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Abstract 

Formation of desired three-dimensional (3D) shapes from flat thin sheets with programmed non-

uniform deformation profiles is an effective strategy to create functional 3D structures. Liquid crystal 

elastomers (LCEs) are of particular use in programmable shape morphing due to their ability to undergo 

large, reversible, and anisotropic deformation in response to a stimulus. Here we consider a rectangular 

monodomain LCE thin sheet divided into one high- and one low-temperature strip, which we dub a 

‘bistrip’. Upon activation, a discontinuously patterned, anisotropic in-plane stretch profile is generated, 

and induces buckling of the bistrip into a rolled shape with a transitional bottle neck. Based on the non-

Euclidean plate theory, we derive an analytical model to quantitatively capture the formation of the rolled 

shapes from a flat bistrip with finite thickness by minimizing the total elastic energy involving both 

stretching and bending energies. Using this analytical model, we identify the critical thickness at which 

the transition from the unbuckled to buckled configuration occurs. We further study the influence of the 

anisotropy of the stretch profile on the rolled shapes by first converting prescribed metric tensors with 

different anisotropy to a unified metric tensor embedded in a bistrip of modified geometry, and then 

investigating the effect of each parameter in this unified metric tensor on the rolled shapes. Our analysis 

Page 1 of 32 Soft Matter

mailto:lihuajin@seas.ucla.edu


sheds light on designing shape morphing of LCE thin sheets, and provides quantitative predictions on the 

3D shapes that programmed LCE sheets can form upon activation for various applications.

Keywords

liquid crystal elastomers, shape morphing, non-Euclidean plate, buckling, finite thickness, anisotropy

1. Introduction

Shape morphing from an initially flat sheet to a desired three-dimensional (3D) shape triggered 

by a stimulus is an effective approach for fabricating complex 3D structures with advanced functionalities. 

By patterning spatially varied stimuli-induced strain, shape morphing has been achieved in various 

responsive materials, such as hydrogels1–4, liquid crystal elastomers (LCEs)5–10, and shape memory 

polymers11,12. These two-dimensional (2D)-to-3D shape transitions have been used in a wide range of 

applications, including biomedical devices13,14, soft actuators and sensors15,16, and mechanical 

metamaterials17,18.

To transition a flat sheet to a desired 3D shape, it is necessary to induce spatially non-uniform 

stresses inside the material upon activation19,20. A through-thickness stress variation can generate a 

bending moment and thus out-of-plane deformation. An in-plane stress variation, on the other hand, can 

drive out-of-plane buckling of a flat sheet into a 3D shape. Although both types of stress variations can 

trigger shape transition of a flat sheet to 3D shape, the buckling-induced shape transition relying on in-

plane stress variations has the following three advantages: (1) it broadens the accessible 3D shapes 

incorporating both Gaussian and mean curvatures; (2) it requires patterning of only a single material layer, 

which can be easily achieved using numerous 2D patterning techniques such as lithography2,10,21–23, direct 

ink writing3,24,25, and laser cutting26; (3) buckling-induced shapes are much more robust to external loads 

than those induced by pure bending, since the energy to deform the former scales with the film thickness 

, while the energy to deform the latter scales as  7,27,28.~ℎ ~ℎ3
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Though many systems have been explored for their use in shape morphing, LCEs are particularly 

useful due to the coupling of orientational order of constituent mesogens with polymer conformation5,7,16. 

Upon activation by heating, the orientational order of mesogens reduces, yielding large and anisotropic 

deformation. Recently, we demonstrated a method10 to prescribe various in-plane stretch profiles to a flat 

monodomain LCE sheet by spatially patterning the concentration of plasmonic gold nanoparticles which 

produce heat upon illumination. Under uniform illumination, a non-uniform distribution of gold 

nanoparticles causes a gradient in photothermal heat generation, and therefore non-uniform in-plane 

stretch, yielding out-of-plane buckling of the flat sheet. Compared to spatially programming director 

orientation7,8,24,25,29–32, this method can be widely generalized to most LCE systems with a simple 

fabrication process. The shape morphing of flat LCE sheets with prescribed in-plane stretch profiles can 

be captured by the non-Euclidean plate theory33,34, which, like the Föppl-von Kármán (FvK) plate theory35, 

takes into account both bending and stretching energies. In this theory, strains are measured with respect 

to a reference metric tensor, which is defined by the prescribed in-plane stretch profile and is not 

necessarily immersible in a 3D Euclidean space. In our previous study10, we have linked a prescribed in-

plane stretch profile to the 3D shape for a LCE sheet with an infinitesimal thickness by minimizing the 

bending energy among all the isometric immersions, in which the actual metric tensors fully obey the 

prescribed metric tensors, leading to zero stretching energy. As the thickness increases, the actual metric 

tensor deviates from the prescribed metric tensor as a result of the interplay between the bending and 

stretching energies. In this paper, we will address the thickness effect on the shape morphing of LCE 

sheets.

To study this problem, we choose the simple bistrip geometry, where a rectangular monodomain 

LCE sheet is divided into two strips, i.e. the high- and low-temperature strips (Fig. 1A). The high-

temperature strip contains gold nanoparticles (dark strips in Fig. 1B), and generates more photothermal 

heat upon illumination than the low-temperature strip that contains no gold nanoparticles (transparent 

strips in Fig. 1B), leading to a nearly step distribution in temperature (Fig. 1A) and thus a discretely 
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patterned in-plane stretch profile. As a LCE shrinks along the director and elongates in the perpendicular 

direction upon heating, the induced stretch profile in a bistrip LCE highly depends on its initial director. 

We find in both experiments (Fig. 1B) and finite element (FE) simulations (Fig. 1C) that upon 

illumination, a bistrip, with the initial director  either parallel (left) or perpendicular (right) to the 𝐧

interface between the two strips, can roll into a nearly axisymmetric shape, which consists of two nearly 

cylindrical regions smoothly connected via a transitional bottle neck. However, the rolled shape is 

strongly affected by the anisotropy of the prescribed stretch profile. There are extensive studies on the 

rolled shape formation in isotropically deformed gel bistrips21,36,37, but not on anisotropically deformed 

LCE bistrips, to the best of our knowledge. 

In this paper, we establish an analytical model based on the non-Euclidean plate theory to capture 

the rolled shapes from LCE bistrips with finite thicknesses, and identify the critical thickness at which the 

transition from an unbuckled to buckled configuration occurs. To investigate the influence of the stretch 

anisotropy on the rolled shapes, we convert the prescribed metric tensors in LCE bistrips with initial 

director either parallel or perpendicular to the interface into a unified metric tensor embedded in a bistrip 

with modified geometry. Using this analytical model, we study the effect of each parameter in the unified 

metric tensor on the rolled shapes from bistrips. The quantitative agreement between the analytical model 

and FE simulations validates our analysis.

