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Searching for structural predictors of plasticity in dense
active packings†

Julia A. Giannini,∗ab Ethan M. Stanifer,c and M. Lisa Manning ‡ab

In amorphous solids subject to shear or thermal excitation, so-called structural indicators have been
developed that predict locations of future plasticity or particle rearrangements. An open question
is whether similar tools can be used in dense active materials, but a challenge is that under most
circumstances, active systems do not possess well-defined solid reference configurations. We develop
a computational model for a dense active crowd attracted to a point of interest, which does permit
a mechanically stable reference state in the limit of infinitely persistent motion. Previous work on
a similar system suggested that the collective motion of crowds could be predicted by inverting a
matrix of time-averaged two-particle correlation functions. Seeking a first-principles understanding
of this result, we demonstrate that this active matter system maps directly onto a granular packing
in the presence of an external potential, and extend an existing structural indicator based on linear
response to predict plasticity in the presence of noisy dynamics. We find that the strong pressure
gradient necessitated by the directed activity, as well as a self-generated free boundary, strongly
impact the linear response of the system. In low-pressure regions the linear-response-based indicator
is predictive, but it does not work well in the high-pressure interior of our active packings. Our
findings motivate and inform future work that could better formulate structure-dynamics predictions
in systems with strong pressure gradients.

1 Introduction
Dense amorphous solids – including powders, granular systems,
foams, structural glasses, and colloidal assemblies – are ubiqui-
tous in nature1–3. These materials exhibit unique mechanical
and dynamic features that emanate from their disordered struc-
ture4,5. Similarly, in some cases, active matter comprised of self-
propelled agents remains disordered as it achieves very high den-
sities; examples of such systems include bacterial assemblies6,
cellular tissues7,8, and groups of animals9,10. Although active
matter is relatively well-studied at low and intermediate densi-
ties11,12, an important open question is whether the emergent
mechanical properties of dense active matter are similar to, or
different from, their non-active counterparts13–16.

One starting point for answering this question is to analyze
properties of inherent or reference states of the amorphous solid
that underlies a given dense active material17–20. In this frame-
work, one considers how structural information from a static
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snapshot of the system, usually the positions and sizes of individ-
ual particles and the potential energy with which they interact,
can provide insight into dynamic yielding behavior when the sys-
tem is subject to external deformation or activity21–24. A large
body of work explores structure-dynamics predictions in sheared,
athermal disordered solids. In a recent article (Ref. 25), Richard
et. al. compare the performance of several classes of structural
indicators in identifying localized instabilities or defects in com-
puter glasses which forecast plastic rearrangements under shear
strain.

In this work, we focus on linear-response-based structural met-
rics, which utilize the spectrum of vibrational modes of a solid
computed in the harmonic approximation of the total potential
energy. As shown in Ref. 25 and other works, these metrics are
surprisingly good at identifying soft spots, or localized microstruc-
tural instabilities, in sheared amorphous solids26–29. A primary
goal of our work is to extend this class of structural indicators
to active solids. Thus, a first challenge is to identify an active
material with a time-invariant, well-defined reference state, as
most active systems are “self-shearing" and not mechanically sta-
ble22,30. Here, we consider assemblies of active particles that are
infinitely persistent in a radial direction towards a central point of
interest. As we will show, the symmetry of this biased activity per-
mits a force-balanced steady state, and allows us to exactly map
the relevant non-Hamiltonian self-propulsion forces onto an ef-
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fective external potential. This choice also necessarily introduces
a strong interaction pressure gradient and a self-generated free
boundary as depicted in Fig. 1.

boundary

center

Fig. 1 Properties of dense packings of active particles directed towards
a central point of interest. At mechanical equilibrium, these packings
feature a gradient in interaction pressure that has azimuthal symmetry.
The main panel shows the mean per-particle interaction pressure as a
function of radius from the edge of the system for an ensemble of 25
packings with N = 2048 and v0 = 0.5. The shaded region shows the
standard deviation of the interaction pressure at different locations in
the packings. The inset shows an example N = 2048,v0 = 0.5 system with
particles colored by the magnitude of their interaction pressures.

Previously, a similar geometry and set of dynamical equations
was studied by Bottinelli and Silverberg in a computational model
for dense human crowds31,32. Their study sought to predict den-
sity waves or localized excitations that are thought to correspond
to dangerous collective behaviors such as trampling or crowd-
crush events. Predicting these phenomena from basic structural
information or dynamics is an important first step toward avoid-
ing or controlling crowd disasters. Toward this goal, the au-
thors adopted techniques that have previously been deployed in
colloidal systems to estimate the system’s linear response33–35,
where the dynamical matrix is estimated from long-time averages
of two-particle correlation functions. In addition to analyzing par-
ticle trajectories from simulated crowds, the same authors applied
these techniques to video footage of real human crowds and were
indeed able to predict wave-like collective motion, albeit over a
very short time window9,36.

A significant challenge associated with this framework, which
approximates the linear response of the system, is that the equiv-
alence between the dynamical matrix and two-time correlation
functions only holds under certain assumptions: namely, that i)
the correlation functions are averaged over long time intervals;
ii) the dynamics of the system are thermal; and iii) there are no
changes to the underlying contact network during the relevant
time intervals. In real crowds or self-propelled particle models,
none of these assumptions hold. Therefore, the appropriate ana-
logue of the dynamical matrix in systems whose microscopic de-
tails are non-Hamiltonian remains unclear.

Our work is also informed by previous research on thin films
and other materials with free surfaces, as we expect that the free

boundary alone might alter the mobility or linear response of a
disordered packing. For example, a study by Sussman et. al.37

examines the vibrational modes of unstressed spring networks de-
rived from partially periodic jammed packings with free bound-
aries, and finds a population of low frequency modes that ex-
hibit an exponential decay in magnitude away from the edges. In
contrast, distinct work by Sussman and collaborators38 finds that
there is a decoupling between structure and dynamics near the
edge of glassy thin films, where an attractive interaction gener-
ates the free boundary. Specifically, the authors use a machine
learning approach to show that there are no special structural
features near the edge of the material, even though the mobility
is higher there. Taken together, this suggests that there may be
some material-dependent subtleties in whether the structure and
vibrational properties of a solid predict particle rearrangements
near a free boundary.

Here, we build the beginnings of a framework for predicting
localized rearrangements in dense active matter. We first demon-
strate that “point-of-interest" model systems have well-defined
solid reference states, which allow us to map the active forces
onto an effective potential that can be encoded in an augmented
Hessian or dynamical matrix. Next, we add noisy dynamics to
the system to perturb it away from its reference state, and study
whether the vibrational spectrum can be used to predict changes
in structure. We find that the strong pressure gradients in the
system may limit the predictive power of this extended linear
response. Ultimately, our results highlight that more sophisti-
cated methods such as non-linear-response-based structural met-
rics may be required to identify the microstructural entities that
determine the stability of active packings.

