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Abstract

The exceptional thermoelectric performance of PbTe is partially due to the high valley

degeneracy, NV , of the band edges. In this paper, we specifically look at the valence band (VB)

structure of PbTe, which has been described using a 2-band model consisting of a light valence

band with a maximum at the L-point in the first Brillouin zone and a heavy band with its

maximum along the Σ-line. The light and heavy band extrema are located at low symmetry

points, resulting in valley degeneracies of NV = 4 and NV = 12, respectively. The relative

energy positions of the light and heavy valence bands can be tuned with temperature and defect

concentration to make them effectively converged. In this study, analytical solutions from the

tight-binding method are employed to understand the possible orbital interactions that that

lead to this VB convergence. Both temperature and alloying based methods are explained as

means to tailor the VB structure to achieve high valley degeneracy through band convergence.

We predict five strategies for tuning valence band convergence: (i) alloying to introduce unfilled

cation-s (s0) defect states above valence band edge, (ii) increasing the lattice parameter through

alloying or temperature, (iii) alloying to decrease the energy difference between anion-p and

anion-s states, (iv) alloying to replace filled Pb-s (s2) states with filled cation-s states that are

lower in energy, and (v) decreasing the strength of anion spin-orbit interactions. Furthermore,

we find that when the VBs are in a highly converged state, there is a topological transition in

the electronic band structure to two-dimensional (2D) and potentially to one-dimensional (1D)

character. Assuming acoustic-phonon scattering, we use the Boltzmann transport equation

(BTE) to predict a significant enhancement in thermoelectric performance for the 2D and 1D

band model, with a theoretical zT > 10 predicted for the 1D topology, ∼20 times greater

than that predicted for the 3D topology. Although we specifically discuss PbTe, the qualitative

results of this work can be applied to all the IV-VI, (IV = Ge, Sn, Pb; VI = S, Se, Te) rock salt

compounds.
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1 Introduction

1.1 Enhanced Thermoelectric Performance upon Band Convergence

Thermoelectric materials convert heat into electricity and vice-versa, making them candidates for

waste-heat recovery and solid-state refrigeration, which could help in the development of clean and

sustainable sources of energy and refrigeration.1,2 For decades, thermoelectric materials such as

PbTe3 have been used by NASA in space-based applications. However, in order to achieve the

widespread application of these materials for renewable energy generation and refrigeration, it is

necessary to further optimize the thermoelectric figure of merit, given by zT = S2σT/(κE + κL),

where T is the temperature, S is the Seebeck coefficient, σ is the electrical conductivity, and κE

and κL are the electronic and lattice contributions to the thermal conductivity, respectively.2–10 As

zT approaches infinity, the efficiency of a thermometric devices approaches the Carnot efficiency.10

The maximum achievable zT of a thermoelectric material increases as its thermoelectric quality

factor, B, increases (see Eqs. B27-B29 in Appendix B). The quality factor is proportional to

the weighted mobility, µw, (see Eqs. B9 and B30 in Appendix B) which can be expressed as

µw = µ0(m
∗
DOS/me)

3/2, where µ0 is the mobility parameter of the carriers, m∗DOS is the density

of states (DOS) effective mass, and me is the free electron mass. The DOS effective mass can be

expressed as m∗DOS = N
2/3
V m∗b , for a multi-valley electronic structure where NV is the band or valley

degeneracy, and m∗b is the DOS effective mass for each valley.6,9,11–15 Therefore the quality factor,

B, is proportional to the valley degeneracy, so increasing NV (without substantially increasing inter-

valley scattering) enhances the performance of a thermoelectric material. In this work, we focus on

two primary methods to achieving high valley degeneracy. The first method is having band extrema

at low symmetry points in the Brillouin zone (BZ) of high symmetry crystal structures when

there is no (or limited) inter-valley scattering.11,16–19 Lower-symmetry points map onto multiple

symmetrically equivalent points, providing more pathways for carrier transport. For instance, an

extrema at a point with 6 symmetrically equivalent points in the BZ would have a degeneracy of

NV = 6.20 The second method involves converging multiple band extrema within a few kBT in

energy at different (or the same) points in the BZ.4,16,21

Additionally, it has been predicted that reducing the dimensionality of thermoelectric mate-

rials significantly improves thermoelectric performance.22–24 Traditionally, low-dimensional behav-

ior is achieved by designing nano-scale materials that confine electronic transport in at least one

direction.25–27 That being said, when multiple bands contribute to transport, this type of low-

dimensionality that leads to quantum confinement can actually reduce thermoelectric performance

by breaking degeneracy.28,29 However, low-dimensional transport has been observed in bulk three-

dimensional (3D) materials that have 2D Fermi surfaces.22,24,30 Gains in thermoelectric performance

are observed in these bulk materials with low-dimensional electron bands, providing novel pathways

to achieve the efficiency gains associated with low-dimensionality without the challenges and costs

associated with synthesizing nano-scale or nano-structured material or the loss in thermoelectric
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power from degeneracy-breaking quantum confinement effects.22,24

1.2 Convergence Behavior in PbTe Valence Bands

For several decades, PbTe has been one of the highest performing thermoelectric materials, reaching

zT > 1 for certain alloys.4,21,31–34 PbTe and the similar SnTe and GeTe based alloys have been

employed as a power source for NASA space missions since the 1960’s3,35. PbTe has a direct

bandgap at the L-point in the BZ, which has a degeneracy of NV = 4,4,16,21,33,36,37 and inter-valley

scattering is symmetry-forbidden at the L-point11,18,19. Another crucial feature of the PbTe VBs

is that there is a secondary valence band along the Σ symmetry line, which is found experimentally

to be ∼0.1-0.2 eV below the L band maximum (at low temperature).4,38

The maximum along Σ is at an even lower symmetry point and has a valley degeneracy of NV =

12.4,34–36,39–42 As temperature increases, the energy of the L VBM decreases relative to that of the

Σ VBM, causing the bands extrema to approach each other in energy.4,16,38,40,41 The two bands

converge at T ∼700 K, resulting in an exceptionally high valley degeneracy4,16,16,21,32–34,38,41,43–46

with an effective NV > 12(Σ) + 4(L) = 16, likely in the range of NV ∼ 30 to NV ∼ 70.46 DFT

calculations suggest that there is a topology change when the two VBs are converged and the Σ

pockets merge into the L pockets forming threads or tubes, leading to 2D electron bands in 3D

PbTe (and the other lead chalcogenides).24,40,46

The convergence of the valence band (VB) carrier pockets in PbTe can also be tuned by alloying

with various substitutions.4,8,21,32,35,36,47–50 For instance, alloying PbTe with PbSe, decreases the

energy of the secondary VBM along Σ relative to the primary VBM along L.4 By contrast, cation-

site alloying with impurities, such as Cd, Mg, Mn, Na, Sr, and Hg—all of which introduce s0 states

above VB edge—increases the energy of the Σ-band relative to the L band.8,16,21,32,35,47–50

Here, we develop analytical tight-binding (TB) solutions that describe the relative positions of

the L and Σ VB extrema in rock salt PbTe. We find that the Σ VB forms because of nearly the same

but weaker interactions as the L band. We extend this TB analysis discuss the relative positions

and convergence of two additional VBs, one with a maximum along the ∆ symmetry line and one

with a maximum at W. Using these solutions, we predict trends in the VB convergence behavior

with respect to various orbital interactions and use them to understand the role of temperature

and alloying in achieving high convergence. We find a topological transition in the TB electronic

structure, regardless of which TB parameters were tuned to achieve convergence, of PbTe from a

3D topology to 2D and even 1D topologies when the VBs are in a highly converged state.

The evolution of the Fermi surface topology of lead chalcogenides and the corresponding trends

in thermoelectric performance are summarized in Fig. 1. We show idealized sketches of the valence

band Fermi surfaces corresponding to various topologies. The 3D topology is characterized by

ellipsoidal pockets (Fig. 1a) at L. As the bands become more converged, heavier pockets form at

the Σ band maximum (Fig. 1b). Eventually, the L and Σ pockets converge completely to to form

3
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Increasing convergence,  NV , m*
DOS , μw , B, zT

3D 3D—2D 2D 1D 

(a) (b) (c) (d)

Figure 1: Evolution of the PbX (X = S, Se, Te) valence band Fermi surface topology and enhancement in the
thermoelectric performance upon increased band convergence.(a) The least-converged 3D Fermi surface is
characterized by four ellipsoidal pockets centered at the L-points. (b) As the bands become more converged,
elongated heavy ellipsoidal pockets form at the Σ maximum. (c) The 2D topology resembles 12 tubes,
simplified as cylinders. (d) The 1D Fermi surface resembles 6 sheets with a finite thickness. As the Fermi
surface evolves from (a)-(d), the valley degeneracy (NV ), density of states mass (m∗DOS), weighted mobility
(µw), thermoelectric quality factor (B), and thermoelectric figure of merit (zT ) all increase.

tubes (or threads) corresponding to a 2D topology (idealized as cylinders forming the edges of a

cube with side length 2π/a in Fig. 1c). As discussed later, these tubes are actually bent towards

the center of the cubic face. Finally, as additional VB pockets at W and along ∆ converge with the

L and Σ pockets, with the tuning of spin-orbit interactions, the Fermi surface evolves into sheets

(Fig. 1d), which are indicative of 1D-type transport.

Furthermore, we use the effective mass model to compare the topological electronic states

of PbTe and predict substantial thermoelectric performance gains in lower-dimensional topolo-

gies, with a predicted theoretical maximum ∼ 20 times greater for the 1D topology of the highly

converged VBs without SOC than for the 3D ellipsoidal topology. This enhancement can be at-

tributed to large increases in the effective valley degeneracy to NV ∼ 180 for the 2D topology and

to NV ∼ 2600 for the 1D case. Finally, we propose alloying-based design strategies to achieve

these highly converged, low-dimensional topologies. The qualitative results of this analysis are also

applicable to the other Group IV chalcogenides (GeTe, SnTe, PbSe and PbS).51–55

2 Background — Tight-Binding Model for PbTe

The tight-binding (TB) method, also described as the linear combination of atomic orbitals (LCAO),

is a chemically intuitive method for approximating the electronic structure of materials, with the

4
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significant advantage of extremely short computational times. The TB method employs an or-

thonormal basis of atomic orbitals (s, p, d, etc.) and can be described by a set of overlap pa-

rameters, which are related to the hopping integrals that comprise the TB Hamiltonian.56–61 They

describe the strength of interactions between pairs of atomic orbitals and whether they are bonding

or antibonding in nature. These parameters are approximately related to the interatomic spacing

through the relationship ∼ 1/d2, where d is the interatomic spacing between neighboring orbitals.