2. Modeling shape morphing of LCE bistrips

We model a bistrip of length , width , and thickness  (Fig. 1A) using the reduced 2D non-𝐿 𝑤 ℎ

Euclidean plate theory33,34,36, in which the bistrip is represented by its mid-surface, and the prescribed 

metric tensor  of this mid-surface may not be immersible in a 3D Euclidean space.  of the bistrip is 𝒂 𝒂

determined by a prescribed in-plane stretch profile,

,𝒂 = [𝜆2
𝑢 0

0 𝜆2
𝑣] (1)
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where  and  are the two surface coordinates of the mid-surface (Fig. 2A), and  and  are the 𝑢 𝑣 𝜆𝑢 𝜆𝑣

discretely patterned in-plane stretches in the  and  directions, respectively. The two stretches  and  𝑢 𝑣 𝜆𝑢 𝜆𝑣

are assumed to depend solely on , which can be described by the following sigmoid functions:𝑣

, ,𝜆𝑢 = 𝜆𝑢 ―
Δ𝑢

1 + 𝑒
―

𝑣 𝑤 ― 𝜌
𝛿 𝑤

𝜆𝑣 = 𝜆𝑣 ―
Δ𝑣

1 + 𝑒
―

𝑣 𝑤 ― 𝜌
𝛿 𝑤

(2)

where  ( ) represents the stretch of the low-temperature strip in the  ( ) direction,  ( ) represents 𝜆𝑢 𝜆𝑣 𝑢 𝑣 Δ𝑢 Δ𝑣

the stretch difference between the high- and low-temperature strips in the  ( ) direction,  represents the 𝑢 𝑣 𝜌

width of the low-temperature strip normalized by the total width ,  denotes the smoothness of the step 𝑤 𝛿

change in the stretch, and  is defined as the normalized width of the transition region through 10𝛿 𝑤

which the stretch reduces by ( ) in the  ( ) direction. A positive  ( ) indicates 0.99Δ𝑢 Δ𝑣 𝑢 𝑣 Δ𝑢 Δ𝑣 𝜆𝑢|𝑣 < 𝜌𝑤 >

 ( ). The anisotropic stretch profiles highly depend on the initial director  of 𝜆𝑢|𝑣 > 𝜌𝑤 𝜆𝑣|𝑣 < 𝜌𝑤 > 𝜆𝑣|𝑣 > 𝜌𝑤 𝐧

LCE bistrips. We find that in our experiments when ,  and 10 (Fig. 1A left; 𝐧 ∥ 𝑢 𝜆𝑢 = 0.92 Δ𝑢 = 0.15

Appendix). The stretch in the  direction can be determined by incompressibility , yielding 𝑣 𝜆𝑣 = 1 𝜆𝑢 𝜆𝑣

 and . When ,  and  (Fig. = 1 𝜆𝑢 = 1.04 Δ𝑣 = 1 𝜆𝑢 ― 1 𝜆𝑢 ― Δ𝑢 = ―0.097 𝐧 ∥ 𝑣 𝜆𝑣 = 0.92 Δ𝑣 = 0.15

1A right). Correspondingly,  and  due to incompressibility. The Gaussian 𝜆𝑢 = 1.04 Δ𝑢 = ―0.097

curvature  corresponding to the prescribed metric tensor  is38𝐾 𝒂

,― 𝐸𝐾 = ― Γ2
11

′ + Γ1
12Γ2

11 + Γ2
12Γ2

12 ― Γ2
11Γ2

22 ― Γ1
11Γ2

12 (3)

where ,  denotes the derivative with respect to v, and  ( ) are the Christoffel 𝐸 = 𝜆2
𝑢 ()′ Γ𝛼

𝛽𝛾 𝛼, 𝛽, 𝛾 = 1, 2

symbols of  and equal𝒂

.Γ1
11 = 0, Γ1

12 = Γ1
21 =

𝜆′𝑢

𝜆𝑢
, Γ1

22 = 0, Γ2
11 = ―

𝜆𝑢𝜆′𝑢

𝜆2
𝑣

, Γ2
12 = Γ2

21 = 0, Γ2
22 =

𝜆′𝑣

𝜆𝑣

(4)

Substituting Eq. (4) into Eq. (3) yields

.𝐾 =
𝜆′𝑢𝜆′𝑣 ― 𝜆′′𝑢𝜆𝑣

𝜆𝑢𝜆3
𝑣

(5)
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Based on the non-Euclidean plate theory33,34,36, the elastic energy of the bistrip can be expressed 

as

,𝐸total = 𝐸stretch + 𝐸bend (6)

where  is the stretching energy𝐸stretch

,𝐸stretch =
𝜇ℎ
4 ∫𝐿

0∫𝑤
0 (𝑎𝛼𝛽𝑎𝛾𝜂 + 𝑎𝛼𝛾𝑎𝛽𝜂)(𝑎 ― 𝑎)𝛼𝛽(𝑎 ― 𝑎)𝛾𝜂 |𝒂|𝑑𝑣𝑑𝑢 (7)

and  is the bending energy𝐸bend

.𝐸bend =
𝜇ℎ3

12 ∫𝐿
0∫𝑤

0 (𝑎𝛼𝛽𝑎𝛾𝜂 + 𝑎𝛼𝛾𝑎𝛽𝜂)𝑏𝛼𝛽𝑏𝛾𝜂 |𝒂|𝑑𝑣𝑑𝑢 (8)

In Eqs. (7) and (8),  is the actual metric tensor and  is the actual curvature tensor of the mid-surface. 𝒂 𝒃

The actual Gaussian curvature  can be expressed in terms of the components of  and their derivatives38. 𝐾 𝒂

The stretching energy in Eq. (7) is associated with changes of distances in the mid-surface from its 

prescribed metric tensor , and the bending energy in Eq. (8) is associated with changes of curvatures 𝒂

from the flat configuration. Note that  and . When the bistrip is extremely thin ( ), 𝐸stretch~ℎ 𝐸bend~ℎ3 ℎ→0

it prefers obeying its prescribed metric tensor  such that , and the total energy goes with . 𝒂 𝐸stretch→0 𝐸bend

We call this condition as the thin limit or isometric immersion. When the bistrip is extremely thick (ℎ 𝐾

), it remains flat with only in-plane stretching such that , and the total energy goes with ≫ 1 𝐸bend = 0

. We call this condition as the thick limit. Within these two limits, the 3D shape of the bistrip is 𝐸stretch

determined by the interplay between  and . 𝐸stretch 𝐸bend

Next, we try to minimize the elastic energy  in Eq. (6) with the prescribed metric tensor  in 𝐸total 𝒂

Eq. (1). Given that the bistrips consistently roll into axisymmetric shapes in the experiments (Fig. 1), we 

seek solutions under the assumption of surface of revolution. Therefore, the actual metric tensor  and 𝒂

curvature tensor  are assumed to depend solely on the axial coordinate . With appropriate 𝒃 𝑣

parameterization,  and  can be diagonal, i.e.𝒂 𝒃
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.𝒂 = [𝐸(𝑣) 0
0 𝐺(𝑣)], 𝒃 = [𝑒(𝑣) 0

0 𝑔(𝑣)] (9)

Based on the Gauss formula and Mainardi-Codazzi equations36,38, the terms  and  in  can be 𝑒(𝑣) 𝑔(𝑣) 𝒃

expressed in terms of  and :𝐸(𝑣) 𝐺(𝑣)

,𝑒2 = 𝑐𝐸 ―
𝐸′2

4𝐺
(10)

,𝑔2 =
(𝐸′2𝐺 + 𝐸𝐸′𝐺′ ― 2𝐸𝐸′′𝐺)2

4𝐸2𝐺(4𝑐𝐸𝐺 ― 𝐸′2)
(11)

where  is an integration constant. To determine the shape of the mid-surface, we need to find , , 𝑐 𝐸(𝑣) 𝐺(𝑣)

and  such that  in Eq. (6) is minimized. This minimization can be performed by either numerical 𝑐 𝐸total

optimization or a variational approach (Appendix). Since the two methods are equivalent, here we only 

show the numerical optimization.