2 Methods

2.1 Model

We study an active particle model in two dimensions with over-
damped dynamics. Stable packings of N discs are formed by
evolving the following single-particle equation of motion from a
randomized initial state until force balance is reached:

˙⃗ri =
1
Γ

F⃗i,int + v0n̂i. (1)

Here, r⃗i contains the positional degrees of freedom of particle i, Γ

is a viscous damping coefficient set to unity, F⃗i,int is the net inter-
action force on particle i by its neighbors, v0 is the magnitude of
the self-propulsion velocity (which is the same for all particles), n̂i

is a unit vector pointing in the direction of self propulsion, and ˙(·)
denotes a time derivative. Pairwise repulsive forces between the
particles are determined via the Hertzian soft sphere potential:

Fi j,int(ri j) =

 k
Ri j

(
1− ri j

Ri j

)3/2
if ri j < Ri j

0 else,
(2)

where k is the interaction stiffness constant, Ri j = Ri +R j is the
sum of the radii of particles i and j, and ri j = |r⃗ j − r⃗i| is the dis-
tance between i and j. We employ 50:50 binary mixtures with a
1:1.4 ratio between the small and large particle radii to discour-
age crystallization. The direction of the force F⃗i j,int exerted on
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particle i by j is parallel to the line that connects j’s center to i’s.
In the limit of infinite persistence, in which we form initial refer-
ence configurations, n̂i always points toward a “point of interest"
located at the origin in the plane.

In the presence of translational noise, in which we examine ac-
tive dynamics initialized from each static reference configuration,
the single-particle equation of motion is given by

˙⃗ri =
1
Γ

F⃗i,int + v0n̂i + η⃗i, (3)

where η⃗i is white noise with zero mean and magnitude σ . We
study dynamics with different levels of noise by examining simu-
lations at different temperatures T = σ 2Γ

2 . The stochastic differ-
ential equations (Eq. 3) are integrated via the velocity Verlet algo-
rithm with a stable timestep determined by examining the relative
magnitudes of typical interparticle and self propulsion forces. See
Appendix A for more details of our implementation. An example
movie of the formation of a static reference configuration and en-
suing thermal dynamics is available in the supplemental material.

The dynamics of the polarization direction n̂i =(cos(θi),sin(θi))

of particle i in our noisy simulations are governed by the angular
equation of motion,

θ̇i =
1
τ

∆θi, (4)

where ∆θi is the (smallest) angular distance between n̂i and the
vector that points from i’s center to the point of interest in a given
simulation time step, and τ is a characteristic turning time set to
unity.

In the discussion that follows, we present results from an
ensemble of static packings with N ∈ {256,512,1024,2048,4096}
and v0 ∈ {0.25,0.5,1.0}, and corresponding noisy dynamics with
T ∈ {0.125,0.142,0.165,0.197,0.244,0.320}. For each state point,
we consider 25 duplicate simulations. Via a simple toy model
which we describe in the next section and in Appendix B, we
choose the parameter k such that the maximum packing frac-
tion in the largest configurations does not exceed approximately
φ ∼ 1.3. As we will see, while simplistic, this model creates me-
chanically stable reference configurations in the infinitely persis-
tent limit, and interesting glass-like (heterogeneous) dynamics in
the presence of thermal noise.

2.2 1D toy model

To obtain estimates for appropriate simulation parameters and
gain intuition for the expected steady-state behavior of our self
propelled particle model in the limit of infinite persistence, we
now consider a simple one-dimensional toy model. In a one-
dimensional packing of Ñ monodisperse particles with radius R
and self-propulsion velocity v0, take particle i = 0 to be fixed
at the origin. The other particles lie in the positive half of
the number line and are governed by the equation of motion
ẋi =

1
Γ ∑ j Fi,int−v0, where variables are defined similarly to above.

The particles with i > 0 have persistent velocities toward the ori-
gin.

Given the condition for mechanical equilibrium in this toy (and
our full) system, that the self-propulsion forces balance the re-
pulsive interparticle forces, we can derive an expression for the

typical pair overlap (1− ri j
Ri j

) as a function of distance from the
edge of the packing. Since this overlap is directly related to the
local packing fraction, we choose simulation parameters such as
the time step and k to satisfy a constraint on the maximum pack-
ing fraction of the system, which occurs near the origin. Further,
we predict the approximate form of an interaction pressure gradi-
ent which reveals the dependence of the static configurations on
the simulation parameters N and v0. As will be discussed further
below, this prediction for the interaction pressure also allows us
to form a scaling relation for the stiffness associated with local-
ized excitations in the interior of the active packings. The formu-
lation of this toy model highlights that the distance χ from the
free boundary is the most natural variable with which to examine
structural gradients in the system. Considering the circular geom-
etry of the packings generated by the full model (see Fig. 1), we
can approximate a radial slice of the 2D system using the 1D toy
model. Further details regarding these calculations can be found
in Appendix B.

2.3 Linear response and augmented Hessian framework

Linear-response-based structural metrics are computed from cur-
vatures of the potential energy landscape around a metastable
minimum. For a material composed of N interacting particles in
d dimensions, the total energy Uint(X⃗) is a function of the Nd-
dimensional vector X⃗ representing points in coordinate space.
Thus, the curvatures can be characterized by the Hessian, the
matrix of second partial derivatives of the potential energy with
respect to particle degrees of freedom:

M=
∂ 2Uint

∂ X⃗∂ X⃗
. (5)

The dynamical matrix, used to compute the linear response, is
computed strictly with respect to deformations from a stable ref-
erence configuration. Therefore, it is only well defined if such a
stable reference configuration exists. However, when it is defined,
the dynamical matrix is equivalent to the Hessian as derivatives
with respect to particle positions and those with respect to defor-
mations are identical. The eigenvectors and eigenvlaues of the
Hessian constitute the spectrum of vibrational modes and associ-
ated stiffnesses of a solid if all particle masses are unity. Previous
work on the mechanics of sheared athermal amorphous solids has
demonstrated that a low-frequency population of these harmonic
eigenmodes become quasi-localized under certain conditions, fea-
turing a disordered core of large putative displacements on tens of
particles decorated by a quadrupolar field which decays in magni-
tude as r−(d−1). These excitations are thus termed quasi-localized
modes (QLMs), and identify glassy defects that become unstable
under applied shear, generating structural rearrangements and
non-affine motion4,24,28.

For our initial “point-of-interest" crowd simulations, the self-
propulsion forces of the particles are infinitely persistent in the
radial direction. Thus, there is an extra contribution to the total
energy of the system which is exactly equivalent to a constant

Journal Name, [year], [vol.],1–14 | 3

Page 3 of 14 Soft Matter



force spring potential pulling the particles toward the origin:

Uext(X⃗) = Γv0 ∑
i

ri, (6)

where ri is the distance between particle i and the origin. There-
fore, we compute an “augmented Hessian", where the energy has
the usual contributions from interparticle interactions in addition
to those from activity, which occur on the on-diagonal entries of
the matrix:

Maug =
∂ 2(Uext(X⃗)+Uint(X⃗))

∂ X⃗∂ X⃗
. (7)

See Appendix C for details. In contrast to methods that probe the
linear response and stability of active particle packings using ap-
proximations of the Hessian, our augmented Hessian framework
is exact and requires only a snapshot of a static reference config-
uration.

