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Effect of Photon Counting Shot Noise on Total Internal
Reflection Microscopy

Fan Cuia and David J. Pineab

Total internal reflection microscopy (TIRM) measures changes in the distance between a colloidal
particle and a transparent substrate by measuring the scattering intensity of the particle illuminated
by an evanescent wave. From the distribution of the recorded separation distances, the height-
dependent effective potential ϕ(z) between the colloidal particle and the substrate can be measured.
In this work, we show that spatial resolution with which TIRM can measure ϕ(z) is limited by the
photon counting statistics of the scattered laser light. We develop a model to evaluate the effect
of photon counting statistics on different potential profiles using Brownian Dynamics simulations
and experiments. Our results show that the effect of photon counting statistics depends on spatial
gradients ∂ϕ/∂ z of the potential, with the result that sharp features tend to be significantly blurred.
We further establish the critical role of photon counting statistics and the intensity integration time
τ in TIRM measurements, which is a trade-off between narrowing the width of the photon counting
distribution and capturing the instantaneous position of the probe particle.

1 Introduction

Total internal reflection microscopy1 (TIRM) is a powerful
method for measuring the microscopic interactions of colloidal
particles in a liquid suspension. Since its development some 30
years ago,2 it has been used to measure various colloidal interac-
tions, including screened electrostatic repulsion,1,3 steric repul-
sion due to grafted or adsorbed polymers,4–6 van der Waals at-
traction,4 depletion attraction,7,8 critical Casimir interactions9,
and interactions of DNA-coated colloids.10 Spatial resolutions as
small as 1 nm have been reported.2 As such, TIRM has become
an invaluable tool for understanding colloidal interactions at a
microscopic scale.

In spite of TIRM’s long and enduring use, the effects of pho-
ton counting statistics, often called shot noise, on TIRM mea-
surements of colloidal interaction potentials have not been fully
worked out. While shot noise has been considered for the special
case of a particle is confined by optical tweezers in an evanescent
field11,12 and for microrheology measurements in an evanescent
field,13 in conventional TIRM measurements, shot noise is gener-
ally regarded as insignificant without further detailed considera-
tion.14,15 Indeed, shot noise can often be ignored when measur-
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ing potentials with soft features like a double-layer potential at
low ionic strength.14,15 However, as we show in this paper, shot
noise can be the limiting factor when measuring interactions with
hard core or short-range potential profiles and for particles with
fast dynamics. In this work, we systematically study the effects of
shot noise on TIRM measurements of interaction potentials and
identify the potential profile features that are most prone to cor-
ruption by shot noise. We also provide the means to quantitatively
determine and minimize how it distorts the measurement of the
potential.

Fig. 1 shows a schematic of a typical TIRM experiment and
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Fig. 1 TIRM schematic. Laser light enters from the right and is totally
internally reflected at the substrate, launching an exponentially-damped
evanescent wave towards the particle, which is a distance z above the sub-
strate in a liquid suspension. Light scattered by the particle is collected
by a microscope objective lens and directed toward a photon counter.
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summarizes the basic experimental setup. The TIRM technique is
based on two simple ideas. The first idea is that the probability
that a particle at equilibrium in a liquid suspension is at a height
z above the substrate is given by the Boltzmann distribution

p(z) = Ae−ϕ(z)/kBT , (1)

where ϕ(z) is the effective interaction potential between the par-
ticle and the substrate. Inverting this equation, we obtain the
expression

ϕ(z)−ϕ(zr)

kBT
= ln

p(zr)

p(z)
, (2)

where we have introduced a reference height zr to eliminate the
normalization factor A that appears in eqn (1). Equation (2) tells
us that if we can measure the distribution of particle heights p(z)
above the substrate, we can determine the effective interaction
between the particle and the substrate.

The second idea starts with the observation that the evanes-
cent intensity Ie of light totally internally reflected from the
substrate decays exponentially with height above the substrate,
Ie(z) = Ie0 exp(−β z), where β−1 is the penetration depth of the
evanescent wave, which is typically in the range of 70-200 nm.
Because the intensity I of the light scattered by the particle is pro-
portional to the intensity Ie of the evanescent field that is incident
on the particle, the scattered intensity also depends exponentially
on the height of the particle,1,16

I(z) = I0 e−β z . (3)

Thus, we see that the scattered intensity is related directly to the
height z of a particle. This gives us a way to determine the height z
of the particle. We note that the exponential form for the intensity
given by eqn 3 is strictly correct only if certain precautions are
taken in the experimental design.17 In what follows, we assume
such precautions have been taken.

The probability P(I)dI that the scattered intensity is between I
and I+dI is the equal to the probability p(z)dz that the particle is
between a height of z and z+dz, and thus are related by

P(I) |dI|= p(z) |dz| . (4)

Solving for p(z) yields,

p(z) = P(I)
∣∣∣∣dI
dz

∣∣∣∣= β P(I) I(z) , (5)

where we have used eqn (3) to evaluate the derivative. Thus, the
probability distribution of heights p(z) appearing in eqn (2) can
be expressed in terms of the probability distribution of scattered
intensities P(I).

In a TIRM experiment, changes in the scattered intensity are
monitored, typically for ten minutes or more, by repeatedly
counting photons over some short interval of time τ, the integra-
tion time, typically on the order of milliseconds. From this chain
of measurements, a histogram of scattered intensities N(I) is con-
structed, where N(I) is the number of observations of intensity
between I and I +∆I. For a sufficiently large number of measure-

ments N(I) ∝ P(I). Fig. 2a shows such a histogram obtained from
a TIRM measurement of a negatively charged polystyrene sphere
in aqueous suspension above a negatively charged glass substrate.