In general, these overlap parameters are expressed in the form Vαβm, where α and β denote the

orbitals interacting and m denotes the type of bonding (σ, π, etc).56,59–61 Here, we use four types

of these overlap parameters to describe the nature and strength of the orbital interactions in PbTe,

Vssσ, Vspσ, Vppσ, and Vppπ. These describe the of s–s σ-bonding, s–p σ-bonding, p–p σ-bonding,

and p–p π-bonding, respectively. We consider all of these interaction types for both nearest neigh-

bor (anion-cation) and next-nearest neighbor (anion-anion or cation-cation) interactions, giving a

total of 13 overlap parameters.62 The sign of the parameter determines whether the interaction is

bonding (negative) or anti-bonding (positive) in nature at Γ.61

In this work, the TB analytical solutions describing the VB edge in PbTe are reminiscent of

the simple quantum mechanical solution for the bonding and anti-bonding in a diatomic molecule.

Consider a diatomic molecule, MX with an energy level diagram depicted in Fig 2a. The on-site

energy for a M-atom cation orbital, EM , is the energy of the atomic orbital. Similarly the on-site

energy for the anion X orbital is EX . The overlap parameter describing the interaction of these

two orbitals is VMX . Note that this simple diatomic molecule model is generalized to account for

the bonding between any types of orbitals. When M and X bond, they form a bonding (EMX−)

state (having stronger X than M character) and an antibonding (EMX+) state (having stronger

M character) with energies approximately described by Eq. 1.61,63 The energy EMX− or EMX+

relative to the average of the two on-site energies (|EMX± − 1
2 (EM + EX) |) can be described by

the hypotenuse of a right triangle with legs A and V as seen in Fig. 1b.

M

X

MX*

MX

2A

EMX-

EMX+

EX

EM EMX±	−
1
2 EM+ EX

A =	
1
2 EM − EX

𝑉%&

(a) (b)

Figure 2: (a) Simple energy level diagram for a heteropolar diatomic molecule MX. The energy difference
between the cation state M and the anion state X is given by 2A. (b) The energy difference for the bonding
and antibonding states relative to the average value of the onsite energy in a diatomic molecule can be
described by a right triangle.
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EMX± =
1

2
(EM + EX)± 1

2

√
(EM − EX)2 + 4V 2

MX (1)

The plus (+) solution describes the anti-bonding state, and the minus (-) solution describes

the bonding state. If VMX = 0, then the solutions are simply the on-site (unchanged atomic)

energies. If EM = EX (homopolar covalent bond) the change in energy is simply VMX .

A TB model developed by fitting the TB parameters to Density Functional Theory (DFT)

calculations of the PbTe electronic band structure using the Perdew-Burke-Ernzerhof (PBE)64

functional has been used to understand the orbital interactions that explain the location of the

VBM and the shape of the VB edge in PbTe. The results along with the methods used to develop

the TB model in this paper are described elsewhere.62 In PbTe, the upper three VB states consist

primarily of Te-p character. Below the Te-p valence bands is a distinct Pb-s band, and below this

is a Te-s band. At the L-point, there is a repulsive, or antibonding, interaction between the Te-p

states and the Pb-s states below them, pushing the Te-p states at the VB edge higher in energy

and resulting in a energy maximum there.8,24,62,65–67

3 Results and Discussion

3.1 Analytical Tight-Binding Solutions

Using an 8-dimensional TB basis consisting of the Pb-6s, Pb-6px,py,pz, Te-5s, and Te-5px,py,pz,

analytical expressions for the eigenvalues of the TB Hamiltonian are determined and are used to

derive an analytical approximation describing the VB convergence. The analytical form of the TB

Hamiltonian used to determine these solutions is described in Appendix A. Spin-orbit coupling

(SOC) effects are not considered when deriving the analytical expressions but are discussed later,

numerically. The size of the basis would be doubled (16-dimensional) to account for SOC effects.

In order to determine an analytical expression that describes the convergence, we define a

point Σ′ in the BZ that is located exactly 2/3 along the Γ−K symmetry line at Σ′ = (π/a, π/a, 0),

where a is the lattice constant. This point represents the approximate location of the Σ VBM and

has many of the same interactions as found at L = (π/a, π/a, π/a). The true, numerical value of the

Σ maximum is denoted as Σ∗ in this paper, and its exact location varies based on the parameters

used in the calculation. There are 12 symmetrically equivalent Σ′ points in the first BZ for the rock

salt structure. Although the exact location of the secondary VBM along Σ varies with temperature

and composition, it is generally located at approximately this point in the TB model, so this point

is chosen to help evaluate approximate analytical solutions. There are also maxima located along

∆ symmetry line (NV = 6) and at the W-point (NV = 6). The maxima along the ∆ is found

at a point ∼ 4/9 along the ∆-line (Γ − X) and is denoted by ∆∗ throughout this paper. Like

Σ∗, its location is not constant. However, for the sake of analytically describing the ∆ band and

the interactions responsible for its maximum, we define a point, denoted ∆′, halfway along ∆ at

6
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CB( )

NV(L) = 4NV(W) = 6 NV( ) = 1
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VB2(L)
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Figure 3: Labeled PbTe electron bands calculated using the TB model without SOC. The local valence band
maxima (VBMs), valence bands (VBs) along ∆ and Σ, conduction bands (CBs) at L and along Σ, and valley
degeneracies (NV ) are labeled. The energy of the VBM at L is labeled with a blue circle, the energy of the
VBM at W is labeled with a green square, and the two degenerate VBs below the VBM at L is labeled with
a magenta star. δ is shown as the energy difference between the VBM at L and the VBM along Σ.

∆′ = (π/a, 0, 0). There are 6 symmetrically equivalent ∆∗– and ∆′–points in the first BZ. The

maxima are labeled in Fig. 3, along with their valley degeneracies and additional values of interest

for analyzing the band structure. A labeled diagram of the first BZ that shows the location Σ′ and

∆′ can be seen in Fig. D1 in Appendix D.68 The DFT-PBE (no SOC) band structure for this same

path and energy window can be seen in Fig. S5 of the Supporting Information.

The parameter, δ, is defined as the difference in energy between the primary and secondary

VBMs located at L and along Σ (at Σ∗), respectively, where EV BM (L) (shown with a blue circle

in Fig. 3) is the energy of the L VBM, and EV BM (Σ∗) is the energy of the (true) Σ VBM,

the exact location of which varies. It can be expressed through the equation, δ = EV BM (L)

−EV BM (Σ∗), and is shown in Fig. 3. We use δ as a proxy for the VB convergence. Therefore,

if EV BM (L)> EV BM (Σ∗), a decrease in δ corresponds to greater VB convergence. In order to

determine an analytical approximation for δ, analytical expressions for the valence band eigenvalues

(energies) of the TB Hamiltonian at both L and near the Σ VBM are determined.

At the L-point, the eigenvalue representing the light band extrema are described by Eqs. 2-3.

7
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EV BM (L) =
1

2

(
E′p,Te(L) + Es,Pb

)
+

1

2

√(
E′p,Te(L)− Es,Pb

)2
+ 48V 2

spσ (2)

E′p,Te(L) = Ep,Te + 4Vppπ,Te − 4Vppσ,Te (3)

Es,Pb is the on-site energy of the Pb-s state, Ep,Te is the Te-p onsite energy term, and Vspσ

here denotes the σ-bonding TB parameter that describes the interaction between the Pb-s and Te-p

orbitals. Vppπ,Te and Vppσ,Te describe the Te-p–Te-p π- and σ-bonding interactions, respectively.

Note that Eq. 2 has a form similar to that given in Eq. 1 describing a heteropolar diatomic

molecule. From these equations, we can see that the VBM at L is primarily from Te-p orbitals

(aligned along [111]), which are increased in energy from repulsive antibonding interactions with

its 6 nearest-neighbor Pb-s states. There is also a slight reduction in energy due to next-nearest

neighbor σ- and π-bonding interactions with the Te-p orbitals. We will see a similar correspondence

to the diatomic molecule model at the other VBM points, which will be discussed in more detail

later.

The other two degenerate valence band states at L (below the VBM state), denoted EV B2(L)

and shown with a magenta star in Fig. 3, are described by the analytical solution expressed in Eq.

4, with no net Vspσ interaction.

EV B2(L) = Ep,Te + 2Vppσ,Te − 2Vppπ,Te (4)

The solution at L is an exact eigenvalue solution to the TB Hamiltonian without SOC. How-

ever, the solution at Σ′ is not as simple and can only be approximated. If we ignore the relatively

weak Te-s/Te-p interactions, the analytical approximation for the Σ′, or heavy-band, maximum

can be expressed in Eqs. 5-6.

EV BM (Σ′) =
1

2

(
E′p,Te(Σ

′) + Es,Pb
)

+
1

2

√(
E′p,Te(Σ

′)− Es,Pb
)2

+ 32V 2
spσ (5)

E′p,Te(Σ
′) = Ep,Te − 2Vppσ,Te + 2Vppπ,Te (6)

E′p,Te(Σ
′) like E′p,Te(L) is essentially an adjusted on-site energies that results from anion–p

interactions. Here, we see that the character of the VBM at Σ′ is very similar to that at L. Both

exhibit primarily Te-p character with antibonding interactions with Pb-s (slightly weaker at Σ than

at L) and some Te-Te next-near neighbor p—p bonding interactions.

The TB interaction between the Te-s and Te-p states, described by the TB parameter, Vspσ,Te,

is not entirely negligible when studying the VB structure. We do not go into details here, but it

can be shown that increasing Vspσ,Te and decreasing the energy difference between the Te-p and

8
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Te-s states would increase EV BM (Σ′) relative to EV BM (L). This trend is related to the fact that

the Te-p orbital comprising the VBM along Σ is antibonding with its next-nearest neighbor Te-s

orbitals, while the Te-p state at the L VBM is non-bonding with these Te-s orbitals.