2.4 Static quantities

Next, we describe two metrics for characterizing the static struc-
ture of the stable packings derived from the infinitely persis-
tent limit of our self propelled particle model, interaction pres-
sure and vibrability. Interaction pressure quantifies the distribu-
tion of forces in the active solid using a well-established Irving-
Kirkwood description of the stress tensor39,40. Vibrability is a
linear-response-based structural metric that is used to quantify
the propensity for local regions of the solid to deform under ex-
ternal deformation or active forcing25,27,41.

The interaction pressure on particle i is given by the trace σαα

int
of the interaction stress tensor whose components are a sum over
the repulsive forces generated between i and its neighbors:

σ
αβ

int =
1
Vi

∑
⟨i j⟩

Fα
i j rβ

i j, (8)

where the sum is over (unique) neighbors of i, Fα
i j is the α com-

ponent of the force of j on i, rβ

i j is the β component of the dis-
tance vector pointing from j to i, and Vi is the volume associated
with i in a radical Voronoi tessellation of the system42. Since the
Voronoi volumes of particles on the free boundary of the system
are unbounded, they are excluded in the results that follow.

Vibrability was first defined in Ref. 41 and uses the vibrational
spectrum of the Hessian of a jammed packing to describe the sus-
ceptibility of particles to excitation and rearrangement. The vi-
brability of particle i is given by

Ψi =
dN−d

∑
l

1
ω2

l
|ψ⃗l,i|2, (9)

where the sum is over nonzero vibrational modes of the Hessian,
ωl is the frequency of mode l, and |ψ⃗l,i|2 is the squared magni-
tude of the polarization of particle i in mode l. It was shown in
Refs. 27 and 25 that vibrability is a good predictor of localized
plastic rearrangements in sheared athermal computer glasses. In
the augmented Hessian framework, we compute vibrability as in
Eq. 9, but take the sum over the dN−(d+1) nontrivial vibrational
modes (as we discuss below) of the system.

2.5 Dynamic quantities

We next explore the connection between the static structure of
our active packings and their dynamics under small amounts of
translational noise. In sheared amorphous solids at zero tempera-
ture, it is well-established that a population of microstructural de-
fects are directly spatially correlated with future plastic deforma-
tion21,25,29,43,44. In contrast, in thermalized or active glasses it is
generally difficult to demonstrate such a direct spatial correlation,
except in non-molecular systems where the thermal fluctuations
can be vanishingly small34. This is not unexpected; given a large
population of underlying defects, various subsets of that popula-
tion can be excited by thermal fluctuations or active forcing at any
given time. Thus, resulting rearrangements of unstable regions
occur sporadically, and so at any given time point regions with
high mobility do not necessarily correlate strongly with structural
indicator fields. To address this challenge, Schoenholz and col-
laborators5,38,45–47 have developed a method that searches for
structure-dynamics correlations by analyzing whether an indica-
tor of structural softness defines a set of energy barriers that ac-
curately predict the rate of rearrangements.

We adopt this methodology here, analyzing particle rearrange-
ment probabilities as a function of temperature T and the struc-
tural indicator vibrability Ψ (Eq. 9). As in previous work45,48–50,
we use a hop indicator to identify rearranging regions of the sys-
tem. The indicator at a given time t is computed directly from
particle trajectory information with respect to two time intervals
A = [t − tR/2, t] and B = [t, t + tR/2]. We take tR = 10 in simula-
tion time units, consistent with the work of Refs. 5,38,48 which
chose tR ∼ 10 to correspond to the typical time taken for the sys-
tem to complete a rearrangement in their simulations of Lennard-
Jones polymer and bidisperse Kob-Andersen glasses. We have
verified this choice independently by examining distributions of
rearrangement times (determined as described below) in a rep-
resentative range of simulations, where tR ∼ 10 constituted a rea-
sonable upper bound for rearrangement time. Thus, pi,hop(t) for
particle i at time t is given by:

pi,hop(t) =
√
⟨(⃗ri −⟨⃗ri⟩B)

2⟩A ⟨(⃗ri −⟨⃗ri⟩A)
2⟩B, (10)

where ⟨·⟩A and ⟨·⟩B denote time averages over the specified in-
tervals. We identify particle rearrangement events at the loca-
tions/times in which the hop indicator exceeds a threshold value,
pthresh = 0.2. Since we seek to identify rearrangements that result
in irreversible structural changes, this threshold was chosen such
that, for a representative set of example noisy simulations, the
contact networks vary nontrivially for inherent structures com-
puted with respect to configurations directly preceding and suc-
ceeding the times where pthresh is crossed.

In thermal systems, one expects that rearrangement rates are
an Arrhenius function of energy barrier heights:

PR(S,T ) = P0(S)exp
(
−E(S)

T

)
, (11)

where T is temperature, P0 is a rearrangement attempt frequency,
and E is the energy barrier to rearrangement. Both P0 and E are
generically functions of the structural indicator field S.
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In Ref. 45, S is taken to be a machine-learning-derived soft-
ness field and the authors demonstrate that, after segmenting the
system into bins of constant S, the dynamics are indeed Arrhe-
nius with energy barriers that scale linearly with softness. In this
work, we take S to be the vibrability field, Ψ. Consistent with Ref.
45 and related works, in the discussion that follows we take an
Arrhenius relationship between PR(Ψ) and 1/T in a given region
to indicate that vibrability has successfully estimated the corre-
sponding rearrangement energy barrier.

Additionally, since there are strong spatial gradients in hop in-
dicator (as we demonstrate below) in our active packings, we
compute PR(Ψ) by averaging particle rearrangement counts over
multiple timesteps:

PR(Ψ) =
NR(Ψ)

N(Ψ) ·∆tR
, (12)

where NR is the number of rearranging particles with vibrabil-
ity Ψ in the time interval ∆tR, N(Ψ) is the number of particles
with vibrability Ψ, and ∆tR is the time between rearrangements
of particles with vibrability Ψ. ln(PR(Ψ)) measurements are com-
puted and averaged for each selected value of Ψ (computed from
the appropriate static reference configuration) over the duration
of each noisy simulation and over duplicate simulations with the
same parameter (N, v0, and T ) choices.

3 Results

3.1 Static packings

boundary

center

Fig. 2 Mean interaction pressure as a function of distance from the
exterior of packings. Individual lines correspond to the mean pressure
for 25 packing ensembles with N ∈ {256,512,1024,2048,4096} and v0 ∈
{0.25,0.5,1.0}. Each color represents a different system size N (increasing
from green (left) to magenta (right)) and each saturation level represents
a different self propulsion velocity v0 (increasing from light (bottom) to
dark (top)). Inset: Data rescaled according to the toy model discussed
in the main text and Appendix B, demonstrating an approximate collapse
for all choices of simulation parameters N and v0.