The process of the numerical optimization is as follows. First, we uniformly discretized the 

domain of  into  points with an increment . Then , , , and  were also 𝑣 𝑚 𝑤 (𝑚 ― 1) 𝐸(𝑣) 𝐺(𝑣) 𝑒(𝑣) 𝑔(𝑣)

discretized. We used , , , and  ( ) to represent their values at point  ( ), 𝐸𝑖 𝐺𝑖 𝑒𝑖 𝑔𝑖 𝑖 = 1, …, 𝑚 𝑣𝑖 0 ≤ 𝑣𝑖 ≤ 𝑤

respectively. Second, we expressed , and  in terms of , , and  using Eqs (10) and (11), in which 𝑒𝑖 𝑔𝑖 𝐸𝑖 𝐺𝑖 𝑐

the derivative terms are approximated by the finite difference. Finally, we used unconstrained nonlinear 

programming solver (fminunc) in Matlab to solve the following minimization problem

,min
𝐸𝑖, 𝐺𝑖, 𝑐 

𝐸total, (𝑖 = 1, …, 𝑚) (12)

where , , and  are to be determined. This minimization problem was solved iteratively for various 𝐸𝑖 𝐺𝑖 𝑐

thicknesses. We started from the case with an extremely small thickness, i.e. , and used the ℎ 𝑤 = 10 ―6

solution of isometric immersion as the initial try, in which  and  is determined by minimizing 𝒂 = 𝒂 𝒃

. Then we gradually increased the thickness and used the solution of the previous step as an initial 𝐸bend

try of the current step. This iteration stopped as the bending energy becomes negligible (𝐸bend 𝐸total

).≤ 0.001
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To demonstrate the process of minimizing , we take a bistrip with  and the initial 𝐸total 𝐿 𝑤 = 2.0

director  parallel to the interface between high- and low-temperature strips as an example. In Figs. 2B 𝐧

and C, we can see how  (black dots),  (blue dots), and  (red dots) evolve with . 𝐸total ℎ 𝐸bend ℎ 𝐸stretch ℎ ℎ 𝑤

When  is very small, the majority of  is . As  increases,  first increases and then ℎ 𝑤 𝐸total 𝐸bend ℎ 𝑤  𝐸bend

reduces to nearly zero, whereas  increases monotonically and becomes dominant. We define the 𝐸stretch

thickness at which  decreases to below 0.001 as the critical thickness . When  is below 𝐸bend 𝐸total ℎcr ℎ 𝑤

, the bistrip is considered in a buckled configuration. When  is above ,  approaches ℎcr 𝑤 ℎ 𝑤 ℎcr 𝑤 𝐸stretch

, while  goes to zero, indicating an unbuckled configuration. 𝐸total 𝐸bend

Besides, we found the following scaling relations when  is very small (Fig. 2C),ℎ 𝑤

.𝐸stretch ℎ~ℎ4, 𝐸bend ℎ~ℎ2 (13)

As shown in Eq. (7),  is proportional to the quadratic of the differences between the components 𝐸stretch ℎ

of  and . We plot the distributions of the metric differences  in the  (Fig. 2D upper) and  (Fig. 𝒂 𝒂 𝒂 ― 𝒂 𝑢 𝑣

2D lower) directions for bistrips with very small , and find that  except a transition region, and ℎ 𝑤 𝒂 = 𝒂

the length of the transition region is unaffected by . The maximum magnitudes of the metric ℎ 𝑤

differences in the  and  directions are found to scale with  when  is very small (Fig. 2E). 𝑢 𝑣 (ℎ 𝑤)2 ℎ 𝑤

Therefore, the quadratic increase of the metric differences with  in a transition region results in the ℎ 𝑤

fourth power scaling relation between  and . , on the other hand, not only scales 𝐸stretch ℎ ℎ 𝐸bend ℎ

quadratically with the curvature tensor , but also scales with , as shown in Eq. (8). By plotting the 𝒃 ℎ2

distributions of  in the  (Fig. 2F upper) and  (Fig. 2F lower) directions for bistrips with very small , 𝒃 𝑢 𝑣 ℎ 𝑤

we find that  is independent of . Thus,  and  show a quadratic power-law relation.𝒃 ℎ 𝑤 𝐸bend ℎ ℎ

Once  and  are obtained by minimizing , the shape of the bistrip can be uniquely 𝒂 𝒃 𝐸total

determined (Appendix). In Fig. 3, we plot the 3D shapes obtained from our analytical model (Fig. 3A-C, 

Appendix), and compare them with the ones obtained from the FE simulations (Fig. 3D-F, Appendix) for 
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 = 0.005 (A and D), 0.015 (B and E), and 0.025 (C and F). Both the theory and the FE simulations ℎ 𝑤

show that the bistrips roll around an axis perpendicular to the interface between the high- and low-

temperature strips. The rolled shape is composed of two nearly cylindrical regions connected by a 

transitional bottle neck in which the Gaussian curvature alters from positive to negative. We define the 

width of this transitional bottle neck region  as the distance between the maximum and the 𝑤trans

minimum Gaussian curvatures (Fig. 3A). Away from the transitional bottle neck region,  obeys , and 𝒂 𝒂

the Gaussian curvature is zero due to the homogeneous prescribed stretch. Thus, the stretching energy is 

mainly concentrated within the bottle neck and favors a smaller , whereas the bending energy is 𝑤trans

distributed throughout the entire sheet and favors a smaller curvature. Both  and the curvature of the 𝑤trans

rolled shape are determined by the competition between the stretching within the bottle neck and the 

bending across the entire sheet. As the thickness of the bistrip increases,  deviates more from . 𝒂 𝒂

Accordingly, the portion of the stretching energy increases and the portion of bending energy decreases, 

yielding an increase in  and decrease in curvature (Fig. 3A-F). In Fig. 3G and H, we plot the profiles 𝑤trans

of the cross-section along (G) and perpendicular (H) to the interface between the high- and low-

temperature strips, and show that the theory (circular dots) and the FE simulations (solid lines) are in 

quantitative agreement, which validates our theory. The slight deviation at the edges results from the 

boundary effect that undermines the axisymmetric assumption.

To further validate our analytical model, we study the rolled shape formation from bistrips with 

different normalized widths of the low-temperature strip  ranging from 0.2 to 0.8 (Fig. 4A). All the 𝜌

bistrips have , , and initial director parallel to the interface between the high- and 𝐿 𝑤 = 1.0 ℎ 𝑤 = 0.005

low-temperature strips. Fig. 4B-D show the deformed shapes of the bistrips obtained from experiments 

(Fig. 4B), FE simulations (Fig. 4C), and theory (Fig. 4D), from which we can see that the bistrips roll 

around an axis perpendicular to the interface and form a transitional bottle neck at the interface, 

regardless of . The bottle neck moves along the rolling axis while maintains its width  as  𝜌 𝑤trans 𝜌

increases. The FE simulations can quantitatively capture the rolled shapes observed in the experiments. 
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The theory can provide good predictions on the rolled shapes close to the bottle neck. Near the edges of 

the bistrips, the shapes predicted by the theory deviate from those obtained in the FE simulations, since 

the axisymmetric assumption in the theory no longer holds there.

3. Influence of stretch anisotropy on the formation of rolls from LCE bistrips

We learn from Fig. 1 that a bistrip with the initial director either parallel or perpendicular to the 

interface between the high- and low-temperature strips can roll into approximately axisymmetric shapes 

upon activation. However, the rolled shapes for the parallel and perpendicular cases are different, 

indicating that the shape morphing depends on the anisotropy of the prescribed in-plane stretch. In this 

section, we study the influence of the stretch anisotropy on the rolled shapes. We first show that a bistrip 

with a prescribed metric tensor of different anisotropy, corresponding to initial director either parallel or 

perpendicular to the interface, can be converted to a bistrip of modified geometry with a unified metric 

tensor. Then we investigate how each parameter in this unified metric tensor influences the formation of 

rolled shapes from LCE bistrips.