Eqs. 2 and 5 show that the L VBM has a greater dependence on Vspσ than the Σ VBM, so we

expect increasing the magnitude of Vspσ to increase the separation between the light and heavy VB

band extrema (when EV BM (L) > EV BM (Σ)). Additionally, the dependence of the Σ band energy

on Vspσ,Te indicates that strengthening the anion s-p interactions would increase the Σ VB relative

to the L band. With regards to the next-nearest neighbor anion-p interactions (σ and π), The L

band has a stronger dependence on the Te p–p interactions, but at both the L and Σ maxima, they

decrease the band edge energy as they increase in strength.

We introduce a new parameter, δ′, which represents an approximation for δ using the analytical

expressions or approximations for EV BM (L) and EV BM (Σ′). To evaluate δ′, we ignore Vspσ,Te for

simplicity, so δ′ can be expressed through Eq. 7. The parameter Vpp,Te represents the combined

strength of the π- and σ-bonding between next-nearest neighbor anion-p interactions and can be

expressed as Vpp,Te = Vppσ,Te−Vppπ,Te. Vppπ,Te is always less than zero, and Vppσ,Te is greater than

zero, so Vpp,Te is strictly a positive value. The parameter, A, represents half of the energy difference

between the anion-p and cation-p states and can be expressed as A = 1
2(Ep,Te − Es,Pb).

δ′ = −Vpp,Te +
[√

(2A− 4Vpp,Te)2 + 48V 2
spσ −

√
(2A− 2Vpp,Te)2 + 32V 2

spσ

]
(7)

Finally, we solve for the value of Vspσ at which δ′ = 0 in order to approximate the value at

which maximum convergence of the light and heavy VBs can theoretically be achieved, according

to the TB model. The value of Vspσ at which the L- and Σ-bands are exactly converged is denoted

as V ∗spσ and expressed in Eq. 8. The energy of the valence band extrema at this point, E∗V BM , is

expressed in Eq. 9.

V ∗spσ =
√
AVpp,Te + V 2

pp,Te (8)

E∗V BM = Ep,Te + 2Vpp,Te (9)

We can rearrange Eq. 8 to find the critical convergence value of any of the three parameters.

For instance, A∗ = 1
2(Ep,Te − Es,Pb) = (V 2

spσ − V 2
pp,Te)/Vpp,Te. The converged state is the same

regardless of which parameter is tuned to its critical value to achieve the convergence. One crucial

observation from this derivation is that the approximated maximum energy of both the converged

light and heavy VBs is equivalent to the energy of the doubly degenerate VB states below the

VBM at L when Vspσ = V ∗spσ, or when A = A∗. That is E∗V BM = EV B2, so for cases where SOC

interactions are minimized, multiple bands would have the same energy, leading to higher effective

band degeneracy than can be obtained from only the convergence of the L and Σ maxima alone.

9
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We also obtain an analytical approximations for the W= (π/a, 2π/a, 0) and ∆ VBMs, as their

convergence behavior is critical for understanding topological transitions in the PbTe Fermi surface

discussed later. The eigenstate of the W VBM, EV BM (W), (labeled with a green square in Fig.

3) without SOC is expressed in Eqs. 10-12, where Vssσ,Pb is the overlap parameter describing the

σ-bonding interactions between the next-nearest neighbor Pb-s orbitals.

EV BM (W) =
1

2
(E′p,Te(W) + E′s,Pb(W)) +

1

2

√
(E′p,Te(W)− E′s,Pb(W))2 + 16V 2

spσ (10)

E′p,Te(W) = Ep,Te − 4Vppπ,Te (11)

E′s,Pb(W) = Es,Pb − 4Vssσ,Pb (12)

Based on this solution, we expect the energy of the VB edge at W to increase with Vspσ and

to decrease with increasing A.

Finally, we can approximate a solution at ∆′ (1/2 along ∆), by ignoring the Te-p/Pb-p in-

teractions and simply studying the Te-p/Pb-s interactions along with the next-nearest neighbor

interactions. The approximation for the TB eigenvalue corresponding to the VB edge at ∆′ is

described through Eqs. 13 – 16.

EV BM (∆′) =
1

2
(E′′p,Te(∆

′) + E′s,Pb(∆
′)) +

1

2

√
(E′′p,Te(∆

′)− E′s,Pb(∆′))2 + 16V 2
spσ (13)

E′′p,Te(∆
′) =

1

2
(E′p,Te(∆

′) + E′s,Te(∆
′)) +

1

2

√
(E′p,Te(∆

′)− Es,Te(∆′))2 + 128V 2
spσ,Te (14)

E′p,Te(∆
′) = Ep,Te + 4Vppπ,Te (15)

E′s,Te(∆
′) = Es,Te + 4Vssσ,Te (16)

Vspσ,Te is the overlap parameter between the next-nearest neighbor Te-p and Te-s orbitals.

We do not give the solution for E′′s,Pb, in Eq. 13, but it is a correction to the Pb-s on-site energy

at ∆′ that takes into consideration the Pb-s/Pb-p and Pb-s/Pb-s interactions at this point. The

dependence on Vspσ at ∆′ is the same as it is at W. We also expect the repulsive Te-s/Te-p

interactions to further increase the energy of the ∆ VBM.

10
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If only the interaction between the Te-s and Pb-p orbitals is taken into account (all overlap

parameters except for Vspσ are set to zero), then the ∆ VBM would be located at exactly ∆′, and

the Σ maximum would be located at exactly Σ′. It is the second order interactions that cause the

location of the maximum in k-space to vary off these points, the ∆ maximum slightly towards Γ

and the Σ maximum slightly closer to 1/2 instead of 2/3 along the Γ-K path.

3.2 Comparison to Diatomic Molecules

Eqs. 2, 5, 10, and 13 all describe the relationship of the energy of the VB extrema with respect

to the interaction between the Pb-s and Te-p states, quantified by Vspσ. We observe that these

equations have a form analogous to that describing the anti-bonding state in a diatomic molecule

bond (described by the TB model) depicted in Fig. 2. Comparing Eq. 1 to Eqs. 2, 5, 10, and

13, we can obtain an effective diatomic overlap parameter, VD, for each VB extrema. At the L-,

Σ′-, W-, and ∆′-points we obtain VD(L) = 2
√

3Vspσ, VD(Σ′) = 2
√

2Vspσ, VD(W) = 2Vspσ, and

VD(∆′) = 2Vspσ, respectively. The pre-factor in front of Vspσ in each of these expressions represents

the effective number of s-p σ-bonds contributing to the energy of the VB extrema. In order to relate

this to an orbital bonding picture of the VB state, it is instructive to rewrite these expressions as

follows:

VD(L) = 6× 1√
3
× Vspσ (17)

VD(Σ′) = 4× 1√
2
× Vspσ (18)

VD(W) = 2× 1× Vspσ (19)

VD(∆′) = 2× 1× Vspσ (20)

In general, we can write Eqs. 17-20, in the following form.

VD = N × l × Vspσ (21)

In Eq. 21, N is the net number of anti-bonding interactions, and l is the cosine projection

of the vector between the Γ-point and the relevant k-point along the orientation of the p-orbital

σ-bonding axis. The p-orbital referenced here is the one that contributes to the eigenstate of

the highest VB. The other two p-orbitals would correspond to the two lower VBs. The value of

N in Eqs. 17–21 can be visually determined (Fig. 4) as the number of bonding or antibonding

configurations between the Te-p orbital and the nearest neighbor Pb-s orbitals. Each Te-p orbital
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is surrounded by 6 nearest neighbor Pb-s orbitals. At the Γ-point, the Pb-s and Te-p orbitals are

oriented such that half of the interactions are bonding, and half are antibonding, yielding zero

net-bonding between the Te-p and Pb-s orbitals,62 as seen in Fig. 4a. Therefore, at Γ we would

have VD(Γ) = 0. The px, py, and pz orbitals at the Γ–point are degenerate, so an equivalent picture

can be drawn for all three of these p-orbital orientations, but for simplicity only the px orbital is

shown. Applying phase changes to the orbitals for the other relevant k-points of interest, we can

count the number of bonding/anti-bonding interactions.58

At ∆′, the k vector is along the [100] direction, so the p-orbital is aligned along the direction

toward the Pb-s orbital (x), giving a cosine projection of l = 1. The phase of one of the neighboring

Pb-s states along this direction flips, so 2 of the neighboring Pb atoms have s-orbitals in an anti-

bonding configuration with the Te-p orbital (Fig. 4b). A similar Pb-s orbital configuration relative

to the Te-p orbital can be drawn at W, but multiple repeat units would be required to show the full

symmetry of the orbital phases. At Σ′, the phases of the Pb-s orbitals along 2 of the 3 Cartesian

directions alternate, resulting in 4 of the Pb-s orbitals being in an antibonding configuration with

the Te-p orbital (Fig. 4c). The VBM p-orbital at this point is aligned in the [110] direction, yielding

l = 1/
√

2 and effectively weakening the interaction. Finally, at the L-point, the phases of the Pb-s

orbitals alternate in all three directions such that the Te-p orbital is anti-bonding with all 6 of the

nearest-neighbor Pb-s orbitals (Fig. 4d). The VBM p-orbital is aligned such that it is parallel to

the [111] direction, giving in l = 1/
√

3.
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Figure 4: Representation of the orbital configurations of the highest energy Te-p orbital (making up the
valence band maximum) surrounded by 6 nearest-neighbor Pb-s orbitals in an octahedral coordination at (a)
Γ, (b) ∆′, (c) Σ′, and (d) L. Blue coloring is used for the Te-p orbitals and purple coloring is used to show the
Pb-s orbitals. The light and dark shading represents the + or - phase of the orbital. The cosine projection
between the p-orbital and the x-axis, l is labeled for each case. The Pb-s orbitals that are separated from
the Te-p orbital by a vector that is entirely orthogonal to the Te-p orbital’s σ-bonding axis are shaded with
a lower opacity to represent the fact that they are non-bonding with the Te-p orbital shown.

3.3 Trends in the Convergence Behavior of PbTe Valence Bands

Using Eqs. 2 and 5, the analytical trends of δ′ with respect to A, Vspσ, and Vpp,Te, normalized to

their initial values (used to produce Fig. 3), are plotted in Fig. 5. When all the parameters are at

their initial values, δ′ is approximately 0.2 eV. The bands become more converged (δ′ → 0 ) as Vpp,Te

and A increase and as Vspσ decreases. The decrease of δ′ with Vpp,Te indicates that strengthening

interactions between the next-nearest neighbor Te-p orbitals increases the convergence of the heavy

and light VB pockets. Furthermore, both the increase of δ′ with Vspσ and the decrease of δ′ with A,

suggest that stronger cation-anion s–p interactions decrease convergence when the cation-s states

are lower than the anion-p states.