To study the material properties and stability of our ensemble
of reference configurations, we first examine structural features
and gradients. First, we computed the interaction pressure σαα

int
as a function of distance from the exterior of the packings. The

1D toy model introduced above and detailed in Appendix B pre-
dicts that interaction pressure should increase monotonically with
distance from the exterior of the system, χ. The toy model fur-
ther predicts that the scaling of interaction pressure with χ√

N⟨R⟩
should be approximately independent of simulation parameter
choice, N and v0, when rescaled by the quantity Γv0

√
N⟨R⟩ (where

⟨R⟩ ≈ 1.2 is the average particle radius and
√

N⟨R⟩ is a good esti-
mate for the radius of the packings). Thus, we define χ̃ = χ√

N⟨R⟩

and σ̃αα

int =
σ αα

int
Γv0

√
N⟨R⟩ . In Fig. 2, we show the mean interaction

pressure as a function of χ as well as the rescaled mean interac-
tion pressure σ̃αα

int as a function of χ̃. As shown in the inset of
the figure, these rescaled variables produce an approximate col-
lapse of the data across the parameter range of our ensemble.
The collapse is especially effective near the exterior (small χ̃) –
for large χ̃, there is noticeable deviation in the data that depends
systematically on system size N. This feature is due to contribu-
tions to the interaction pressure σαα

int by the Voronoi volume V
(see Eq. 8), which decreases monotonically with χ̃. In our defi-
nition of the rescaled variables σ̃αα

int and χ̃ motivated by the 1D
toy model detailed in Appendix B, these contributions from the
Voronoi volume are neglected for simplicity.

Fig. 3 Sample low-frequency vibrational mode of the augmented Hessian
for a static packing with N = 2048 and v0 = 0.5. The mode shows a large
amount of collective motion around the exterior of the system compared
to the interior.

Inspired by studies that utilize linear-response-related met-
rics to form structure-dynamics predictions as discussed above,
we compute and diagonalize the augmented Hessian, examining
the spectra of vibrational modes of our static reference config-
urations. We identify one rotational zero mode and two low-
frequency trivial translational modes in the spectra of our pack-
ings. Typically, the vibrational spectra of solids have d transla-
tional modes with zero frequency, but in our framework these
modes have finite frequency due to the presence of the external
potential (Eq. 6). In Fig. 3, we show an example nontrivial low-
frequency augmented Hessian eigenmode that is representative
of typical soft modes for these systems. The mode exhibits wave-
like motion emanating from the center of the packing as well as
increased surface mobility. However, this vibrational mode does
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(b) (c)

center

(a) boundary

Fig. 4 (a) Mean rescaled vibrability as a function of rescaled distance from the exterior of the packings, color scale as in Fig. 2. The inset shows the
unscaled data and a sample value of Ψplat as a guide to the eye. (b) The same configuration as in Fig. 3 with each particle colored by its vibrability.
Particles on the interior are much less susceptible to rearrangements than those near the free boundary. (c) Measured vibrability plateau values Ψplat
compared to corresponding predicted plateau values ΨQLM. The dashed line of slope 1 indicates direct proportionality between ΨQLM and Ψplat.
Color scale as in (a), and each marker represents a different system size ranging from N = 4096 (diamonds, left) to N = 256 (circles, right).

not show any characteristics of QLMs, as the putative collective
displacement primarily involves a large number of particles on
the exterior of the system and lacks the quadrupolar structure
that has been shown to represent instabilities in traditional glassy
systems4,24,28. Through direct examination, we have confirmed
that such quasi-localized excitations are not commonly realized
in the low-frequency modes of the augmented Hessians of our
systems, especially near the interior of the packings. This is con-
sistent with intuition we detail below regarding the stiffness of
QLMs as a function of local pressure (see Appendix D). Further,
it suggests that vibrability, a weighted sum over the soft modes
of the augmented Hessian (Eq. 9), may struggle to predict rear-
rangement events on the high-pressure interiors of our packings.

The observation that excitations in the low-frequency regime of
augmented Hessian spectra are concentrated near the edge of the
system is highly reminiscent of previous work on jammed pack-
ings with free boundaries (Ref. 37). Since the focus of our study
is primarily to identify localized modes that predict plastic rear-
rangement in a specific class of modeled active solids, we do not
develop such in-depth mode analysis here. However, we empha-
size that our model differs significantly from previously analyzed
systems, as our packings feature strong pressure gradients and
those in Ref. 37 have homogeneous overall pressure. We explore
the decay in vibrational magnitude exhibited in the low-frequency
modes of the augmented Hessian in Appendix E.

We next use our augmented Hessian spectra to develop struc-
tural indicator fields. Fig. 4b shows a static configuration with
N = 2048 and v0 = 0.5 where each particle is colored by its vibra-
bility, as defined by Eq 9. Similar to the low frequency vibrational
modes themselves, the vibrability is large on the exterior and de-
creases quickly approaching the center of the packing. This trend
is also depicted in the inset of Fig. 4a where we show the mean
vibrability as a function of χ̃ for our ensemble of packings.

Each vibrability profile reaches a plateau value at large χ̃ in the
interior. We hypothesize that this plateau value, Ψplat, is dom-
inated by contributions from localized excitations whose vibra-
tional frequencies depend on local pressure and thus on the sim-
ulation parameters N and v0. By combining the prediction for

the pressure from the 1D toy model detailed in Appendix B with
a scaling relation for the stiffness of QLMs as a function of local
pressure, we are able to generate a prediction for the vibrabil-
ity of QLMs near the center (χ̃ ∼ 1) of the packings, ΨQLM, as a
function of N and v0. Details of this argument are discussed in
Appendix D.

When the data are rescaled according to this prediction, as
shown in the main panel of Fig. 4a, the vibrabilty profiles exhibit
an approximate collapse near the center of the packings (χ̃ ∼ 1).
On the exterior, there is more significant variation among the
curves, which agrees with the interpretation that the vibrability
in this regime has significant contributions from low-frequency,
spatially decaying surface vibrations as depicted in Fig. 3.

Additionally, the large-χ̃ collapse is poorer for systems with the
largest local pressures (e.g. the dark magenta curve in Fig. 4a cor-
responding to systems with N = 4096 and v0 = 1.0). To quantify
the quality of this collapse as a function of N and v0, we plot the
measured vibrability plateau values Ψplat vs. the predicted val-
ues ΨQLM in Fig. 4c (see Appendix D for details). As expected,
this analysis highlights deviations of our scaling prediction from
the actual vibrability plateau values Ψplat at the largest values
of N and v0. These deviations are likely due to increased multi-
body interactions and larger local pressure fluctuations (that scale
as N1/2 and v1

0 similarly to the pressure itself) which are not ac-
counted for in our simple 1D model and vibrability scaling argu-
ment. In Appendix F, we confirm that deviations from our scaling
predictions are smaller in a system with higher particle stiffness
k, consistent with this expectation.