Suppose we have a bistrip of length , width , thickness , and the metric tensor  in Eq. (1) is 𝐿 𝑤 ℎ 𝒂

applied onto this bistrip (Fig. 5A). Given that  is diagonal, it can be divided into the parts without stretch 𝒂

mismatch , , and the part with stretch mismatch and thus generating in-plane stresses,  (Appendix), 𝒂1 𝒂2 𝒂 ∗

where

,𝒂1 = [1 0
0 𝜆2

𝑣], 𝒂2 = [(𝜆𝑢)2 0
0 1], 𝒂 ∗ = [(𝜆 ∗

𝑢 )2 0
0 1] (14)

corresponding to a stress-free deformation in the  direction, and a homogeneous and an inhomogeneous 𝑣

deformation in the  direction, respectively, and𝑢

.𝜆 ∗
𝑢 = 𝜆𝑢 𝜆𝑢 (15)

Please note that this decomposition of  into , , and  holds only if  is diagonal, as shown in Eq. 𝒂 𝒂1 𝒂2 𝒂 ∗ 𝒂

(1). Since shape morphing of LCE bistrips is elastic and conservative, the obtained shape should be 
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independent of loading paths. Therefore, applying , , and  one by one (Path 2 in Fig. 5A) should 𝒂1 𝒂2 𝒂 ∗

result in the same 3D shape as applying  once (Path 1 in Fig. 5A). After  is applied, the bistrip is 𝒂 𝒂1

stretched along the  direction by . As a consequence, the current width of the bistrip  becomes𝑣 𝜆𝑣 𝑤 ∗

,𝑤 ∗ = ∫𝑤
0 𝜆𝑣(𝑣)d𝑣 (16)

and the current surface coordinate  can be expressed as𝑣 ∗

.𝑣 ∗ = ∫𝑣
0𝜆𝑣(𝜏)d𝜏 (17)

After  is applied, the bistrip is stretched homogeneously along the  direction by , yielding a new 𝒂2 𝑢 𝜆𝑢

length  and a new surface coordinate . By far, the bistrip remains unbuckled, since no 𝐿 ∗ = 𝜆𝑢𝐿 𝑢 ∗ = 𝜆𝑢𝑢

variation in the in-plane stress is generated. We further apply the metric tensor  onto the bistrip with 𝒂 ∗

the new width  and length . Note that  only involves stretches  in the  direction, which can 𝑤 ∗ 𝐿 ∗ 𝒂 ∗ 𝜆 ∗
𝑢 𝑢 ∗

be expressed with respect to  in the following unified form𝑣 ∗

,𝜆 ∗
𝑢 (𝑣 ∗ ) = 1 ―

Δ ∗
𝑢

1 + 𝑒
―

𝑣 ∗ 𝑤 ∗ ― 𝜌 ∗

𝛿 ∗ 𝑤 ∗

(18)

where , and  and  can be obtained by finding the least-square fitting of Eq. (18) to a set Δ ∗
𝑢 = Δ𝑢 𝜆𝑢 𝜌 ∗ 𝛿 ∗

of pairs  given by combining Eqs. (15) and (17). By minimizing the total elastic energy, the (𝑣 ∗ ,𝜆 ∗
𝑢 )

rolled shape for the bistrip with  and modified geometry can be determined.𝒂 ∗

To confirm that the rolled shapes following Path 1 and 2 (Fig. 5A) are identical, we consider a 

bistrip of thickness  and length , with an equal width of the high- and low-temperature ℎ = 0.005𝑤 𝐿 = 2𝑤

strips and the initial director perpendicular to the interface between the two strips. Upon activation, the 

bistrip undergoes shrinkage in the  direction by , which can be quantified by Eq. (2) with , 𝑣 𝜆𝑣 𝜆𝑣 = 0.92

, , and . Due to the incompressibility, the bistrip undergoes expansion in the Δ𝑣 = 0.15 𝛿 𝑤 = 0.02 𝜌 = 0.5

 direction by , yielding  and . Given the in-plane stretch profiles, the 𝑢 𝜆𝑢 = 1 𝜆𝑣 𝜆𝑢 = 1.04 Δ𝑢 = ―0.097

prescribed metric tensor  is determined, and the rolled shape can be then obtained using the analytical 𝒂
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model (Path 1 in Fig. 5A). Following Path 2, the bistrip is first shrunk in the  direction by  due to , 𝑣 𝜆𝑣 𝒂1

and then expanded in the  direction by  due to , resulting in a flat stress-free bistrip of a modified 𝑢 𝜆𝑢 𝒂2

width  and length . Finally,  involving stretch  with , 𝑤 ∗ = 0.845𝑤 𝐿 ∗ = 2.085𝑤 𝒂 ∗ 𝜆 ∗
𝑢 Δ ∗

𝑢 = ―0.093 𝜌 ∗

 and  is applied to the new bistrip, yielding a rolled shape that can be captured by = 0.544 𝛿 ∗ 𝑤 = 0.0168

the analytical model. In Fig. 5, we plot the 3D shapes predicted by the analytical model following Path 1 

and 2 and the FE simulation, and compare their profiles of the cross-section along (B) and perpendicular 

to (C) the interface between the two strips. The rolled shapes from Path 1 and 2 match perfectly, 

indicating that the shape morphing following Path 1 and 2 is equivalent. The quantitative agreement 

between the theoretical predictions (circular dots) and the FE simulation results (solid lines) validates our 

theory (Fig. 5B and 5C).

Having converted a prescribed metric tensor in LCE bistrips with initial director either parallel or 

perpendicular to the interface into a unified metric tensor, we will next investigate the influence of each 

parameter in this unified metric tensor on the rolled shape formation from bistrips with a finite thickness. 

Note that bistrips with an infinitely small thickness ( ) adopt the isometric immersion of  that ℎ→0 𝒂 ∗

minimizes the bending energy. Using Eq. (5), we can obtain the Gaussian curvature,

.𝐾 ∗ = ―
𝜆 ∗′′𝑢

𝜆 ∗
𝑢

(19)

Then the width of the transitional bottle neck region  can be obtained by𝑤 ∗
trans

,
𝑤 ∗

trans

𝑤 ∗ =
𝑣 ∗

𝑤 ∗ |
𝐾 ∗

min

―
𝑣 ∗

𝑤 ∗ |
𝐾 ∗

max

≈ 2.634
𝛿 ∗

𝑤 ∗
(20)

where  and  are the normalized  that maximizes and minimizes , respectively, and can 
𝑣 ∗

𝑤 ∗ |
𝐾 ∗

max

𝑣 ∗

𝑤 ∗ |
𝐾 ∗

min

𝑣 ∗ 𝐾 ∗

be computed by solving . From Eq. (20) we can see that  depends only on  for 𝐾 ∗′ = 0 𝑤 ∗
trans 𝛿 ∗ /𝑤 ∗

bistrips with an infinitely small thickness. Next, we will show that as the thickness becomes finite, more 

parameters play roles in influencing . For convenience, we will remove all the “*” in Eq. (18).𝑤 ∗
trans
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We first investigate the effect of the stretch mismatch  between the high- and low-temperature Δ𝑢

strips on the rolled shapes, as shown in Fig. 6. We fix  and , while changing  from 𝜌 = 0.5 𝛿 𝑤 = 0.02 Δ𝑢

0.002 to 0.1. As  increases, the critical thickness , which is defined as the thickness at which Δ𝑢 ℎcr 𝑤