Next, we perform a series of virtual ”experiments” (or thought experiments) to better under-

stand qualitatively the evolution of the VB structure upon the variation of several TB parameters.
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Figure 5: Analytical trends in δ′ = EV BM (L)−EV BM (Σ′), a proxy for VB convergence, as a function of
Vspσ, A, and Vpp,Te (normalized to their initial values). The bands become more converged (δ decreases)
as the splitting between the Pb-s and Te-p on-site energies (2A) and the interaction strength of the Te-p
orbitals (Vpp,Te) increase and as the interaction strength of the Pb-s and Te–p orbitals (Vspσ) decreases. The
VB convergence of PbTe can be tailored by engineering the orbital interactions towards δ′ = 0.
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Figure 6: Evolution of TB bands for PbTe calculated (without SOC) as the overlap parameter describing
the interaction between the Pb-s and Te-p states, Vspσ, and the energy splitting between these two states
varies. As Vspσ decreases from (a)-(c), the CBM at L increases in energy relative to the VBM at L, the Σ,
∆, and W VBMs increases in energy relative to the L VBM. The three L VBs also converge. The same trend
is seen in (d)-(f) as the Pb-s state is decreases away from the Te-p on-site energy, increasing A. Note that
the δ values are calculated based on the calculated maximum along Σ and not the exact Σ′-point.
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In these thought experiments, we vary individual TB parameters at a time, while keeping the others

fixed. In reality, these parameters are coupled in such a way that one parameter would not change

in isolation. For instance, increasing the lattice parameter via strain or temperature would de-

crease all of the overlap parameters by a certain factor due to the increase in interatomic distance.

While it is not realistic to change the strength of only a single orbital interaction in a real material,

this novel approach allows us to gain a more direct understanding of the mechanism behind the

evolution of a band structure upon the modification of the material (via alloying, doping, strain,

temperature effects, etc) in terms of recognizable atomic orbitals.

The progression of the calculated E vs. k relationship for PbTe as the Vspσ parameter is varied

from its initial value to V ∗spσ (moving down the red line in Fig. 5) can be seen in Fig. 6a-c. In Fig.

6d-f, we see the evolution of the band structure as Pb-s decreases to increase A = 1
2(Ep,Te−Es,Pb)

(green line in Fig. 5) to its critical value of A∗ = 4.7 eV, or Ep,Te−Es,Pb = 9.4 eV. We see virtually

identical trends in the VB behavior from a-c as from d-f, showing that the method of tailoring the

VBs does not affect the topology of the final state. Because the anion s–p interactions are not

considered in the evaluation of V ∗spσ and A∗, the convergence condition leads to a negative value

of the calculated δ when the approximation, δ′ = 0. A negative value of δ simply means that the

VBM at Σ∗ is higher than the L VBM. We see simultaneous convergence of the L and Σ band

extrema and of the three L valence bands. Additionally, the maxima of the ∆ and W VBs increase

in energy relative to the L VBM, such that they also converge with the L and Σ bands. This is

extremely promising behavior because it suggests the possibility of achieving even higher valley

degeneracy than expected from only the convergence of the L and Σ VBMs.

Furthermore, the bandgap energy, Eg, decreases as Vspσ increases, which is evident from the

fact that the CBM at L increases in energy relative to the position of the VBM at L as Vspσ

decreases. As the strength of this interaction increases, the energy VBM at L increases, while the

CBM remains the same. More details on the TB analytical expression for Eg can be found in

Appendix C. The increased convergence of the L, Σ, ∆, and W bands with the reduction of Vspσ

can be attributed to the fact that the energy of the L VBM (Eq. 2) has a greater dependence

on Vspσ than the energy of the Σ, ∆, and W VBMs do (Eqs. 5, 10, and 13). Therefore, as Vspσ

decreases, the energies of the L, W, ∆, and Σ VBMs all decrease, but the energy of the L band

decreases the most rapidly.

The thought-experiment results from varying Vspσ and A with SOC interactions considered

and from changing the anion-site parameters (Vspσ,Te, Ep,Te − Es,Te, and Vpp,Te) can be found in

the Supporting Information (Figs. S1-S4). The Σ and ∆ maxima increase in energy relative to

the L band as Vspσ,Te increases (Fig. S2), the anion s–p splitting (Ep,Te − Es,Te) decreases (Fig.

S3), and Vpp,Te increases (Fig. S4). As expected, the relative energy of the W band is unchanged

upon varying Vspσ,Te and Ep,Te − Es,Te, as it has no dependence on the anion s–p interactions.

In general, for interactions between an anion state and cation state, the effect of increasing the

interaction parameter is qualitatively analogous to decreasing the on-site energy difference between

the interacting orbitals. This yields two separate routes to tuning s-p coupling. Furthermore, a

16

Page 16 of 43Journal of Materials Chemistry A



greater value of Vpp,Te increases the energy of the W, Σ, and ∆ bands relative to the L band, as

expected.

The trends in the TB description of the PbTe VBs, give us several potential routes for in-

creasing convergence: decrease the strength of (filled) cation-s/anion-p interactions, increase the

strength of the anion-p/anion-p interactions, alloy with a cation that has cation-s state lower than

Pb-s (increase A), increase the strength of the anion s–p interactions, and decrease the s–p split-

ting of the anion on-site energies. All of the strategies given here assume that we are starting with

EV BM (L) > EV BM (Σ∗), but the opposite statements are true when EV BM (L) < EV BM (Σ∗) .

Decreasing the strength of the filled cation-s/anion-p interactions can be achieved by increas-

ing the lattice parameter because of the 1/d2-dependence of the TB overlap parameters. Although

lattice expansion would decrease Vspσ, Vpp,Te, and Vspσ,Te, the effect on convergence is strongest

upon varying Vspσ. This is consistent the increase in the L band relative to Σ band as temper-

ature increases, found experimentally and from first-principles calculations.4,41 We can also tune

convergence by alloying with a defect that would increase the lattice parameter. SnTe and PbSe

both have a smaller lattice parameter and exhibit a greater separation of the Σ and L bands at a

given temperature.4,63 However, it is worth noting that the trends in convergence with respect to

modifying the anion-p/anion-p and anion-s/anion-p interactions are not consistent with observed

experimental trends in convergence with respect to temperature. This contradiction tells us that

the increase in convergence of the L and Σ VB extrema upon an increase in temperature or in-

crease in lattice parameter is due to the cation-s/anion-p interaction. Therefore, we do not consider

in detail the strategies involving increasing the strength of the anion-s/anion-p interaction or the

anion-p/anion-p interactions in this study. That being said, we can focus on tuning the anion s-p

splitting as a means to modify the anion-s/anion-p interaction. Because convergence is favored

with a smaller amount of s–p splitting in the anion states, Te is a better choice than Se when the

L band is higher than the Σ band because the s–p splitting energy decreases from Se to Te60. At

higher temperatures (T > 700 K) where the Σ band is higher, alloying with PbTe with Se would

be beneficial. This is consistent with the experimental finding that shows alloying PbTe with Se

increases the L VB relative to the Σ band.4

3.4 Influence of Cation-Site Defects on VB Convergence

The results of the previous section help to explain experimental results that show that cation

doping can enhance VB convergence and suggest that there are routes to enhance this even fur-

ther.21,33,35,36,47–49,69 One technique for doing so involves alloying to introduce cation-s states below

the Pb-s states (at the expense of Pb-s states). This would be equivalent to moving down (left to

right) the green line in Fig. 5 (increasing A). In order to achieve this, it is necessary to alloy the Pb

site with an element that exhibits greater s–p splitting, such as Ge.60 Therefore, we think this ex-

plains why promising materials have been found in PbTe–GeTe alloys as a means to engineer more

highly converged VBs. GeTe has attracted much attention as a high-performing thermoelectric ma-
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unfilled cation-s state

Figure 7: TB electron dispersion of a model rock salt structure where there is an unfilled cation-s above the
filled anion-p states. The energies of the states that correspond to the maxima of the L and Σ bands in PbTe
are labeled with a blue circle at E′V B(L) and green inverted triangle at E′V B(Σ′), respectively. Replacing the
filled Pb-s states with unfilled cation-s states moves these energies down such that they are local minimums
instead of local maxima like they are in PbTe.
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terial,70–74 so it is worth considering the role of the large s–p splitting in its performance. On the

other hand, Tl would introduce a cation-6s orbital with an on-site energy higher in energy relative

to the Pb-6s orbital but still below the Te-5p states.60 This type of impurity is predicted to reduce

the convergence of the VBs by increasing the L VBM relative to the Σ, ∆, and W VBMs. However,

Tl is known to be a very effective p-type dopant that actually enhances the thermoelectric power

of PbTe:Tl relative to that of pristine PbTe.40,75–77 This divergence from the predicted behavior

here is due to the fact that Tl is a resonant impurity, as the Tl-6s states overlap with the Te-5p

states, and resonant impurities are known to substantially increase thermoelectric performance by

increasing the DOS near the band edge.75,77–82

A potentially powerful route to engineering highly converged VBs that exhibit the 2D topology

is to alloy in such a way to introduce unfilled cation-s (s0) states higher in energy than the anion-p

states. This strategy is consistent with the experimental trends seen upon the addition of cation-

site dopants (Cd, Hg, Mn Na, Sr, and Mg).21,33,35,36,47–49,69,83 When these cation-site dopants are

substituted on the Pb-site of PbTe, they introduce cation-s states above the Te-p-dominated VBs

at the expense of the Pb-s states located below60.

The TB model for a generic rock salt structure can be modified to help understand the effect

of defect-s states on the electron dispersion. We use this as a thought experiment to understand

the TB eigenstates in the MTe end-member (M = Mg, Mn, Cd, Na, Sr or Hg) in PbTe-MTe alloys.

