Yoshimune, M. Ohkura, S. Lei, V. Gopalan, K. Tanaka, C. M.
 Brown, M. A. Green, T. Yamamoto, Y. Kobayashi and H.
 Kageyama, *Nat. Chem.*, 2015, 7, 1017–1023.
- N. Masuda, Y. Kobayashi, O. Hernandez, T. Bataille, S.
 Paofai, H. Suzuki, C. Ritter, N. Ichijo, Y. Noda, K. Takegoshi,
 C. Tassel, T. Yamamoto and H. Kageyama, J. Am. Chem.
 Soc., 2015, 137, 15315–15321.
- Y. Tang, Y. Kobayashi, N. Masuda, Y. Uchida, H. Okamoto, T. Kageyama, S. Hosokawa, F. Loyer, K. Mitsuhara, K. Yamanaka, Y. Tamenori, C. Tassel, T. Yamamoto, T. Tanaka and H. Kageyama, *Adv. Energy Mater.*, , DOI:10.1002/aenm.201801772.
- Y. Tang, Y. Kobayashi, C. Tassel, T. Yamamoto and H. Kageyama, *Adv. Energy Mater.*, , DOI:10.1002/aenm.201800800.
- T. Sakaguchi, Y. Kobayashi, T. Yajima, M. Ohkura, C. Tassel, F. Takeiri, S. Mitsuoka, H. Ohkubo, T. Yamamoto, J. E. Kim, N. Tsuji, A. Fujihara, Y. Matsushita, J. Hester, M. Avdeev, K. Ohoyama and H. Kageyama, *Inorg. Chem.*, 2012, **51**, 11371–11376.
- 12 T. Yamamoto, R. Yoshii, G. Bouilly, Y. Kobayashi, K. Fujita, Y. Kususe, Y. Matsushita, K. Tanaka and H. Kageyama, *Inorg. Chem.*, 2015, **54**, 1501–1507.

- F. Takeiri, T. Yajima, T. Yamamoto, Y. Kobayashi, T. Matsui, J. Hester and H. Kageyama, *J. Solid State Chem.*, 2017, **256**, 33–37.
- F. Takeiri, K. Aidzu, T. Yajima, T. Matsui, T. Yamamoto, Y.
 Kobayashi, J. Hester and H. Kageyama, *Inorg. Chem.*, 2017, 56, 13035–13040.
- 15 Ž. Kesić, I. Lukić, D. Brkić, J. Rogan, M. Zdujić, H. Liu and D. Skala, *Appl. Catal. A Gen.*, 2012, **427–428**, 58–65.
- 16 E. Jeon and Y. W. Cho, *J. Alloys Compd.*, 2006, **422**, 273– 275.
- 17 Y. Kim, E. K. Lee, J. H. Shim, Y. W. Cho and K. B. Yoon, *J. Alloys Compd.*, 2006, **422**, 283–287.
- A. Hayashi, S. Hama, T. Minami and M. Tatsumisago, Electrochem. commun., 2003, 5, 111–114.
- H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi and M. Tatsumisago, *Solid State lonics*, 2007, **178**, 1163–1167.
- 20 F. Izumi and K. Momma, in *Solid State Phenomena*, Trans Tech Publ, 2007, vol. 130, pp. 15–20.
- R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa,
 T. Ishigaki, T. Morishima, K. Mori and T. Kamiyama, *Nucl. Instruments Methods Phys. Res. Sect. A Accel.* Spectrometers, Detect. Assoc. Equip., 2009, 600, 94–96.
- G. Bouilly, T. Yajima, T. Terashima, W. Yoshimune, K.
 Nakano, C. Tassel, Y. Kususe, K. Fujita, K. Tanaka, T.
 Yamamoto, Y. Kobayashi and H. Kageyama, *Chem. Mater.*, 2015, 27, 6354–6359.
- A. Watanabe, G. Kobayashi, N. Matsui, M. Yonemura, A. Kubota, K. Suzuki, M. Hirayama and R. Kanno, *Electrochemistry*, 2017, **85**, 88–92.
- 24 M. C. Verbraeken, C. Cheung, E. Suard and J. T. S. Irvine, *Nat. Mater.*, 2015, **14**, 95–100.
- 25 J. Haruyama, K. Sodeyama, L. Han, K. Takada and Y. Tateyama, *Chem. Mater.*, 2014, **26**, 4248–4255.

Journal Name