, also increases (Fig. 6A), indicating that a higher stretch mismatch can trigger 𝐸bend 𝐸total = 0.001

buckling of a thicker bistrip into a rolled shape. When  (black lines in Fig. 6B and 6C), the isometric ℎ = 0

immersion containing zero stretching energy is adopted. An increase in  leads to more bending energy Δ𝑢

and thus larger average mean curvature  over the entire width (black line in Fig. 6B). The width of 𝐻avg

the transitional bottle neck  is unaffected by  and equals  (Eq. (20)) (black 𝑤trans Δ𝑢 2.634𝛿 𝑤 = 0.0527

line in Fig. 6C). As  increases, the actual metric deviates from the prescribed metric within the bottle ℎ

neck, yielding an increase in the portion of stretching energy and a decrease in the portion of bending 

energy. Correspondingly,  increases (Fig. 6C) and  decreases (Fig. 6B) for an increasing  and a 𝑤trans 𝐻avg ℎ

fixed . Furthermore, a bistrip with finite  bends more (larger ) for a larger  (Fig. 6B and 6D-G). Δ𝑢 ℎ 𝐻avg Δ𝑢

Its transitional bottle neck region occupies almost the entire width ( ) when  is infinitely small, 𝑤trans→𝑤 Δ𝑢

and quickly shrinks and becomes saturated as  increases (Fig. 6C-G).Δ𝑢

We then study how the smoothness of the step change in the stretch profile  influences the rolled 𝛿

shapes. In Fig. 7, we fix  and , while changing  from 0.01 to 0.06. As  increases, 𝜌 = 0.5 Δ𝑢 = 0.05 𝛿 𝑤 𝛿 𝑤

i.e. the step change in the stretch profile becomes smoother, the critical thickness  decreases (Fig. ℎcr 𝑤

7A). The bistrip adopting an isometric immersion ( ) bends less (smaller ) for a smoother stretch ℎ = 0 𝐻avg

profile (larger ) (black line in Fig. 7B). Its  linearly increases with  at a rate of 2.634 (Eq. 𝛿 𝑤 𝑤trans 𝑤 𝛿 𝑤

(20)) (black line in Fig. 7C). For bistrips with non-zero , their  decreases (Fig. 7B and 7D-G) and ℎ 𝐻avg

 increase (Fig. 7C-G), with an increasing . The -  and -  relations shift downward (Fig. 𝑤trans 𝛿 𝐻avg 𝛿 𝑤trans 𝛿

7B) and upward (Fig. 7C), respectively, as  increases due to the same reason as discussed in Fig. 6B and ℎ

C. 
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Furthermore, we study how the normalized width of the low-temperature strip  influences the 𝜌

rolled shapes (Fig. 8). We fix  and , while changing  from 0.2 to 0.8. As  𝛿 𝑤 = 0.02 Δ𝑢 = 0.05 𝜌 𝜌

increases, the interface between the high- and low-temperature strips moves along the width direction. 

Correspondingly, the critical thickness  changes non-monotonically: it first increases and then ℎcr 𝑤

decreases as the interface moves from the edge to the center of the bistrips (Fig. 8A). This non-monotonic 

change is because the regions near the free boundaries have less constraints on bending, and thus even 

thick bistrips prefer bending to stretching if the interface is close to the free boundary. However, an 

interface too close to the free boundary leads to an incomplete bottle neck, yielding higher constraints on 

bending and thus smaller . Unlike the effect of  and ,  has a very limited effect on  (Fig. 8B, ℎcr Δ𝑢 𝛿 𝑤 𝜌 𝐻avg

8D-G) and  (Fig. 8C-G). Similar to Fig. 6 and 7, as  increases,  decreases (Fig. 8B) and  𝑤trans  ℎ 𝐻avg 𝑤trans

increases (Fig. 8C).

We summarize the influence of , , and  defined in Eq. (18), as well as thickness  on the Δ𝑢 𝛿 𝜌 ℎ

shape morphing of rolled shapes as follows. A larger stretch mismatch  can trigger the formation of Δ𝑢

rolled shapes from thicker bistrips and cause a larger curvature  for bistrips with , but has little 𝐻avg ℎ < ℎcr

influence on the width of the transitional bottle neck  when  is not small. A smoother step change 𝑤trans Δ𝑢

in the stretch profile, i.e. larger , reduces the critical threshold  and , but enlarges .  only 𝛿 ℎcr 𝐻avg 𝑤trans 𝜌

changes the position of the bottle neck but not  and . As the bottle neck approach the free 𝑤trans 𝐻avg

boundaries,  increases. For a given stretch profile ( , , and  are fixed), a thicker bistrip tends to ℎcr Δ𝑢 𝛿 𝜌

bend less (smaller ) and has a wider bottle neck (larger ).𝐻avg 𝑤trans

4. Conclusion

In this paper, we have studied the rolled shape formation from LCE bistrips subjected to 

discretely patterned in-plane stretch profiles. We establish an analytical model based on the non-

Euclidean plate theory, which can predict the shape morphing of LCE bistrips with finite thicknesses from 

flat to rolled shapes by minimizing the total elastic energy. Our analytical model, FE simulations, and 
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experiments are in good agreement, which verifies our theory. We find that when the thickness h is very 

small, the bending energy  is dominant and  scales with , whereas the stretching energy 𝐸bend 𝐸bend ℎ ℎ2

 scales with . As h increases and eventually reaches the critical thickness ,  𝐸stretch ℎ ℎ4 ℎcr 𝐸stretch ℎ

becomes dominant and  reduces to zero. To investigate the influence of the anisotropy of the 𝐸bend ℎ

stretch on the rolled shapes, we convert the prescribed metric tensors in LCE bistrips with initial director 

either parallel or perpendicular to the interface into a unified metric tensor embedded to a bistrip with 

modified geometry. We then study the effect of each parameter in this unified metric tensor and the 

thickness on the critical thickness, average curvature, and the bottle neck width of the rolled shapes. As a 

result, as the stretch mismatch  increases or the step of the stretch profile  decreases, the critical Δ𝑢 𝛿

thickness  increases, the average mean curvature  increases, and the width of the transitional bottle ℎcr 𝐻avg

neck  decreases until a saturated value. The normalized width of the low-temperature strip  only 𝑤trans 𝜌

changes the position of the bottle neck and the critical thickness , but not  and . Our analysis ℎcr 𝑤trans 𝐻avg

provides an analytical tool for designing shape morphing using LCE thin sheets, and can be extended to 

shape morphing of other isotropic or anisotropic materials.

Appendix

1. LCE fabrication

Liquid crystal elastomer nanocomposites were prepared as previously reported10. The diacrylate 

mesogen RM82, n-dodecylamine, and 8-amino-1-octanol were mixed in a 1.1:0.5:0.5 molar ratio with 1 

wt% Irgacure 651 in a vial and melted to form a mesogenic liquid. The molten mixture was subsequently 

infiltrated via capillary action into alignment cells consisting of two glass slides coated with Elvamide 

polyimide (DuPont), rubbed with a velvet cloth, and glues together with 50 µm glass spacer beads. Next, 

samples were held at 55 °C overnight to catalyze oligomerization of the oligomers and subsequently 

polymerized at room temperature under UV light (10 mW cm-2). Following polymerization, LCE films 

were harvested from the cells using a razor blade.

Page 15 of 32 Soft Matter



2. Nanocomposite fabrication

A gold nanoparticle precursor solution was prepared from 200 µL of HAuCl4 in acetone (0.12 M), 

200 µL of oleylamine in toluene (0.44 M), and Irgacure (0.44 M). The solution was subsequently diluted 

with 800 µL toluene and vortexed vigorously, and LCE films cut to the desired dimensions were 

submersed in the solution. The films were allowed to absorb the gold-containing solution for several 

minutes. Following equilibrium swelling, films were removed from the solution, blotted gently with 

tissue paper to remove excess solution, placed on a glass slide, and sandwiched between a photomask. 

Photomasks were prepared in Adobe Illustrator and printed on transparency films (Apollo Laser Printer 

Transparency Film). Samples were patterned via exposure with 30 mW cm-2 365 nm light (ThorLabs) for 

10 s, immersed in acetone for 60 min to remove unreacted gold salt, and dried under gentle vacuum. 