Fig. 7 shows the electron dispersion corresponding to a rock salt structure where there is an unfilled

cation-s state ∼1.6 eV above the anion-p states. The splitting between the cation-p and anion-

p states, the anion p–p interactions, and the strength of Vspσ all correspond to the values used

to approximate PbTe electronic structure shown in Fig. 3. We choose 1.6 eV for the difference

between the anion-p and filled cation-s state because this is approximately the difference between

the on-site energy differences of Te-p and Cd-s states.60 The eigenstates that correspond to the

VBMs of the L and Σ in PbTe are labeled in Fig. 7 with a blue circle and green inverted triangle,

respectively. It is important to note that when the (unfilled) cation-s states are above the Te-p

states, the eigenstates that were the VBMs in PbTe are now the lower of the three Te-p states at

both L and Σ′.

Consider the cation defect, M, with unfilled s0 states. When the cation M-s states are entirely

above the anion-p states, the energy corresponding to the VBM eigenstates at the L– and Σ–points

must be modified from those given in Eqs. 2 and 5. When the anion s–p interactions are ignored,

these eigenstates, denoted E′V B(L) and E′V B(Σ′), are given by Eqs. 22 and 23, respectively. In

these expression, V ′spσ denotes the TB overlap parameter between the defect cation-s (M-s) state

and the Te-p states. The expressions for E′p,Te(L) and E′p,Te(Σ
′) are the same as those given in

Eqs. 3 and 6, respectively.

E′V B(L) =
1

2

(
Es,M + E′p,Te(L)

)
− 1

2

√(
Es,M − E′p,Te(L)

)2
+ 48V ′2spσ (22)
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E′V B(Σ′) =
1

2

(
Es,M + E′p,Te(Σ

′)
)
− 1

2

√(
Es,M − E′p,Te(Σ′)

)2
+ 32V ′2spσ (23)

The only difference between the solutions for the case where the cation-s states are above the

anion-p states and where the cation-s states are below the anion-p states (like in PbTe) is that

there is a minus (-) sign in front of the radical in the former case and a plus (+) sign in the latter

case. In both cases, there is a repulsive interaction between the Te-p and cation-s states at the

L-point and at the Σ′-point that is stronger at the L-point. However, when the cation-s state is

below the Te-p states, it pushes the energy of the Te-p state up, but when it is below the Te-p

state, it pushes it down, with the force at L being stronger than it is at Σ′. The unfilled defect-s

state will also push the W and ∆ maxima down, but to a lesser extent than at L .

When these defect M-s states are incorporated into PbTe the repulsive interaction between

the unfilled defect-s states with the filled Te-p states partially counteracts the repulsive interaction

between the filled Pb-s states and Te-p states. In other words, the presence of these cation-s

defect states effectively weakens the repulsive interaction between the Pb-s and Te-p states, Vspσ.

As shown in analytically in Fig. 5 and numerically in Fig. 6, weakening Vspσ decreases δ, thus

increasing convergence, given that the L band is higher in energy than the Σ band. Furthermore,

the effective weakening of Vspσ is expected to increase the bandgap energy (see Appendix C). These

effects are consistent with what is observed experimentally upon the addition of Mg, Cd, Mn, Sr,

Na, and Hg in PbTe; the energy of the Σ VB increases relative to the energy of the L band, and

Eg increases.35,36,47–49,69

3.5 Low-Dimensional Behavior of Converged PbTe Electronic Structure

Low-dimensional materials have been studied as a means to engineer and enhance thermoelectric

transport properties.5,22,24–26,30,40,84 Typically, low-dimensional electronic structures are expected

in nano-structured materials that physically confine the electrons, such as thin-film with thickness

on the nano-scale, nanowires, and quantum dots.5,25,26,84 While improvements can be seen in low-

dimensional materials with a one sub-band model, when all degenerate bands and sub-bands are

included in the transport of the bulk system, the quantum confinement in low-dimensional materials

is detrimental to thermoelectric performance, as it breaks band degeneracy.28,29 However, properties

of low-dimensional electronic structures also exist in bulk 3D materials, and these materials do not

exhibit degeneracy-breaking quantum confinement.22,24,30,40,74,85 For instance, Dylla et al. found

that SrTiO3 has a Fermi surface that can be described as three orthogonal 2D cylindrical Fermi

surfaces, and therefore; it exhibits some transport properties that would be expected from a 2D

material despite the sample being in its bulk 3D form.30 Enhanced thermoelectric performance has

been predicted for a 3D bulk materials with a 2D Fermi surfaces.22,24 Note that when we refer

to 1D, 2D, and 3D Fermi surfaces, we are not describing the dimensionality of the Fermi surface

geometry itself, but rather to the dimensionality of the density of electronic states described by

20

Page 20 of 43Journal of Materials Chemistry A



that Fermi surface. That is, for a 1D or 2D topology, the Fermi surface expands with energy in

only one or two dimensions giving a DOS like that of a true 1D or 2D system.

Here, we compare two ”states” for the VB structure based on the relative strength of the

cation-s/anion-p interaction: converged (Vspσ = 0.75 eV) and ”not converged” (Vspσ = 0.9 eV).

The terms ”converged” and ”not converged” are simply relative descriptors of the VB structure.

As discussed in the prior section, multiple parameters can be adjusted to tune convergence, but for

simplicity, we limit our study here to a variation in Vspσ. When the PbTe VBs are not in a highly

converged state, the Fermi surface just below the VB edge would be described by ellipsoidal pockets

(4 total) around L (Fig. 1a).4,40,74 As the VBs become more converged (Vspσ = 0.75 without SOC),

the VB edge in the electronic dispersion becomes nearly flat along the W–L–Σ∗–∆∗ directions

(Fig. 8a). Recall that Σ∗ and ∆∗ are the true, calculated values for the local maxima along those

directions and change depending on the parameters used in the calculations (and whether or not

SOC is included).

This flat band dispersion results in the Fermi surface fairly close to the band edge exhibiting

unique 1D character despite the material itself being in its bulk 3D form. As seen in Fig. 8c, the VB

Fermi surface (calculated 0.10 eV below the L VBM) can be described as a set of orthogonal sheets

of a finite width that contain the L–, Σ∗–, ∆∗–, and W– points in the BZ. There are two sheets

along each of the three Cartesian directions. Unlike a traditional 1D material, such as a nanowire,

net electronic transport in this system occurs identically along all three Cartesian directions, but

is restricted to a single direction on a given sheet of the Fermi surface. In this way, it can be

thought of as the electronic structure of three orthogonal 1D systems. For the component of the

conductivity along the x-direction, only the sheets oriented in the y − z plane would contribute to

the transport, with analogous behavior for the y- and z- directions.

Assuming parabolic bands characterized by a unique effective mass in each direction, the 3D

electronic structure of a material can be described by the dispersion relationship shown in Eq. 24,

where mx my, and mz are the effective masses along each of the three Cartesian directions.5,30,86

The effective mass is inversely proportional to the curvature of the dispersion relationship in its

respective direction. That is, mi = ~2(d2E/dk2i )−1.4,86,87

E(kx, ky, kz) =
~2k2x
2mx

+
~2k2y
2my

+
~2k2z
2mz

(24)

For a given sheet in the converged PbTe VB Fermi surface, the curvature is zero in two of the

three directions. The effective mass in the two flat directions approaches infinity.30 The velocity

of the charge carrier in a given direction is related to the partial derivative of the dispersion

relationship.30,86

vi(k) =
1

~
∂E(k)

∂ki
=

~ki
mi

(25)
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In Equation 25, vi is the carrier velocity along the i–direction, where i = x, y, or z. The

velocity in a given direction is inversely proportional to the respective effective mass. Therefore,

when there is virtually zero dispersion in a given direction (flat band), then the effective mass

in that direction approaches infinity, and the velocity approaches zero. Consequently, the carrier

transport is effectively zero in that direction and limited to the other direction(s).

When studying PbTe, it is important to consider SOC effects to gain a more accurate repre-

sentation of the electronic structure.88–92 While the analytical solutions are not found with SOC

interactions considered, the TB bands were calculated with SOC using the value of Vspσ = 0.75

and a Te SOC parameter of 0.3 eV (Fig. 8b). While the three VBs at L, the VB extrema at W

and at ∆∗, and the two highest VBs along Σ are not as highly converged upon the addition of

SOC, the maxima of the L and Σ VBs are still nearly converged with each other. Therefore, the

convergence condition derived for the L and Σ VBs still holds when SOC is included. The SOC

interactions reintroduce curvature in the VB edge between L and W and between Σ∗ and ∆∗ in

the highly converged case, as seen in 8b. As a result, the effective mass near the band edge is finite

along two of the three directions, so the Fermi surface 0.10 eV below the L VBM exhibits a 2D

instead of a 1D topology. This analysis introduces an additional design strategy: engineering an

alloy that weakens the SOC interactions relative to pure PbTe.

The Fermi surface structure we find after introducing SOC resembles the 2D Fermi surface

of lead chalcogenides described by Parker and Singh.24,40 We do not have to go so deep into the

VB edge (note that the ”depth” is somewhat arbitrary, as this is a model system) to reach this

2D topology as we did to reach the 1D topology shown in 8c; the 2D topology is obtained in the

converged bands with SOC only 0.05 eV below the L VBM. The 2D Fermi surface can be described

as 12 curved tubes that contain the L-point and Σ maximum in the BZ (Fig. 8d). Later, we

approximate these tubes as cylinders to model thermoelectric transport properties via Boltzmann

transport model.

Topological transitions in the non-converged bands to lower-dimensional 2D or 1D Fermi

surfaces from 3D or 2D Fermi surfaces, respectively, can be achieved by moving the Fermi energy

farther below the VB edge. For instance, we can obtain a 2D Fermi surface 0.14 eV below the Fermi

energy when Vspσ = 0.9eV (not converged), and SOC is included, as seen in Fig. 8e. Additionally,

if the Fermi surface in Fig. 8d is expanded to ∼ 0.25 eV below the L VBM, then then the cylinders

grow into the sheets seen in the highly converged electron bands without SOC (Fig. 8f), as the VB

edge is mostly flat along W–L–Σ∗–∆∗ at this energy below the band edge.