3.2 Dynamics in presence of translational noise

Next, we examine the dynamics that result when thermal
noise is added to the particle trajectories. Starting from
the stable reference configurations discussed above, noise is
added with magnitude controlled by the temperature T ∈
{0.125,0.142,0.165,0.197,0.244,0.320}. Using the hop indicator
(Eq. 10 above) as a measure of particle mobility, we compare the
rearrangement dynamics at different locations in the packings. As
shown in Fig. 5, for our ensemble of systems with N = 2048 and
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v0 = 0.5, there is a dramatic decrease in the mean hop indicator as
a function of χ̃ for all temperatures. These results are similar for
other parameter (N and v0) choices. This dynamic profile is rem-
iniscent of the vibrability profiles presented above, which predict
increased mobility near the edge of the packings.

boundary

center
increasing 𝑇

Fig. 5 Mean hop indicator as a function of rescaled distance from
the exterior of the 25-duplicate ensemble of packings with N = 2048 and
v0 = 0.5. Each color represents a different temperature ranging from T =

0.125 (bottom, dark) to 0.320 (top, light). The horizontal dashed line is
placed at pthresh = 0.2 to show the hop indicator threshhold which repre-
sents particle rearrangements. The grey line shows the maxiumum hop
indicator over time and simulation duplicates for systems with N = 2048,
v0 = 0.5, and T = 0.125. The inset shows an example configuration
with T = 0.197 colored by threshholded hop indicator. Particles with
phop < pthresh are colored grey and those with phop ≥ pthresh are colored
according to the magnitude of the hop indicator. Notably, the maximum
hop indicator profile and the snapshot in the inset show that rearrange-
ments indeed occur throughout the entire depth of the packings.

Even though the majority of rearrangement events occur on
or near the exterior of the packings, it is important to note that
particles on the interior of the system do undergo occasional
rearrangement. This can be seen from the snapshot in the in-
set of Fig. 5, where particles are colored grey if pi,hop < pthresh,
and colored according to the magnitude of the hop indicator if
pi,hop ≥ pthresh. Similarly, the grey curve in Fig. 5 shows the maxi-
umum of the hop indicator in different regions of the lowest tem-
perature systems, which consistently exceeds pthresh.

The data we present here highlight important similarities to
and differences from results regarding the structure and dynam-
ics glassy thin films. Fig 6 shows the average interaction pressure,
vibrability, and hop indicator as a function of χ̃, similarly to Fig. 1
in Ref. 38. Notably, there are upticks in both hop indicator and
vibrability near the free boundary, whereas the thin films stud-
ied in Ref. 38 exhibit only an analogous uptick in hop indicator.
The thin film systems also exhibit little-to-no gradient in pressure.
These differences highlight the utility of our augmented Hessian
framework, and suggest that the pressure gradient in our active
packings contributes significantly to their overall mechanical be-
havior.

Lastly, we study rearrangement probabilities in our thermal-
ized packings as a function of temperature and reference config-

boundary

center

Fig. 6 Structural and dynamic gradients as a function of rescaled dis-
tance from the exterior of the packings. Mean (rescaled) interaction
pressure (dotted, black) and mean vibrability (solid, blue) are measured
from the ensemble of static structures with N = 2048 and v0 = 0.5 and
mean hop indicator (dashed, red) from the corresponding dynamics for
T = 0.197.

uration vibrability Ψ in order to determine whether rearrange-
ment energy barriers are well-represented by Ψ. In Fig. 7, we
show the mean of the natural log of the rearrangement prob-
abilities in nbin = 10 bins of approximately constant vibrabil-
ity (independent of χ) as a function of inverse temperature
for our ensemble of systems with N = 2048, v0 = 0.5, and T ∈
{0.125,0.142,0.165,0.197,0.244,0.320}. Strikingly, the behavior is
Arrhenius for large values of Ψ≳ 0.22, but sub-Arrhenius for small
values of Ψ ≲ 0.22. This result is qualitatively independent of N
and v0 and varies significantly from the results of Refs. 5, 38, and
47, which identified Arrhenius behavior for individual values of
softness in both bulk, thin film, and active/biological systems. Re-
calling the static structural gradients (vibrability and interaction
pressure) above, we notice that the sub-Arrhenius portions of the
system lie in the interior of the packing, where the interaction
pressure is high and soft modes are suppressed.

Taken together, our results indicate that dynamic rearrange-
ments in the interior of packings are generally not well-predicted
by our augmented Hessian framework and that the vibrability
alone is not a good structural indicator in the interior of this sys-
tem. We note that useful information may still exist, for instance,
in local variations in vibrability (which we preliminarily exam-
ined and found that it did not correlate well with rearrangement
events), but our work suggests that other approaches such as non-
linear-response-based metrics will be more fruitful, as discussed
below.

4 Discussion and Conclusions
In this work, we studied results from computer simulations of a
soft active particle model in two dimensions with directed self-
propulsion in the overdamped regime. We analyzed static struc-
tures that are formed in the infinitely persistent limit of the ac-
tivity and found a strong pressure gradient that is consistent with
a simple 1D toy model. We then developed an augmented Hes-
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Fig. 7 Arrhenius plot for ensemble of packings with N = 2048, v0 = 0.5,
and the full range of temperatures we examined. The average log of the
rearrangement probability in different bins of constant vibrability is plot-
ted as a function of inverse temperature. There are 10 bins of vibrability
ranging from Ψ ≈ 0.18 (bottom) to Ψ ≈ 0.73 (top). For vibrability bins
where the relationship is well approximated by a linear fit (determined by
an associated chi-squared value of less than 0.05 ) (solid lines, cool col-
ors), the rearrangement dynamics are Arrhenius, whereas bins exhibiting
nonlinear trends represent sub-Arrhenius regions of the system (dashed
lines, warm colors).

sian to capture the active forces in our analysis of the vibrational
properties of the system. Further, we used these eigenspectra and
a structural indicator, vibrability, to estimate rearrangement en-
ergy barriers in analogy to previous work on the dynamics of
supercooled liquids and sheared amorphous solids. Then, we
observed the resulting dynamics when simulations with transla-
tional noise are initiated from the static configurations. Similar to
other particle-based systems with free boundaries, we measured
a gradient in mobility that persists through the depth of the pack-
ings and features enhanced mobility near the free boundaries.
We found that, near the boundary of the packings, vibrability is a
good structural indicator of energy barrier heights and rearrange-
ment probabilities, but it fails to represent these features in the
interior of the systems.

This failure is surprising, as previous work by Bottinelli and
collaborators9,31,32,36 suggested that vibrational analyses of real
crowds and crowd models, estimated from a matrix of time-
averaged two-particle correlation functions, were able to forecast
localized rearrangements and wave-like motion. Similary to the
results which we present here, in Ref. 31, the authors note that
simulated half-circular point-of-interest crowds exhibit approxi-
mately linearly increasing pressure approaching a point of inter-
est. However, by examining a small number of low-frequency
vibrational modes (∼ 3% of the spectrum) derived from an ap-
proximation of the Hessian, Bottinelli et. al. identified localized
soft regions on the interior of their packings which directly spa-
tially correlated with increased noise-induced particle mobility.
Distinctly, our results suggest that such correlations are quite dif-
ficult to draw from linear-response-based analyses in regions of
high local pressure.

Our analysis suggests an updated interpretation of the results

of Refs. 31 and 36. Recently, it has been shown in both the-
oretical works and experiments that the dynamics of active sys-
tems do not obey the fluctuation-dissipation theorem (FDT) a pri-
ori51–54. Furthermore, to construct the correlation functions nec-
essary to approximate the Hessian in the framework of Bottinelli
and coworkers, one must indeed time-average over dynamics
where the contact network underlying the system has changed;
thus, averages are taken over multiple metastable states. As we
outlined in Sec. 1, work by Henkes et. al.17 suggests that this
approximation method only holds under specific conditions re-
garding the dynamics of a system (that they satisfy FDT) and the
existence of a well-defined, time-invariant solid reference state
underlying its structure. When these conditions are not met, the
correspondence of the approximation to the real linear response
of the system might actually be quite poor.