Nanocomposite absorbance was controlled by modulating the light dose via grayscale photomasks that 

vary from 0% black (transparent) to 100% black (opaque). To specify the actuation behavior described in 

this work, LCE bistrips were created by using a photomask with a 0% black strip and a 100% black strip, 

yielding materials with a photothermal (i.e. high temperature) and non-photothermal (i.e. low temperature) 

strip, respectively.

3. Photoactuation experiments

To evaluate shape morphing of patterned LCE bistrips upon illumination, samples were held 

isothermally on a hot plate at 85 °C and illuminated with a 530 nm green LED (200 mW cm-2). 

Depending on the transparency of the photomask, the stretch λ due to photothermal heating can be 

programmed from 0.77 (0% black) to 0.92 (100% black). Shape transformations were recorded using a 

camera (Nikon 5500) fitted with a macro lens.

4. Finite element simulations

The LCE sheets were modeled using the following neo-classical free energy density39,40
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,                                 (A1)𝜓 =
𝜇
2[Tr(𝒈 ―1𝐅𝒈0𝐅T) ― 3] +

𝐾
2(𝐽 ― 1)2 ―𝜇ln 𝐽

where µ is the shear modulus, K is the bulk modulus, F is the deformation gradient and ,  is a 𝐽 = det(𝐅) 𝒈

temperature-dependent three-dimensional normalized step-length tensor that describes the anisotropy of 

LCEs with respect to the isotropic phase in the current configuration40, and  denotes  in the reference 𝒈0 𝒈

configuration in the nematic phase. The normalized step-length tensor  can be expressed as𝒈

,                                             (A2)𝒈 = 𝑔 ⊥ [𝐈 + (𝑔 ∥

𝑔 ⊥
― 1)𝒏⨂𝒏], 𝒏 =

𝐅𝒏0

|𝐅𝒏0|

where  and  are eigenvalues of  parallel and perpendicular to the director, respectively, satisfying 𝑔 ∥ 𝑔 ⊥ 𝒈

, I is a 3-by-3 identity matrix, n is a unit vector along the director, and n0 denotes n in the 𝑔 ∥ 𝑔2
⊥ = 1

reference configuration. The prescribed metric tensor  that maps the reference configuration in the 𝒂

nematic phase to the current configuration can be expressed as , yielding the prescribed stretch 𝒂 = 𝒈𝒈 ―1
0

λ along the director as the following, according to Eq. (1)

,                                                                (A3)𝜆 = 𝑔 ∥ 𝑔0 ∥

where  is the eigenvalue of  parallel to the director. We fit the stretch-temperature relation to the 𝑔0 ∥ 𝒈0

experimental data and obtain

.                                 (A4)𝜆 = 0.6 1 + 1.778
120 ― 𝑇

60 , 60℃ ≤ 𝑇 ≤ 120℃

The above stretch-temperature relation indicates that nematic LCEs start to deform at 60 ℃ and 

continuously deform until 120 ℃, yielding a maximum stretch of 0.6 parallel to the director. Using Eq. 

(A4), prescribed stretch patterns were converted into temperature distributions, which are assigned to 

LCE sheets as predefined fields in FE simulations. 

We used the commercial software Abaqus/Standard for our FE simulations. We implemented the 

free energy in Eq. (A1) in Abaqus by writing a user-defined material subroutine (UMAT) (Supplementary 
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material). The element type is the 3D hybrid quadratic brick with reduced integration (Abaqus type 

C3D20RH). A mesh refinement study was performed to ensure that there are at least three elements along 

the thickness and that the aspect ratio of a single element is no greater than 5. As a result, approximately 3 

× 104 elements are involved in each finite element model. The LCE sheets in all the simulations have free 

boundary conditions. Artificial damping was introduced into the static general procedure such that a LCE 

sheet can snap to a stable equilibrium state when loss of stability occurs. The damping factor in the 

simulations was determined based on the fraction of dissipated energy; it is set as 1 × 10−5, a value that 

can suppress instabilities without having a significant effect on the solutions.

5. Energy minimization using variational approach

The minimization of elastic energy  in Eq. (6) can be performed by a variational approach. 𝐸total

The total elastic energy  can be expressed as a functional in terms of functions , , 𝐸total 𝐸(𝑣) 𝐺(𝑣)

integration constant , and variable ,𝑐 𝑣

.                                 (A5)𝐸total = 𝜇𝐿∫𝑤
0 𝑄[𝐸(𝑣),𝐸′(𝑣),𝐸′′(𝑣),𝐺(𝑣),𝐺′(𝑣),𝑐,𝑣]d𝑣

Taking variation of  with respect to , , and , and setting the first variation to be zero give 𝐸total 𝐸(𝑣) 𝐺(𝑣) 𝑐

the following Euler-Lagrange equations

,                                                  (A6)
∂𝑄
∂𝐸 ― (∂𝑄

∂𝐸′)′
+ ( ∂𝑄

∂𝐸′′)′′
= 0

,                                                        (A7)
∂𝑄
∂𝐺 ― (∂𝑄

∂𝐺′)′
= 0

,                                                              (A8)
∂𝑄
∂𝑐 = 0

and boundary conditions at  and 𝑣 = 0 𝑤

,                                                            (A9)
∂𝑄
∂𝐸′ ― ( ∂𝑄

∂𝐸′′)′
= 0
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,                                                                (A10)
∂𝑄
∂𝐸′′ = 0

.                                                                (A11)
∂𝑄
∂𝐺′ = 0

From Eq. (A8), we can express  in terms of , and . Substituting this 𝑐 𝐸(𝑣),𝐸′(𝑣),𝐸′′(𝑣),𝐺(𝑣) 𝐺′(𝑣)

expression of  into Eqs. (A6-7) and (A9-11) yields a sixth-order ODE system, which can be solved by 𝑐

the ODE solver (bvp4c) in Matlab.

6. 3D surfaces reconstruction given metric and curvature tensors

A 3D surface with metric tensor a and curvature tensor b satisfying Gauss and Mainardi-Codazzi 

equations36,38 can be reconstructed using the following method. Let 

                                               (A12)𝒓(𝑢,𝑣) = (𝑥(𝑢,𝑣),𝑦(𝑢,𝑣), 𝑧(𝑢,𝑣) )

be a parametrization of a 3D surface S with the following a and b 

,                                      (A13)𝒂 = [𝐸(𝑢,𝑣) 𝐹(𝑢,𝑣)
𝐹(𝑢,𝑣) 𝐺(𝑢,𝑣)], 𝒃 = [𝑒(𝑢,𝑣) 𝑓(𝑢,𝑣)

𝑓(𝑢,𝑣) 𝑔(𝑢,𝑣)]

where u  and v  are the two surface coordinates, as shown in Fig. 2A (𝑢min ≤ 𝑢 ≤ 𝑢max) (𝑣min ≤ 𝑣 ≤ 𝑣max)

(  ). Every point on the surface S has a local frame formed by 𝑢min = 0, 𝑢max = 𝐿, 𝑣min = 0, and 𝑣max = 𝑤

the vectors r,u, r,v and N, where ( ),u and ( ),v denote partial derivative of ( ) with respect to u and v, 

respectively, and N is the normal vector of the surface S. The derivatives of the vectors r,u, r,v and N can 

be expressed in the basis {r,u, r,v, N } as38

                                                     (A14)