In summary, convergence of the L and Σ VBMs alone leads to a 2D Fermi surface topology, and

the added convergence of the ∆ and W band extrema promotes the 1D topology. In practice, the 2D

topology can be achieved mainly by alloying the cation-site with an element that introduces unfilled

cation-s states above the VB edge. A secondary approach would involve substituting Pb sites with

Ge, which has a greater s-p splitting. Finally, by alloying PbTe to promote convergence of the L, Σ,

W, and ∆ bands we can reduce the carrier concentration required to achieve the lower-dimensional
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C, No SOC
EVBM – E = 0.10 eV(c)

C, SOC
EVBM – E = 0.05 eV(d)

NC, SOC
EVBM – E = 0.14 eV(e)

C, SOC
EVBM – E = 0.25 eV(f)

Figure 8: TB electron bands and valence band Fermi surfaces for variations of a PbTe tight-binding model. Σ∗

and ∆∗ are the true maxima along Σ and ∆. (a) When SOC is not included, the top of the highly converged
VB edge is nearly flat along W–L–Σ∗–∆∗, (b) but when SOC is introduced, curvature is reintroduced along
L–W and Σ∗–∆∗. (c) The Fermi surface 0.10 eV below the L VBM for the highly converged PbTe electronic
structure without SOC resembles a set of 6 orthogonal sheets. (d) When SOC is included, the Fermi surface
0.05 eV below the L maximum forms 12 tubes. (e) The thread– or tube–like Fermi surface is found 0.14
eV below the L-point band edge for a non-converged VB edge with SOC. (f) For the highly converged case
with SOC, the VBs form sheets 0.25 eV below the L VBM. For (d)-(f) we use C (converged) to denote the
highly converged case, where Vspσ = V ∗spσ = 0.75 eV, and NC (not converged) when the original value of
Vspσ = 0.9eV is used.
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Fermi surface topologies. SOC interactions appear to break the high degeneracy required for the

1D topology in favor of the 2D topology. Therefore, the 1D topology could be achieved in a real

material by substituting the Te site for S or Se, which have weaker SOC interactions, with S

having the weakest.60,79,89 However, because substituting S or Se for Te on the anion-site would

decrease the lattice parameter, thus decreasing convergence of the L, Σ, ∆, and W VB extrema, it

is necessary that this is compensated for via the incorporation of the appropriate cation dopants

to counteract the effect of reducing the lattice parameter.

3.6 Transport Model for Low-Dimensional Electron Bands

To understand the effect of the low dimensional electron bands on the thermoelectric transport,

we use the Boltzmann transport equation (BTE) and compare the computed properties to that of

a 3D system.9,10,12,15,86,87,93–95 We assume electron-phonon scattering dominates where the scat-

tering rate is proportional to the density of electron states, as it is in deformation potential and

phonon scattering. It has been shown that phonon, or deformation potential, scattering provides a

good description of transport in lead chalcogenides.18 For the 1D case, we assume a Fermi surface

described by 6 sheets (two perpendicular to each Cartesian direction) and a square face with side

lengths l1D = 2
√

2π/a where a is the lattice parameter (Fig. 1d). The 2D Fermi surface is approx-

imated by 12 cylinders (4 parallel to each Cartesian direction) with length l2D = 2π/a (Fig. 1c).24

Lastly, the 3D model is described by 4 spheres at L (8 half-spheres) (Fig. 1a).

The dispersion relationship defining the idealized 2D bands is described by Eq. 26, where

i, j = x, y, or z, but i 6= j.

E(kx, ky, kz) =
~2k2i
2mi

+
~2k2j
2mj

(26)

Along each tube, the effective mass is infinite along the direction parallel to its length, restrict-

ing electronic transport to the other two orthogonal directions. That is, for a cylinder oriented along

the z-axis in the BZ, transport would be limited to the x- and y- directions due to infinite effective

mass (zero curvature) along the the z-direction.

For the 1D sheet topology, we have the following dispersion:

E(kx, ky, kz) =
~2k2i
2mi

(27)

In this case, transport is limited to only the i direction, as carrier velocity would be virtually

zero along the other two directions.

We provide the expressions for the scattering time, τ , Seebeck coefficient, S, quality factor, B,

Lorenz factor L, figure of merit, zT , and DOS, g(ε), for 1D, 2D, and 3D PbTe bands in Appendix

B. Because we are using τ ∝ 1/g the expression for S, L, and zT are identical for 1D, 2D, and 3D
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in terms of B and the reduced Fermi Level, η, where η = EF /kBT , and EF is the Fermi energy.

They are given in Eqs. 28-30.

S(η) =

(
kB
e

)[
2F1(η)

F0(η)
− η
]

(28)

L(η) =

(
kB
e

)2 [3F2(η)F0(η)− 4F 2
1 (η)

F 2
0 (η)

]
(29)

zT (η,B) =
S2(η)

(kB/e)
2

BF0(η)
+ L(η)

(30)

Fi(η) is the Fermi-Dirac integral, which is defined in Eq. 31.

Fi(η) =

ˆ ∞
0

εidε

1 + eε−η
(31)

Although S is the same for all three dimensions for a given value of η, the reduced chemical

potential is a function of the hole concentration, p, which is given by p =
´∞
0 g(E)f(E − µ)dE,

where f(E−µ) is the Fermi-Dirac distribution. Because the DOS is different for each dimension, the

relationship between p and η changes with dimensionality, as seen in Eqs. 32-34, where p1D, p2D,

p3D represent the number of holes per unit volume of the material corresponding to the idealized

1D, 2D, and 3D Fermi surface cases for PbTe, respectively. Note that in these expressions, we

define the hole concentration in terms of the band effective mass, m∗b (band curvature mass along

the dispersive direction) instead of an equivalent DOS effective mass, m∗DOS , which we shall define

later.

p1D =
12(2m∗bkBT )1/2

a2π~
F− 1

2
(η) (32)

p2D =
12m∗bkBT

aπ~2
F0(η) (33)

p3D =
2(2m∗bkBT )3/2

π2~3
F 1

2
(η) (34)

Using Eqs. 32-34 and Eq. 28, we can calculate the Pisarenko relationship at 300K (S vs.

p) for each dimension as seen in Fig. 9a. The lattice parameter is taken to be a = 6.46 Å,

and the band effective mass is taken to be m∗b = 0.2me.
24 For a given η, the Seebeck coefficient

increases as the dimensionality of the bands is reduced. This increase in thermopower as the band

dimensionality progresses from 3D to 1D is attributed to the higher hole concentration for a given

η due to the general increase in Fermi surface area from the 3D to 1D case. The zT vs. p curve
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Figure 9: Transport model analysis for 1D, 2D and 3D Fermi surface topologies in PbTe assuming phonon
scattering, a lattice thermal conductivity of κL = 1.5 Wm−1K−1, and mobility parameter of µ0 = 1200
cm2V−1s−1. (a) Pisarenko plots (S vs. p) for PbTe with 1D, 2D and 3D Fermi surfaces. (b) zT vs. p curves
for the 1D, 2D, and 3D models. The 3D model yields a peak zT ∼ 0.6, the 2D model gives a peak zT ∼
6, and the 1D model predicts a peak zT ∼ 13. (c) The effective (3D) m∗DOS increases from m∗DOS = 0.5me

for the 3D topology, to m∗DOS ∼ 6me for 2D, and to m∗DOS ∼ 40me predicted for fully converged, 1D PbTe.
(d) The maximum effective valley degeneracy, NV , increases from NV = 4 for the 3D model to NV ∼ 180
for the 2D model and to NV ∼ 2700 for the 1D model.
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at 300K is then calculated based on Eq. 30, assuming a constant lattice thermal conductivity of

κL = 1.5 Wm−1K−1 16 and a constant mobility parameter, µ0, of 1200 cm2V−1s−1.39 Note that

these are approximate values assumed for the sake of comparing the thermoelectric performance

from the different Fermi surface topologies. In reality, these value depend on temperature and

carrier concentration. The value of µ0, was estimated based Hall effect on data from Crocker and

Rogers.39 It is found that the maximum predicted zT is greatest for the 1D Fermi surface, followed

by the 2D and then the 3D topology (Fig. 9b). We predict a peak zT ∼ 0.6 at p ∼ 6× 1018 cm−3

for the 3D model, zT ∼ 6 at p ∼ 3 × 1019 cm−3 for the 2D model, and zT ∼ 13 at p ∼ 1 × 1020

cm−3 for the 1D case.

We apply the effective mass model for the 3D case to the Pisarenko calculations for the 1D

and 2D models to determine a 3D equivalent DOS effective mass (m∗DOS = m∗bN
2/3
V ) for each value

of p (Fig. 9c) and then calculate an effective valley degeneracy46 at each carrier concentration (Fig.

9d). To perform this analysis, the equation for the carrier concentration in terms of the density

of states mass, m∗DOS , corresponding to the 3D model is needed. We assume a valley degeneracy

of NV = 4 for the 3D model with carrier pockets at L, so we can simply rewrite Eq. 34 as shown

below.

p3D =
(2m∗DOSkBT )3/2

2π2~3
F 1

2
(η) (35)

Applying Eqs. 35 and 28 to the calculated Pisarenko curves in Fig. 9a, we can calculate

m∗DOS , and for each value of m∗DOS , we determine an effective NV through the expression NV =

(m∗DOS/m
∗
b)

3/2. For this analysis, we treat all of the S vs. p data as if it comes from 3D parabolic

bands, regardless of the true dimensionality of the Fermi surface from which it comes. m∗DOS
and NV are both constant for the 3D model with respect to p, but for the 1D and 2D models,

they are a function of carrier concentration. They initially plateau then start decreasing between

p ∼ 1021 − 1022cm−3. For the 3D model, we obtain m∗DOS = 0.5me, corresponding to NV = 4. At

the value p corresponding to the peak zT , we calculate m∗DOS ∼ 6me and NV ∼ 180 for the 2D case

and m∗DOS ∼ 40me and NV ∼ 2600 for the 1D model. Clearly, a the topological transition to lower-

dimensional Fermi surface yields a massive increase in transport channels. These values of effective

NV are much greater than what we would expect from simply adding the valley degeneracies of the

VB extrema (4(L)+12(Σ)+6(W)+6(∆) = 28), suggesting that a shift to studying topology changes

in the band structure is necessary for predicting transport behavior in highly converged electronic

structures.