Further, our study demonstrates that the real (augmented)
Hessian cannot predict rearrangements in high pressure regions.
Therefore, we speculate that the time-averaged approximation
picks up dynamic features that are not present in the exact Hes-
sian itself, and that these features are important for the predic-
tive capability of the method of Bottinelli et. al.. Future work
might further compare these approaches to enhance our overall
forecasting capability surrounding the structure and dynamics of
complex active solids. In fact, the model examined in our study
would be appropriate for a direct comparison between these ap-
proximate and exact approaches.

Additionally, we note that even though the choice of the sim-
ple soft sphere model described above (and in Ref. 31) is rather
artificial and may not accurately represent the interactions in
real human crowds, these studies serve as important initial ex-
plorations of the connection between structure and dynamics in
active solids. If our framework is to be used to understand and
control the behavior of real crowds, more consideration should
be given to determining “effective potentials" that might govern
pairwise interactions between human beings as well as interac-
tions between humans and external stimuli (such walls, points of
interest, and other environmental factors)55,56.

Although our work here focused on “point-of-interest" active
crowds, since the directed activity can be mapped onto an exter-
nal potential, our observations are likely relevant to other classes
of systems with pressure gradients and self-generated boundaries.
For example, particle aggregates formed under microgravity con-
ditions exhibit a spherical profile, gradients in density, and a free
boundary57,58. Similarly, recent studies investigating the relax-
ation of active colloidal glasses attained sedimentation by inclin-
ing the experimental set-up at a small angle. As a result of this
geometry, Klongvessa et. al. measured a gradient in density at all
levels of particle activity and resultant gradients in mobility59,60

Additionally, a number of works study granular shear flow and
shear banding in cylindrical Couette-like geometries under vary-
ing gravitational strength and/or confining pressure61,62. Exper-
imental and simulated systems with this set-up exhibit localized
particle rearrangements in the presence of density heterogeneity.
Further, experiments on particulate systems that are driven by
external magnetic fields or vibrations exhibit enhanced surface
mobility and glassy dynamics characterized by the coexistence of
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populations of particles with arrested dynamics and those that un-
dergo large displacements via occasional neighbor exchanges (re-
ferred to as “dynamical heterogeneity" in some literature)62–64.
Lastly, we note that the structure and dynamics of sand and grain
piles are largely dominated by the presence of pressure gradi-
ents65,66.

A relevant question to our discussion is whether facilitated dy-
namics occur in systems with free boundaries, where enhanced
mobility and frequent structural changes on the exterior of the
packings could facilitate other nearby rearrangements that prop-
agate in toward the center over time. In Ref. 38, Sussman
et. al. measure a softness propagator which suggests that facili-
tation does not explain enhanced surface mobility in glassy thin
films. A similar analysis might be interesting in systems that also
have strong pressure gradients.

In general, our results suggest that an augmented Hes-
sian framework could be directly applied to forming structure-
dynamics predictions in any solid-like system for which one can
i) define suitable a reference configuration and ii) write down a
twice-differentiable augmented potential energy that completely
captures the characteristics of any internally-generated active
forces or external applied fields. Still, as we have shown, there
are material-dependent subtleties that effect the predictive power
of our technique such as the influence of global pressure gradi-
ents and boundary conditions on material stability. While most
analyses involving linear-response-based structural metrics have
been applied to mechanically stable systems where the Hessian
is positive-definite, recent work investigating avalanche dynam-
ics in sheared amorphous solids suggests that Hessians describing
unstable systems may also be useful for predicting dynamics67.

Last, we note that our methods are likely applicable to systems
with different types of noise. While we focused here on a sys-
tem with translational (additive) noise – the stochastic term ηi

in the equation for particle positions, Eq. 3 – many studies of
active matter focuses on systems with rotational (multiplicative)
noise, where a stochastic term is instead added to the angular
dynamics, Eq. 4. In the absence of interactions, such dynamics
generate particles that execute persistent random walks. We have
performed some preliminary simulations indicating that the dy-
namics in dense active crowd simulations with rotational noise
are remarkably similar to those presented here for systems trans-
lational noise, especially when the noise magnitude is not too
large. This suggests that our methods may be used to analyze
systems with finite persistence times, which provides an interest-
ing avenue for future work.

Given our observation that linear-response-based structural in-
dicators fail in systems with strong pressure gradients, an obvious
next question is how to formulate a better-performing predictive
framework. In a number of recent works, a class of novel non-
linear-response-based structural indicators have been constructed
that address many of the shortcomings of simple linear-response-
based metrics4,24,25,68–70. Namely, these so-called nonlinear plas-
tic modes (NPMs) and their approximations have been shown to
be robust representations of QLMs, the microstructural entities
that control rearrangements in disordered solids. Importantly,
these methods can quantify the asymmetry of the energy land-

scape. Thus, even if a mode has very high curvature – so that the
mode does not appear in the low-frequency harmonic spectrum –
it can still have a low energy barrier provided the mode is highly
asymmetric.

Therefore, NPMs are a very promising future avenue for con-
structing a non-linear-response-based structural metric that suc-
cessfully predicts rearrangements in systems with gradients in in-
teraction pressure. As we detail in Appendix D, a simple scal-
ing argument can be constructed which suggests that the stiffness
of rearrangement-inducing excitations (QLMs), increases quickly
with local pressure. This provides a potential explanation as to
why vibrability derived from the augmented Hessian is not sen-
sitive to QLMs that exist in the interior of our active packings,
and highlights why NPMs are promising. Alternate methods for
computing structural indicators could include machine learning
approaches, where it will be important to determine how best
to handle the strong gradients in pressure during the supervised
learning phase. Overall, our work has elucidated that struc-
tural indicators for systems with pressure gradients should not
be based on linear response alone.
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Appendices

A Model details
The equations of motion described above for the dynamics of our
self propelled particle model in the limit of infinite persistence
and in the presence of translational noise (Eqs. 1 and 3) were in-
tegrated using the velocity Verlet method. To ensure numerical
stability, during the formation of static reference configurations
(in the absence of noise), we used a variable timestep propor-
tional to the maximum unbalanced force in the system. These
static simulations were run until the maximum unbalanced force
reached a threshold of |F⃗unbalanced| < 10−8. In the noisy simu-
lations, random numbers were drawn from a Gaussian with zero
mean and unit variance, and rescaled by the variance of the noise,
proportional to σ

√
dt where dt = 10−3 is the simulation time step,

which was held constant71,72. See the description of the 1D toy
model below for a description of how this time step was chosen.
In both static and dynamic simulations, particles whose positions
were very close (within the precision of the simulation) to the
central point of attraction were pinned to that location to pre-
vent trivial fluctuating dynamics and numerical instability in the
case of the static simulations. The simulation was implemented
in Python, and just-in-time compiled with Numba73 to increase
performance.
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B 1D toy model

In this appendix, we closely examine the one dimensional toy
model mentioned in the main text which we use to pick appro-
priate simulation parameters and make general predictions about
the structural features of our static packings. The model con-
sists of a one-dimensional packing of Ñ monodisperse particles
with radius R and self-propulsion velocity v0. The 0th particle is
fixed at the origin, and the other particles lie in the positive half
of the number line and are governed by the equation of motion
ẋi =

1
Γ ∑ j F int

i, j − v0. Similarly to our full model, the force between

two overlapping particles, F int
i, j , is given by F int

i, j = − ∂φ int

∂xi
with

φ int(xi j) =
k
α
(1− xi j

2R )
α where xi j = |x j −xi| is the distance between

the particle centers and α = 2.5 for Hertzian soft spheres. Using
the condition for force balance in the system, that the interpar-
ticle forces must cancel the (cumulative) self-propulsion forces,
we obtain an expression for the force F int

i−1,i between two adjacent
particles:

F int
i−1,i = Γv0(Ñ − i). (13)

This expression also highlights that χ, the distance from the ex-
terior of the packing to a particle’s center, is a natural variable in
which to express structural and dynamic gradients of the system.