𝒓,𝑢𝑢 = Γ1
11𝒓,𝑢 + Γ2

11𝒓,𝑣 + 𝑒𝑵,
𝒓,𝑢𝑣 = Γ1

12𝒓,𝑢 + Γ2
12𝒓,𝑣 + 𝑓𝑵,

𝒓,𝑣𝑣 = Γ1
22𝒓,𝑢 + Γ2

22𝒓,𝑣 + 𝑔𝑵,
𝑵,𝑢 = 𝛼1𝒓,𝑢 + 𝛼2𝒓,𝑣,
𝑵,𝑣 = 𝛽1𝒓,𝑢 + 𝛽2𝒓,𝑣,

where the coefficient  (i, j, k = 1, 2) are the Christoffel symbols of S, which can be computed in terms Γ𝑘
𝑖𝑗

of E, F, G and their derivatives,
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                                      (A15)

Γ1
11 =

𝐺𝐸,𝑢 + 𝐹𝐸,𝑣 ― 2𝐹𝐹,𝑢

2(𝐸𝐺 ― 𝐹2) ,Γ2
11 =

2𝐸𝐹,𝑢 ― 𝐹𝐸,𝑢 ― 𝐸𝐸,𝑣

2(𝐸𝐺 ― 𝐹2) ,  

Γ1
12 = Γ1

21 =
𝐺𝐸,𝑣 ― 𝐹𝐺,𝑢

2(𝐸𝐺 ― 𝐹2), Γ
2
12 = Γ2

21 =
𝐸𝐺,𝑢 ― 𝐹𝐸,𝑣

2(𝐸𝐺 ― 𝐹2) ,

Γ1
22 =

―𝐹𝐺,𝑣 ― 𝐺𝐺,𝑢 + 2𝐺𝐹,𝑣

2(𝐸𝐺 ― 𝐹2) ,Γ2
22 =

𝐸𝐺,𝑣 + 𝐹𝐺,𝑢 ― 2𝐹𝐹,𝑣

2(𝐸𝐺 ― 𝐹2) ,

and

.                                  (A16)𝛼1 =
𝑓𝐹 ― 𝑒𝐺
𝐸𝐺 ― 𝐹2, 𝛼2 =

𝑒𝐹 ― 𝑓𝐸
𝐸𝐺 ― 𝐹2, 𝛽1 =

𝑔𝐹 ― 𝑓𝐺
𝐸𝐺 ― 𝐹2, 𝛽2 =

𝑓𝐹 ― 𝑔𝐸
𝐸𝐺 ― 𝐹2

We first fix u = , and set . Eq. (A14) can be rewritten as𝑢min 𝑦1 = 𝒓, 𝑦2 = 𝒓,𝑣, 𝑦3 = 𝑵, 𝑦4 = 𝒓,𝑢

,                                             (A17)
𝑑

𝑑𝑣[𝑦1
𝑦2
𝑦3
𝑦4

] = [0 1 0 0
0 Γ2

22 𝑔 Γ1
22

0 𝛽2 0 𝛽1
0 Γ2

12 𝑓 Γ1
12

][𝑦1
𝑦2
𝑦3
𝑦4

]
which can be solved numerically under the following initial values

,                      (A18)

𝑦1|𝑢 = 𝑢min, 𝑣 = 𝑣min
= 𝒓|𝑢 = 𝑢min, 𝑣 = 𝑣min = (0, 0, 0)

𝑦2|𝑢 = 𝑢min, 𝑣 = 𝑣min
= 𝒓,𝑣|𝑢 = 𝑢min, 𝑣 = 𝑣min

= ( 𝐹0

𝐸0
, 

𝐸0𝐺0 ― 𝐹2
0

𝐸0
, 0)

𝑦3|𝑢 = 𝑢min, 𝑣 = 𝑣min
= 𝑵|𝑢 = 𝑢min, 𝑣 = 𝑣min = (0, 0, 1)

𝑦4|𝑢 = 𝑢min, 𝑣 = 𝑣min
= 𝒓,𝑢|𝑢 = 𝑢min, 𝑣 = 𝑣min

= ( 𝐸0, 0, 0)

where E0, F0, and G0 are the components of the metric tensor a at the point (umin, vmin). Then we uniformly 

discretize the domain of v with small increments. For a given , we can set 𝑣𝑖 (𝑣min ≤ 𝑣𝑖 ≤ 𝑣max) 𝑥1 = 𝒓, 𝑥2

, and rewrite Eq. (A7) as= 𝒓,𝑢, 𝑥3 = 𝑵, 𝑥4 = 𝒓,𝑣

,                                           (A19)
𝑑

𝑑𝑢[𝑥1
𝑥2
𝑥3
𝑥4

] = [0 1 0 0
0 Γ1

11 𝑒 Γ2
11

0 𝛼1 0 𝛼2
0 Γ1

12 𝑓 Γ2
12

][𝑥1
𝑥2
𝑥3
𝑥4

]
which can be solved numerically under the following initial values
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.                             (A20)

𝑥1|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖
= 𝒓|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖 = 𝑦1|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖

𝑥2|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖
= 𝒓,𝑢|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖

= 𝑦4|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖

𝑥3|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖
= 𝑵|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖 = 𝑦3|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖

𝑥4|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖
= 𝒓,𝑣|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖

= 𝑦2|𝑢 = 𝑢min, 𝑣 = 𝑣𝑖

Thus far, we have obtained the parameterization r of surface S based on the metric tensor a and curvature 

tensor b.

7. Decomposition of a prescribed metric tensor 𝒂

The position vector of a point on a 2D surface with the metric tensor  (Eq. (1))  in Euclidean 3D 𝒂

space can be expressed as

,                                                      (A21)𝝆(𝑢,𝑣) = 𝑥(𝑢)𝒆𝑢 +𝑦(𝑣)𝒆𝑣

where  and  are surface coordinates,  and  are the base vectors in Cartesian coordinate system, and 𝑢 𝑣 𝒆𝑢 𝒆𝑣

 and  are the corresponding position components, respectively. Given  in Eq. (1), we obtain𝑥(𝑢) 𝑦(𝑣) 𝒂

 and .                                                         (A22)
∂𝑥
∂𝑢 = 𝜆𝑢

∂𝑦
∂𝑣 = 𝜆𝑣

This 2D surface with  can be formed by the following three deformation steps. The first step is applying 𝒂

a stretch  in the  direction, yielding the following position vector  and corresponding metric tensor 𝜆𝑣 𝑣 𝝆1

,𝒂1

, .                                    (A23)𝝆𝟏(𝑢,𝑣) = 𝑢𝒆𝑢 + ∫𝑣
0𝜆𝑣(𝜏)d𝜏𝒆𝑣 𝒂1 = [1 0

0 𝜆2
𝑣]

Set  and apply the coordinate transformation from  to , we have𝑣 ∗ = ∫𝑣
0𝜆𝑣(𝜏)d𝜏 (𝑢,𝑣) (𝑢,𝑣 ∗ )

.                                                        (A24)𝝆𝟏(𝑢,𝑣 ∗ ) = 𝑢𝒆𝑢 + 𝑣 ∗ 𝒆𝑣

The next step is applying a homogeneous stretch  in the  direction, yielding the following position 𝜆𝑢 𝑢

vector  and corresponding metric tensor ,𝝆2 𝒂2
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, .                                    (A25)𝝆𝟐(𝑢,𝑣 ∗ ) = 𝜆𝑢𝑢𝒆𝑢 + 𝑣 ∗ 𝒆𝑣 𝒂2 = [(𝜆𝑢)2 0
0 1]

We change the coordinates from  to  by setting . Then,  can be rewritten as(𝑢,𝑣 ∗ ) (𝑢 ∗ ,𝑣 ∗ ) 𝑢 ∗ = 𝜆𝑢𝑢 𝝆𝟐

.                                                   (A26)𝝆𝟐(𝑢 ∗ ,𝑣 ∗ ) = 𝑢 ∗ 𝒆𝑢 + 𝑣 ∗ 𝒆𝑣