Because the quality factor is proportional to NV , if we apply the 3D effective mass model to

the 1D and 2D bands, we predict a significantly higher B for the 1D and 2D cases. The quality

factor for the 3D PbTe band model used here is constant at B = 0.2, but for the 1D and 2D models,

the quality factor that corresponds to the 3D model varies as a function of the hole concentration,

p. Therefore, we use the values of B corresponding to the maximum predicted zT for comparison

purposes. The quality factors at the maximum zT ’s for the 2D and 1D bands are approximately
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B ∼ 9 and B ∼ 130, respectively, showing significant gains relative to the 3D bands. It is important

to note that the predicted values for NV , and consequently m∗DOS and B, and zT , represent upper-

bounds and most certainly overestimate the true valley degeneracy and thermoelectric performance

because of inter-valley scattering and other assumptions made here. These extremely high values

predicted for the 1D band topology are purely theoretical but give an idealized electronic structure

to strive for and motivates the search for convergence beyond that found in the 2D topology.

Even achieving a band structure intermediate between the 2D and 1D cases would vastly improve

thermoelectric performance.

4 Conclusion

We present analytical solutions for a TB approximation of the PbTe VB structure to better under-

stand the orbital interactions that lead to higher VB convergence and to changes in the topology

of the electronic structure. We use the analytical TB expressions without SOC to determine qual-

itative trends in VB convergence with respect to orbital interaction strengths and orbital on-site

energies (Vspσ, Vpp,Te, and 2A = Ep,Te−Es,Pb). There is a critical value for these three parameters

where the VB extrema at L and Σ′ are approximately converged. When SOC interactions are

minimal, the ∆ and W bands are also effectively converged with the L and Σ band at this point,

resulting in a 1D Fermi surface topology. When SOC is introduced, approaching the same critical

value of V ∗spσ leads to the convergence of the L and Σ VBs, but the topology of the bands has 2D

character, as SOC breaks the convergence with other the VB pockets (W and ∆).

Based on the qualitative trends determined with the TB model, we propose several alloying

design strategies based on anion-cation and anion-anion interactions to tailor the valence bands in

such that they approach the highly converged 1D topology. The recommended strategies are listed

below:

i Introduce unfilled cation-s (s0) defect states above anion-p states (Cd, Mg, Hg, Mn, Sr, and

Na)

ii Increase lattice parameter via alloying or temperature increase

iii Decrease anion s–p splitting

iv Introduce cation-s defect states below Pb-s states (at the expense of Pb-s states)

v Minimize the strength of the (anion) SOC interactions

We apply an effective mass model using the BTE to predict thermoelectric transport val-

ues for the 3D, 2D, and 1D bands and predict enhanced thermoelectric performance when the

dimensionality of the bands decreases, which occurs as more VB pockets converge. The increase
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in predicted thermoelectric performance is understood by applying the 3D effective mass model

to the 1D and 2D bands, and we predict substantial gains in thermoelectric performance from a

massive increase in the number of transport channels available in 2D and 1D bands. The 1D and

2D transport behavior is analogous to 3D behavior with extremely high valley degeneracy, and

therefore a significantly enhanced quality factor and zT . The gains in performance are greater for

the 1D bands than the 2D bands, suggesting that engineering or alloying PbTe or other materials to

achieve this unique 1D topology could lead to tremendous gains in thermoelectric performance and

theoretically lead to zT > 10, roughly 20 times larger than the zT we predict for the 3D ellipsoidal

Fermi surface topology. While this extremely high zT is only a theoretical prediction for a highly

idealized case, it motivates work towards increasing VB convergence beyond that found in the 3D

and 2D Fermi surface topologies. By strategically alloying PbTe based on the qualitative trends

discussed here, it is possible to tune and reduce the doping concentration needed to achieve these

favorable, low-dimensional Fermi surface topologies.
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Appendices

A PbTe Tight-Binding Hamiltonian

The analytical TB solutions for rock salt PbTe without SOC were determined by solving for the

eigenvalues of the Hamiltonian given in Eq. A1, using the Slater-Koster matrix elements and

following the method outlined by Rohrer.56,61 The Hamiltonian, Ĥ, is an Hermitian matrix, so

Hij = H̄ji, where H̄ji is the complex-conjugate of Hji. The 8-dimensional TB basis is comprised

of Pb-6s, Pb-6px, Pb-6py, Pb-6pz, Te-5s, Te-5px, Te-5py, Te-5pz atomic orbitals. Note that when

SOC is included the size of the Hamiltonian increases by a factor of four, as the basis becomes

16-dimensional to account for spin-up and spin-down electrons separately.88,89

Ĥ =


H11 H12 · · · H18

H21 H22 · · · H28

...
...

. . .
...

H81 H82 · · · H88

 (A1)

We do not provide the expressions for every Hamiltonian element here, but representative

examples of Hamiltonian elements are given below in Eqs. A2-A9. Ea,b represents the on-site

energy terms, where a denotes the orbital (s or p) and b denotes the element (Pb or Te). The

overlap parameters of the form, Vαβm, where α and β represent the two orbitals (s or p) and m

represents the type of bonding (σ or π). When there is an element label in the subscript, the overlap

parameter represents the interaction between the next-nearest neighbors for that element (Pb or

Te). When there is no element referenced in the subscript, then the parameter represents a nearest

neighbor interaction between Pb and Te. However, Vspσ1 and Vspσ2 are used here to distinguish

between the two different nearest neighbor s–p interactions. Vspσ1 denotes the interaction between

the Pb-s and Te-p orbitals, and Vspσ2 denotes the interaction parameter between the Te-s and Pb-p

orbitals. Note that this is different than the convention used in the main text, where Vspσ denotes

the Pb-s/Te-p interaction (since we do not reference the Te-s/Pb-p interaction in the main text).

H11 = Es,Pb + 2Vssσ,Pb[cos (kxa/2 + ky/2) + cos (kxa/2− kya/2)+

cos (kya/2 + kza/2) + cos (kya/2− kza/2)+

cos (kxa/2 + kza/2) + cos (kxa/2− kza/2)] (A2)
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H12 = − 2i√
2
Vspσ,Pb[sin (kxa/2 + kya/2) + sin (kxa/2− ky/2)+

sin (kxa/2 + kza/2) + sin (kxa/2− kza/2)] (A3)

H23 = (Vppσ,Pb − Vppπ,Pb)[cos (kxa/2 + kya/2)− cos (kxa/2− kya/2)] (A4)

H15 = 2Vssσ[cos (kxa/2) + cos (kya/2) + cos (kza/2)] (A5)

H16 = −2iVspσ1 sin (kxa/2) (A6)

H25 = −2iVspσ2 sin (kxa/2) (A7)

H26 = 2Vppσ cos (kxa/2) + 2Vppπ[cos (kay/2) + cos (kza/2)] (A8)

H77 = Ep,Te + (Vppσ,Te + Vppπ,Te)[cos (kxa/2 + kya/2) + cos (kxa/2− kya/2)+

cos (kya/2 + kza/2) + cos (kya/2− kza/2)]+

2Vppπ,Te[cos (kxa/2 + kza/2) + cos (kxa/2− kza/2)] (A9)

B Transport Model for 1D, 2D, and 3D Bands in Bulk 3D PbTe

We consider an transport model developed using the Boltzmann transport equation (BTE)9,10,12,15,86,87,93,94

to model thermoelectric transport in PbTe to understand how it changes as the VBs become more

highly converged. The 3D Fermi surface pockets have a degeneracy of 4, and the Fermi-surface

cylinders for the 2D case have a degeneracy of 12 , radius k, and length l2D = 2π/a, where a is the

lattice parameter. For a cylinder oriented along the z-axis, k2 = k2x+k2y, with analogous expressions

for all three directions. In PbTe, the 1D Fermi surface can be described as sheets with thickness

2k, a square cross-section characterized by a side length of l1D = 2
√

2π/a, and degeneracy of 6.

For a sheet aligned in the x− y plane, k = kz, with analogues in all three directions.
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B.1 Density of States (DOS)

The expressions for the PbTe DOS in each dimension, gmD(ε) (m = 1, 2, 3), where ε = E/kBT ,

and E is the energy below the VB edge, are given in Eqs. B1-B3.

g1D(ε) =
12(2m∗b)

1/2

a2π~
(kBT )−1/2ε−1/2 (B1)

g2D(ε) =
12m∗b
aπ~2

(B2)

g3D(ε) =
2(2m∗b)

3/2

π2~3
(kBT )1/2ε1/2 (B3)

The above expressions for the DOS are used to determine the hole concentrations per unit cell

in each dimension, as given in Eqs. 32-34 in the main text.

B.2 Electrical Conductivity, σ

In general, the electrical conductivity is given in Eq. B4.15,24,86

σ(T ) =

ˆ
e2

3
τ(E)v2(E)g(E)

(
− df

dE

)
dE (B4)

v(E) is the carrier velocity at a given energy and can be broken down into its direction

components. In the 1D topology case v2x(E) = 2E/m∗I , in 2D v2x(E) = E/m∗I , and in 3D v2x(E) =

2E/3m∗I , where vx(E) is the velocity component along the x-direction. For a cubic material,

vx = vy = vz. The expression for v(E) is the same regardless of the topology because for the 1D

case, v2(E) = v2x(E), in 2D v2(E) = 2v2x(E), and in 3D v2(E) = 3v2x(E), yielding v2(E) = 2E/m∗I
for all three topologies.15

In this model, we assume a DOS dependent scattering rate which would come from an energy-

independent matrix element in Fermi’s golden rule as used in analytic theories of deformation

potential or acoustic phonon scattering.15 The DOS dependence gives an energy-dependent scat-

tering time, τ , given by τ = τ0ε
r, where r depends on the assumptions made in the scattering-time

model used. τ0 is a constant that is given by τ0 =
µ0m∗

I
e , where m∗I is the intertial effective mass.6

For the constant scattering time approximation (τ independent of energy), the scattering exponent

is given as r = 0. In this paper, where we assume acoustic-phonon scattering, the value of r is

−1/2, 0, or 1/2 for the 3D, 2D, and 1D cases, respectively. The value of r for acoustic-phonon

scattering is chosen such that τ ∝ 1/g.

The term e2

3 τ(E)v2(E)g(E) in Eq. B4 can be combined to the single term σ(E), which is

the electrical conductivity transport function.15 That is, we can write the electrical conductivity as
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σ =
´
σ(E)

(
− df
dE

)
dE. Furthermore, σ(E) can be written in terms of a transport coefficient, σE0 ,

through the expression, σ(E) = σE0ε
s, where s = 1/2 + r, 1 + r, or 3/2 + r for the 1D, 2D, and 3D

cases, respectively, and the form of σE0 varies with the dimensionality of the band, as seen in the

following set of equations.