We will first estimate the maximum overlap in this toy system
to identify an appropriate choice for the simulation parameter k.
By setting i = 1 and taking Ñ to be large, we can approximate
the maximum overlap γi, j = 1− xi j

2R in the 1D packing, as F int
0,1 =

k
2R (γ0,1)

α−1 ≈ Γv0Ñ implies that

γ0,1 ≈
(

2RΓv0Ñ
k

) 1
α−1

. (14)

For a packing of crystalline monodisperse spheres of radius R
in 2D, the packing fraction φ can be estimated for γ < 0.5 via
φ ≈ π

2
√

3
1

(1−γ)2 . Applying the estimate for γ0,1 to a circular pack-
ing in 2D, we first assume that radius of such a packing is approx-
imately 2ÑR. Ñ is again the number of particles in an analogous
1D packing representing a radial slice of the 2D system. Thus, the
area of the 2D packing is A ≈ 4πÑ2R2. We can also approximate
the 2D packing area by A ≈ NπR2 where N is the total number of
particles in the system. Equating these, we obtain Ñ ≈

√
N

2 and

γ0,1 ≈ (ΓRv0
√

N
k )

1
α−1 . Using this relation for the overlap and the

above approximation of the packing fraction, we choose k such
that the maximum packing fraction in the center of the largest
system, N = 4096, does not exceed ∼ 1.3, yielding k ∼ 1500. We
note here that the above arguments suggest that

√
NR is a good

approximation for the overall radius of our 2D packings, which
motivates the definitions of the rescaled variables χ̃, Π̃, and σ̃αα

int .

Next, using the above expressions, we can compute Πi =

Fi−1,i xi,i−1 as a function of i, which corresponds approximately
to individual contributions to interaction pressure as a function
of distance from the exterior of the packing in this toy model. Us-
ing Eqs. 13 and 14 (slightly modified to express the overlap as a

boundary

center

Fig. 8 Toy-model analog to Fig. 9 below. Π, the approximated inter-
action pressure, is shown as a function of χ. In the inset, Π and χ are
rescaled to Π̃ = Π

Γv0
√

N⟨R⟩ and χ̃ = χ√
N⟨R⟩ according to Eq. 16, showing a

collapse close to the free boundary of the system. The color map is the
same as that of Fig. 2 in the main text.

general function of i), we have:

Πi = Fi−1,i xi−1,i =

2RΓv0(Ñ − i)

(
1−
(

2RΓv0(Ñ − i)
k

) 1
α−1
)
. (15)

Considering simple geometric arguments to transform this into a
function of χ, we finally obtain:

Π(χ) = Γv0χ

(
1−
(

Γv0χ

k

) 1
α−1
)
. (16)

This function is plotted for a realistic range in χ and for appro-
priate parameter choices in Fig. 8. For direct comparison to our
simulation data, Fig. 9 shows Π (Π̃) as a function of χ (χ̃) for the
same ensemble of simulations as Fig. 2 in the main text. Clearly,
the toy model (including the relevant rescaled variables χ̃, Π̃, and
σ̃αα

int ) succeeds in capturing the behavior of the static packings
produced in our full 2D model.

The definition of Π in Eq. 16 above differs from Eq. 8 for σαα

int
by a factor of the Voronoi volume V associated with a given par-
ticle. Since σαα

int is an intensive variable commonly examined in
literature studying jammed packings and active systems, we fo-
cus on it primarily in the main text, despite the simplicity of Π

in our toy model. Thus, here, we estimate particle Voronoi vol-
ume in the framework of our 1D toy model by examining typical
interparticle distances xi−1,i. We obtain:

V (χ) = ⟨R⟩

[
2+
(

Γv0χ

k

) 1
α−1
(
−1−

(
1− 2⟨R⟩

χ

) 1
α−1
)]

. (17)

The full estimate for the interaction pressure σ in our 1D toy
model is thus given by the quotient of Eqs. 16 and 17. This ex-
pression for V suggests that in our systems, the Voronoi volume
associated with a particle decreases monotonically with χ̃ for all
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boundary

center

Fig. 9 Simulation data corresponding to the toy-model prediction de-
picted in Fig. 8 above. Color map as in Fig. 2 in the main text. Π, the
approximated interaction pressure, is shown as a function of χ. The inset
shows the rescaled approximate pressure Π̃ as a function of χ̃.

N and v0. Further, larger packings achieve smaller overall val-
ues of V (due to increased particle density) as χ̃ → 1. Thus, σαα

int
grows with N near χ̃ = 1 faster than Π does. This trend can be
seen in Fig. 10, where we show σ(χ) and σ̃(χ̃) computed in our
toy model, in direct comparison to Fig. 2 in the main text.

boundary

center

Fig. 10 Toy-model analog to Fig. 2 in the main text. σ , the interaction
pressure, is shown as a function of χ. In the inset, σ and χ are rescaled
to σ̃ = σ

Γv0
√

N⟨R⟩ and χ̃ = χ√
N⟨R⟩ according to Eq. 16, showing a collapse

close to the free boundary of the system.

Last, we choose a stable simulation time step by considering the
maximum force generated between two particles in one timestep.
In our toy model of monodisperse spheres in one dimension, if
the 0th particle and 1st particle satisfy x01 = 2R at time t, the
largest amount of overlap that can be generated via particle 1’s
self propulsion at time t +dt is given by v0dt

2R . Thus, if we demand
that the corresponding force generated by this overlap be less
than some multiple ε of the self-propulsion force, we obtain an
inequality for the simulation time step, dt < ( εv0γ2R

k )1/(α−1)( 2R
v0
).

For our choice of simulation parameters and ε ∼ 1%, this gives a
timestep of dt ∼ 10−3.

C Augmented Hessian
As discussed in the main text, a key result of our work is the
formulation of the augmented Hessian framework. By exactly
mapping directed self propulsion in our static packings to an ex-
ternal potential, we account for the contributions of active forces
to the energy of the system. We compute Maug from this total
potential energy, and examine the corresponding soft modes. In
this appendix, we compute the augmented Hessian for a general
external potential.