The third step is applying stretches  in the  direction, yielding the following position vector  and 𝜆 ∗
𝑢 𝑢 ∗ 𝝆 ∗

corresponding metric tensor ,𝒂 ∗

, ,                                (A27)𝝆 ∗ (𝑢 ∗ ,𝑣 ∗ ) = 𝑥 ∗ (𝑢 ∗ )𝒆𝑢 + 𝑣 ∗ 𝒆𝑣 𝒂 ∗ = [(𝜆 ∗
𝑢 )2 0
0 1]

where . To ensure that applying , , and  sequentially yields a surface with metric tensor 𝜆 ∗
𝑢 =

∂𝑥 ∗

∂𝑢 ∗ 𝒂1 𝒂2 𝒂 ∗

,  should equal . Therefore,  and . With Eq. (A22), we have𝒂 𝝆 𝝆 ∗ 𝑥(𝑢) = 𝑥 ∗ (𝑢 ∗ ) 𝑦(𝑣) = 𝑣 ∗

.                                                                 (A28)𝜆𝑢 = 𝜆 ∗
𝑢 𝜆𝑢
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Fig. 1. Formation of rolled shapes from LCE bistrips induced by discretely patterned in-plane stretch 

profiles. (A) A monodomain LCE thin sheet is equally divided into high- and low-temperature strips. The 

initial director is either parallel (left) or perpendicular (right) to the interface between the two strips. (B) 

Experimentally, LCE bistrips are fabricated by spatially patterning the concentration of plasmonic gold 

nanoparticles; upon illumination, the transparent strip without nanoparticles is at low temperature and the 

dark strip with nanoparticles is at high temperature. These bistrips roll into nearly axisymmetric shapes 

with the symmetry axes perpendicular to the interface between the high- and low-temperature strips. (C) 

The rolled shapes can be captured by the FE simulations. The contours in (C) denote the distributions of 

normalized Gaussian curvatures.
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Fig. 2. Determination of rolled shapes. (A) Discretely patterned in-plane stretch profile with a step 

distribution in a LCE sheet. (B and C) Dependence of the energy on the thickness in linear (B) and 

logarithmic (C) scales for the case with , and initial director  parallel to the  direction. 𝜌 = 0.5, 𝐿 = 2𝑤 𝐧 𝑢

The dots in black, blue, and red colors represent the total, bending, and stretching elastic energies, 

respectively. (D) The distribution of the differences between the components of the actual metric tensor  𝒂

and the prescribed metric tensor  in the  (upper, ) and  (lower, ) directions when 𝒂 𝑢 𝑎𝑢 ― 𝑎𝑢 𝑣 𝑎𝑣 ― 𝑎𝑣 ℎ 𝑤

 (blue),  (red), and  (magenta). (E) Dependence of the maximum of = 3 × 10 ―6 5 × 10 ―6 7 × 10 ―6 𝑎𝑢 ―

 (blue) and  (red) on . (F) Distribution of the normalized components of the curvature tensor 𝑎𝑢 𝑎𝑣 ― 𝑎𝑣 ℎ 𝑤

 in the  (upper) and  (lower) directions when  (blue),  (red), and  𝒃 𝑢 𝑣 ℎ 𝑤 = 3 × 10 ―6 5 × 10 ―6 7 × 10 ―6

(magenta).
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Fig. 3. Quantitative comparison between the theory and FE simulations. (A-F) The rolled shapes obtained 

from the theory (A-C) and FE simulations (D-F) for LCE bistrips with the director parallel to the interface 

between the high- and low-temperature regions and of normalized thickness  = 0.005 (A and D), ℎ 𝑤

0.015 (B and E), and 0.025 (C and F). (G and H) The profiles of the cross-section along (G) and 

perpendicular to (H) the interface between the two strips. The circular dots represent analytical results, 

whereas the solid lines represent the results from FE simulations. The blue, red, and black colors denote 

= 0.005, 0.015, and 0.025, respectively.ℎ 𝑤

Page 27 of 32 Soft Matter



Fig. 4. Comparison of the rolled shapes obtained from experiments, FE simulations, and theory for LCE 

bistrips with different . (A) Patterns of the prescribed temperature distribution, corresponding to the in-𝜌

plane stretch distribution, with  = 0.2 (1st column), 0.5 (2nd column), 0.6 (3rd column), and 0.8 (4th 𝜌

column). (B-D) The corresponding 3D shapes obtained from experiments (B), FE simulations (C), and 

theory (D). All the square LCE bistrips have a thickness of = 0.005 and initial director  parallel to ℎ 𝑤 𝐧

the interface between the high- and low-temperature strips.
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Fig. 5. Conversion from a prescribed metric tensor  in LCE bistrips with initial director either parallel or 𝒂

perpendicular to the interface into a unified metric tensor  embedded to a bistrip with modified 𝒂 ∗

geometry. (A) Shape morphing of a bistrip subjected to  (Path 1) is equivalent to that of the bistrip with 𝒂

modified geometry subjected to  (Path 2). The rolled shapes predicted by the analytical model 𝒂 ∗

following Path 1 and 2 and the FE simulation agree well. The profiles of the cross-section along (B) and 

perpendicular to (C) the interface between the high- and low-temperature strips based on Path 1 and 2 

match perfectly.

Page 29 of 32 Soft Matter



Fig. 6. The Effect of the stretch mismatch  on the rolled shapes when  and . (A) The Δ𝑢 𝜌 = 0.5 𝛿 𝑤 = 0.02

dependence of the normalized critical thickness  on  (black solid line). The gray region (ℎcr 𝑤 Δ𝑢 ℎ 𝑤 >

) indicates unbuckled configurations, whereas the white region ( )  indicates buckled ℎcr 𝑤 ℎ 𝑤 < ℎcr 𝑤

configurations. (B and C) The influence of  on the normalized average mean curvature  (B) and Δ𝑢 𝑤𝐻avg

the width of the transitional bottle neck region  (C) when  0 (isometric immersion in 𝑤trans 𝑤 ℎ 𝑤 =

black), 0.001 (blue), 0.003 (red), and 0.005 (magenta). (D-G) The rolled shapes obtained from the theory 

for different  when  = 0.005.Δ𝑢 ℎ 𝑤
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Fig. 7. The Effect of  on the rolled shapes when  and . (A) The dependence of  on 𝛿 𝜌 = 0.5 Δ𝑢 = 0.05 ℎcr 𝑤

 (black solid line). The gray region ( ) indicates unbuckled configurations, whereas the white 𝛿 ℎ 𝑤 > ℎcr 𝑤

region ( )  indicates buckled configurations. (B and C) The influence of  on  (B) and ℎ 𝑤 < ℎcr 𝑤 𝛿 𝑤𝐻avg

 (C) when  0 (isometric immersion in black), 0.001 (blue), 0.003 (red), and 0.005 𝑤trans 𝑤 ℎ 𝑤 =

(magenta). (D-G) The rolled shapes obtained from the theory for different  when  0.005.𝛿 ℎ 𝑤 =
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Fig. 8. The Effect of  on the rolled shapes when  and . (A) The dependence of 𝜌 𝛿 𝑤 = 0.02 Δ𝑢 = 0.05

 on  (black solid line). The gray region ( ) indicates unbuckled configurations, whereas ℎcr 𝑤 𝜌 ℎ 𝑤 > ℎcr 𝑤

the white region ( )  indicates buckled configurations. (B and C) The influence of  on  ℎ 𝑤 < ℎcr 𝑤 𝜌 𝑤𝐻avg

(B) and  (C) when  0 (isometric immersion in black), 0.001 (blue), 0.003 (red), and 0.005 𝑤trans 𝑤 ℎ 𝑤 =

(magenta). (D-G) The rolled shapes obtained from the theory for different  when  0.005.𝜌 ℎ 𝑤 =
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