σE0,1D =
8e (2mekBT )1/2

a2π~
µ0

(
m∗b
me

)1/2

(B5)

σE0,2D =
8emekBT

πa~2
µ0

(
m∗b
me

)
(B6)

σE0,3D =
4e (2mekBT )3/2

3π2~3
µ0

(
m∗b
me

)3/2

(B7)

Because we assume NV = 4 for the 3D pockets at L in PbTe, we can rewrite equation B7 in

terms of m∗DOS , where m∗DOS = m∗b4
2/3.

σE0,3D =
e (2mekBT )3/2

3π2~3
µ0

(
m∗DOS
me

)3/2

(B8)

In Eq. B8, the term, µ0

(
m∗

DOS
me

)3/2
, is the weighted mobility, µw, for the 3D effective mass

model.6,9,15 Therefore, we can rewrite σE0,3D in terms of µw.

σE0,3D =
e (2mekBT )3/2

3π2~3
µw (B9)

It is instructive to rewrite Eqs. B5-B7 in terms of the hole concentration (Eqs. 32-34 in the

main text).

σE0,1D =
2

3

p1Deµ0
F− 1

2
(η)

(B10)

σE0,2D =
2

3

p2Deµ0
F0(η)

(B11)

σE0,3D =
2

3

p3Deµ0
F 1

2
(η)

(B12)

Using Eq. B4 along with Eqs. B10-B12, the electrical conductivity for each case can be

expressed as follows.

σ1D =
2p1Deµ0

3

(
r +

1

2

) Fr− 1
2
(η)

F− 1
2
(η)

(B13)
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σ2D =
2p2Deµ0

3
(r + 1)

Fr(η)

F0(η)
(B14)

σ3D =
2p3Deµ0

3

(
r +

3

2

) Fr+ 1
2
(η)

F 1
2
(η)

(B15)

If we use the acoustic-phonon approximation for scattering time, these equations can be sim-

plified, as shown below.

σ1D =
2p1Deµ0

3

F0(η)

F− 1
2
(η)

(B16)

σ2D =
2p2Deµ0

3
(B17)

σ3D =
2p3Deµ0

3

F0(η)

F 1
2
(η)

(B18)

If we were to use the constant scattering time approximation (r = 0), it would be more evident

that on a given point of the Fermi surface, the charge carriers in the 1D case can only travel in

one of the three directions, that the charge carriers of the 2D topology can move in two of the

three directions, and that they can transport in all directions in the 3D case. That is, we can write

the electrical conductivity for these three cases as σ1D = (1/3)p1Deµ0, σ2D = (2/3)p2Deµ0, and

σ3D = p3Deµ0.

B.3 Seebeck Coefficient, S

The general expression for the Seebeck coefficient, S given by the BTE is expressed in Eq. B19.

S(T ) =

(
kB
e

) ´ σ(ε)
(
− df
dε

)
(ε− η)dε

´
σ(ε)

(
− df
dε

)
dε

(B19)

This can be reduced to Eqs. B20-B22 for the 1D-3D bands.

S1D =

(
kB
e

)[(r + 3
2

)
Fr+ 1

2
(η)(

r + 1
2

)
Fr− 1

2
(η)
− η

]
(B20)

S2D =

(
kB
e

)[
(r + 2)Fr+1(η)

(r + 1)Fr(η)
− η
]

(B21)
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S3D =

(
kB
e

)[(r + 5
2

)
Fr+ 3

2
(η)(

r + 3
2

)
Fr+ 1

2
(η)
− η

]
(B22)

When the acoustic-phonon scattering approximation is used, these expressions reduce to that

found in in Eq. 28 for all three dimensionalities.

B.4 Lorenz number, L

The electronic component of the lattice thermal conductivity can be expressed as κe = LσT , where

L is the Lorenz number, given in by L = κ0
σT − S

2. The expression for κ0 is given in Eq. B23.87,96

κ0(T ) = T

(
kB
e

)2 ˆ
(ε− η)2σ(ε)

(
−df
dε

)
dε (B23)

Therefore, the Lorentz factor can be written in the forms shown in Eq. B24-B26.

L1D =

(
kB
e

)2
(
r + 5

2

) (
r + 1

2

)
Fr+ 3

2
(η)Fr− 1

2
(η)−

(
r + 3

2

)2
F 2
r+ 1

2

(η)(
r + 1

2

)2
F 2
r− 1

2

(η)
(B24)

L2D =

(
kB
e

)2 (r + 3) (r + 1)Fr+2(η)Fr(η)− (r + 2)2 F 2
r+1(η)

(r + 1)2 F 2
r (η)

(B25)

L3D =

(
kB
e

)2
(
r + 7

2

) (
r + 3

2

)
Fr+ 5

2
(η)Fr+ 1

2
(η)−

(
r + 5

2

)2
F 2
r+ 3

2

(η)(
r + 3

2

)2
F 2
r+ 1

2

(η)
(B26)

If we use the acoustic-phonon scattering approximation, all three of the above expressions

reduce to the equation for L given in Eq. 29 of the main text.

B.5 Quality Factor, B, and Figure of Merit, zT

In general, the zT for this effective-mass model in all three cases can be calculated using Eqs.

B27-B29.

zT1D(η,B) =
S2(η)

(kB/e)
2

(r+1/2)B1DFr− 1
2
(η) + L(η)

(B27)

zT2D(η,B) =
S2(η)

(kB/e)
2

(r+1)B2DFr(η)
+ L(η)

(B28)
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zT3D(η,B) =
S2(η)

(kB/e)
2

(r+3/2)B3DFr+1
2
(η) + L(η)

(B29)

The quality factor, B, is defined in terms of σE0 in Eq. B306,15. For each topology, the quality

factory is calculated from the corresponding σE0 .

B =

(
kB
e

)2 σE0T

κL
(B30)

For the acoustic-phonon scattering assumption used in this paper, the zT ’s for the 1D, 2D,

and 3D PbTe bands are identical, and given in Eq. 30 of the main text.

C Bandgap Energy from Tight-Binding Model

PbTe has a direct bandgap at L,40–42,45,66,97,98 so an analytical expression for the bandgap energy

of PbTe can be found simply by subtracting the analytical solutions of the VBM from the CBM.

If we do not include SOC, we can find exact analytical solutions to the tight-binding eigenvalues

that represent the VBM and CBM.

The solution for the VBM state is given in Eq. 2 in the main text. The expression for the

CBM, ECBM (L) is analogous except the anion and cation orbitals interactions are flipped. Here,

we must distinguish between the two nearest-neighbor Vspσ in the same manner as in Appendix A,

where Vspσ1 refers to cation-s/anion-p interactions, and Vspσ2 refers to anion-s/cation-p interactions.

Using this notation, we can express the CBM energy as follows:

ECBM (L) =
1

2

(
Es,Te + E′p,Pb(L)

)
+

1

2

√(
E′p,Pb(L)− Es,Te

)2
+ 48V 2

spσ2 (C1)

E′p,Pb(L) = Ep,Pb + 4Vppπ,Pb − 4Vppσ,Pb (C2)

Therefore, the bandgap energy, Eg, can be written in the form below.

Eg =
1

2
(Es,Te − Es,Pb + Ep,Pb − Ep,Te − 4Vpp,Pb + 4Vpp,Te) +

1

2

(√
(Ep,Pb − Es,Te − 4Vpp,Pb)

2 + 48V 2
spσ2 −

√
(Ep,Te − Es,Pb − 4Vpp,Te)

2 + 48V 2
spσ1

)
(C3)

Vpp,Pb describes the strength of the cation-p interactions and is defined through the expression,

Vpp,Pb = Vppσ,Pb − Vppπ,Pb. From Eq. C3, we see that the bandgap energy increases as (1) Vspσ1
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(cation-s, anion-p) decreases, (2) Vspσ2 (anion-s, cation-p) increases, (3) the difference in on-site

energies between the cation-s and anion-p states increases, (4) the energy splitting between the

anion-s and cation-p states decrease, (5) the anion-p interactions are strengthened (Vpp,Te increases),

and (6) the cation-p interactions are weakened (Vpp,Pb decreases).

While the above equation allows us to determine trends in Eg with respect to TB orbital

interactions and on-site energies, it is expected to significantly overestimate the bandgap, as SOC

interactions are not considered. When SOC interactions are included, the bandgap energy de-

creases.41,66,88,89,97,99. We can also relate some of the trends in bandgap energy to the convergence

trends discussed in the main text. For example, decreasing Vspσ1, increasing the on-site energy

difference between the cation-s and anion-p states, and increasing Vpp,Te all increase the bandgap

and converge the VB extrema.

D Labeled First Brillouin Zone for the FCC Lattice

Fig. D1 depicts the first Brillouin Zone (BZ) for the face-centered cubic (FCC) lattice with high-

symmetry points labeled.68 The red cube with red lines across the two diagonals of each face

is included as a visual guide. The points Σ′ and ∆′ are not conventional high-symmetry points

and are defined specifically for the purposes of this study. We define these points (and the other

conventional high-symmetry points) at follows, where a is the lattice parameter:

• Γ = (0, 0, 0)

• Σ′ =
(
π
a ,

π
a , 0
)

• ∆′ =
(
π
a , 0, 0

)
• L =

(
π
a ,

π
a ,

π
a

)
• X =

(
2π
a , 0, 0

)
• K =

(
3π
2a ,

3π
2a , 0

)
• W =

(
2π
a ,

π
a , 0
)

There are 12 symmetrically equivalent Σ′-points, 6 symmetrically equivalent ∆′-points, 6

equivalent W–points, 4 equivalent K–points, 4 L–points, 3 X–points, and 1 Γ–point in the first

BZ.
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Figure D1: Labeled first Brillouin zone (BZ) of an FCC lattice. A red cube with red lines across the two
diagonals of each of the 6 faces is included as a visual guide. The cube has a side length of 2π/a, where a is
the lattice parameter. The Γ-point is at the center of the cube and BZ, the L-point is at the corner of the
red cube and at the center of the hexagonal face of the BZ, the X-point is in the center of the square face
of the BZ, the W-point is on the corners of the BZ faces, the K-point is found on the edge-centers of the
hexagonal first BZ faces, and the Σ′-point is located at the center of the edges of the red cube. The ∆′-point
is at the center of the faces of the red cube, exactly halfway between Γ and X.
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