Consider the total potential energy of the system, given by
U(X⃗) = Uint(X⃗)+Uext(X⃗) as described above. Taking the second
derivative of U with respect to two degrees of freedom xiα and
x jβ (with Latin indices corresponding to particles and Greek in-
dices corresponding to spatial coordinates), we obtain a general
expression for an element of the augmented Hessian.

Maug,i jαβ =
∂ 2U

∂xiα ∂x jβ
=

∑
⟨i j⟩

[
∂φint
∂ ri j

∂ 2ri j

∂xiα ∂x jβ
+

∂ 2φint

∂ 2ri j

∂ ri j

∂xiα

∂ ri j

∂x jβ

]
+

∑
k,γ,λ

[
∂ 2φext

∂xkγ ∂xkλ

δkiδγα δk jδγβ

]
, (18)

where Uint = ∑⟨i j⟩ φint(ri j) is a sum over energies of interacting
pairs and Uext = ∑k φext(xkγ ) is a sum over external potential en-
ergies of individual particles. Given the form of the second term
of this equation, it is clear that the external potential only has
nonzero contributions to the augmented Hessian on the block di-
agonal terms of the matrix.

D QLM stiffness scaling relation
To provide intuition for the utility of NPMs in future work that
seeks to identify localized instabilities in disordered and active
packings with unique structural features such as pressure gradi-
ents and free boundaries, we formulate a scaling relation for the
stiffnesses associated with quasi-localised excitations (QLMs) in
systems with varying homogeneous pressure based off of a body
of work that studies the micromechanics of computer glasses. In
Ref. 70, Gartner et. al. define κ⃗z ≡ M : z⃗⃗z ∼ ω2

z⃗ , the stiffness as-
sociated with the mode z⃗. Next, in Refs. 74 and 75, the authors
examined local deformations in model glasses and identified a
characteristic energy scale associated with quasi-localized exci-
tations, which can be given by ωQLM ∼ ωg ∼ cs

ξg
where ξg is a

glassy length scale and cs is the shear wave speed that scales with
the overall pressure p of jammed packings as cs ∼ p1/4. Last,
through examining sample-to-sample fluctuations in the shear
moduli of computer glasses with short-range attractive potentials,
González-López et. al. showed in Ref. 76 that the length scale ξg

changes with pressure as ξg ∼ p−1/2d where d is the number of
spatial dimensions of the glass.

Combining the above, we finally obtain a scaling prediction for
ωQLM with pressure, ωQLM ∼ p(d+2)/4d . Thus, κQLM ∼ p for QLMs
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in 2D systems with homogeneous pressure. Taken in the con-
text of our results above which suggest that this type of localized
instability is difficult to identify in the harmonic approximation
for systems with strong pressure gradients, we expect that rear-
rangements could be more effectively predicted in future studies
by searching for modes with very high asymmetry in the poten-
tial energy landscape that may be quite stiff relative to typical
soft modes. In passing, we note that numerical studies inves-
tigating the vibrational modes of glasses approaching the unjam-
ming transition have predicted that the density of QLMs decreases
sharply with increasing overall pressure77.

Now, we use this scaling relation for ωQLM to formulate the
prediction for the plateau vibrabilities shown in Fig. 4. Recall
Eq. 9 above for the vibrability. Given the spatial features of
QLMs, namely that they feature large polarization vectors on a
small number of particles, we conclude that the squared polar-
ization magnitudes in the sum for vibrability are of order one
for QLMs. Thus, contributions to vibrability by QLMs are dom-
inated by their inverse squared frequencies. Since we showed
above that ωQLM ∼ p1/2 in 2D, we conclude that ΨQLM ∼ p−1. Us-
ing Eq. 16 as an estimation of the local pressure, we compute
ΨQLM for the appropriate parameters in our model when χ̃ ∼ 1.
Since low-frequency, wave-like vibrational modes decay quickly
in magnitude away from the exterior of our packings (see Fig. 3
and Appendix E below), it is likely that ΨQLM is the most dom-
inant contribution to vibrability in the interior. Note that this
prediction is thus not valid for small χ̃.

E Mode analysis

Fig. 11 Spatial decay of vibrational magnitudes as a function of disatance
from the exterior χ for systems with v0 = 0.5 and varying system size.
Color map is similar to that of Fig. 2. The black dashed lines show
⟨|ψ⃗|2⟩ ∼ χ−1 as a guide to the eye.

Similarly to the analysis of Sussman et. al. in Ref. 37, in this
appendix, we study the spatial characteristics of low-frequency
vibrational modes of the augmented Hessian. Fig. 11 shows the
mean squared vibrational magnitude as a function of χ for sys-
tems with v0 = 0.5 and N ∈ {256,512,1024,2048,4096}. The av-
erage was taken over modes with ω ≤ 0.4 and over simulation
duplicates. The results for systems with v0 = 0.25,1.0 are very

similar. Contrasting the results of Ref. 37, we do not observe an
exponential decay in the vibrational magnitude for any of the sys-
tems we examined. Rather, it appears that there is a plateau in
|ψ⃗|2 for small χ ≲ 4.5, followed by a ⟨|ψ⃗|2⟩ ∼ χ−1 power law de-
cay. Further, we can identify a lengthscale χ∗ associated with the
onset of this χ−1 scaling. For the ensemble of vibrational modes
studied here, χ∗ ∈ (2.0,4.5) and increases monotonically with N.
This analysis is consistent with the results we presented above for
the vibrability of our packings, which reaches a plateau for large
χ.

F Higher-order interactions and role of large particle
overlaps

In Figs. 4ac of the main text, it is clear that our prediction for
the dominant contribution to vibrability near the center of the
packings, ΨQLM, deviates from the measured vibrability plateau
values, Ψplat, for systems with large values of N and v0. In this ap-
pendix, we study systems with a higher value of inter-particle in-
teraction stiffness than the one shown in the main text. We expect
that a higher value of stiffness k will suppress the magnitude of
overlaps and higher-order interactions, where more than two par-
ticles overlap each other. As these features are inherently present
in two-dimensional packings and absent in our one-dimensional
toy model for interaction pressure, we hypothesize that these ef-
fects contribute to disagreement with our scaling prediction and
that increasing k will therefore reduce the observed deviations.

Fig. 12 Figs. 4ac of the main text reproduced with additional rescaled
vibrability data from a small (5-duplicate) ensemble of systems with N =

4096, v0 = 0.5, and k = 3000. The original k = 1500 data (dashed) has the
same color map as in Fig. 4a, and the additional k = 3000 data (solid)
is plotted in different shades of red corresponding to v0 values ranging
from 0.25 (light, bottom) to 1.0 (dark, top). The data in the inset has a
similar color map, where star markers correspond to the k = 3000 data.

Fig. 12 shows the mean vibrability rescaled by ΨQLM (see the
main text and Appendix D above for details) as a function of χ̃

for the ensemble of (k = 1500) packings discussed in the main
text (dashed lines) as well as a small ensemble with N = 4096,
v0 ∈ {0.25,0.5,1.0}, and k = 3000 (solid lines) illustrating a better
approximate collapse for large χ̃. The inset to Fig. 12 shows Ψplat
vs. ΨQLM for the same expanded dataset, confirming that indeed
deviations from the scaling prediction are smaller in the systems
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with larger k.
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