Using eqn (5) for p(z), eqn (2) can be rewritten as

ϕ(z)−ϕ(zr)

kBT
= ln

N(Ir) I(zr)

N(I) I(z)
, (6)

where P(I) has been replaced by N(I), which is valid if ∆I is small
and the number of of samples N is large. Fig. 2(b) shows the
potential ϕ(z) obtained from the histogram of scattered intensities
shown in Fig. 2a.

(b)

(a)

Fig. 2 TIRM measurement of the interaction potential for a negatively
charged polystyrene sphere with diameter of 8 µm in 0.5 mM NaCl aque-
ous solution above a negatively charged glass substrate. (a) Histogram of
scattered intensities obtained from a TIRM experiment with an integra-
tion time τ = 10 ms. (b) Solid circles show the experimentally measured
interaction potential ϕ(z), with the potential minimum height aligned at
zr = 133 nm. A least-square-fit to the data gives a Debye length of
κ−1 = 12.1 nm and G = 0.146 pN. Open circles show the potential profile
obtained from a Brownian dynamics simulation using ∆t = 0.2 ms as sim-
ulation step size with 12.5 million steps and integration time τ = 10 ms. A
least squares fit gives κ−1 = 13.5 nm and G= 0.157 pN. Dotted line shows
potential ϕ(z) used as an input for the simulation with κ−1 = 13.7 nm
and G = 0.152 pN.
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2 Shot noise

Like most optical measurements, the resolution and accuracy of
TIRM are limited by instrumental noise. The types of noise com-
monly identified are background scattering, laser power fluctua-
tions, statistical noise, and photon detection shot noise.12,14,18–21

In earlier efforts, several methods were developed to reduce the
effect of background noise,12,18 including subtraction of aver-
aged background intensity and applying low-pass filter of the
measured signals. The effect of laser power fluctuations can usu-
ally be kept small19 in and can be managed with improved laser
design.13 In addition, there is the statistical noise associated with
forming the histogram of intensities from a finite number of mea-
surements.19 This is the source of the deviations from the theoret-
ical predictions at large z that are visible in Fig. 2. This source of
noise can usually be made negligible by acquiring data for a suf-
ficiently long time period or performing the same measurements
for multiple times.2,19

The implicit assumption in the analysis of TIRM data using eqn
(6) is that there is a one-to-one correspondence between the scat-
tered intensity and the particle position, which is given by eqn
(3). However, for any measurement of light intensity, there are
intrinsic quantum fluctuations (shot noise) associated with pho-
ton counting. In a typical TIRM experiment, the intensity of the
scattered light is measured by some quantum mechanical pho-
ton counting process, for example, using a photomultiplier or an
avalanche photodiode. Indeed, these are the most sensitive and
information-rich methods of detecting the scattered intensity. In
a typical TIRM experiment, the intensity is measured by count-
ing photons for some integration time interval τ, typically on the
order of milliseconds. In this case, the probability of detecting n
photons in a time interval τ is given by a Poisson distribution22

Pτ (n; n̄) =
n̄n

n!
e−n̄ , (7)

where n̄ is the average number of photons detected in a time τ

for a given constant intensity I. The width of the distribution,
as measured by the square root of the variance, is

√
n̄. The fi-

nite width of Pτ (n; n̄) means that there is an intrinsic uncertainty,
sometimes called shot noise, in any measurement of the scattered
intensity. This means that there will be an intrinsic uncertainty
in the particle height and in the determination of the effective
potential ϕ(z). This limits the resolution with which TIRM can
measure ϕ(z). As we will show, for potentials that do not vary too
rapidly in space, this does not pose a serious limitation. However,
for rapidly-varying potentials, such as those exhibited by particles
with a fairly hard-core repulsion or a very short-range attraction,
it can pose a significant limitation.

The intensity I that appears in eqns (3)–(6) is the classical in-
tensity, without shot noise. The units of intensity are arbitrary in
this context, so without loss of generality we can write nc = I τ

and P(I)dI = P(nc)dnc, where nc is taken to mean the (classical)
intensity, measured in counts per integration time, that would be
measured if there were no shot noise. Thus, we can rewrite eqn

(3) as

nc(z) = nc0e−β z . (8)

However, for a given integration time τ and classical intensity
nc = I τ, the number of photons n actually measured is Poisson dis-
tributed around nc according to eqn (7) with n̄ = nc. This means
that the two distribution functions P(n), which is measured in a
standard TIRM experiment, and P(nc), which is what should be
used in eqn (5), are different. In the limit of a very large number
of measurements, two are related by

P(n) = ∑
nc

P(nc)Pτ (n;nc) = ∑
nc

P(nc)
nn

c
n!

e−nc . (9)

As Pτ (n;nc) is peaked around nc with a width
√

nc, we see that
the measured intensity distribution P(n) is similar to (but distinct
from) a discrete convolution of the classical intensity distribution
P(n̄) with the Poisson distribution Pτ (n; n̄) given by eqn (7). Thus,
any abrupt change in P(nc), which occurs when there is an abrupt
change in ϕ(z), will be rounded by Pτ (n;nc) on a scale given by
√

nc. This will lead to a blurring in the potential ϕ(z) measured
by TIRM.

The blurring of P(n) relative to P(nc) limits the resolution with
which TIRM can measure a particle’s height z. For a particle at
height z, the average number of photons counted in a time τ is
given by eqn (8). Taking the differential of eqn (8), we obtain

dnc

nc
=−β dz . (10)

Setting dnc equal standard deviation of the photon counting fluc-
tuations ±√

nc, we obtain an expression for the uncertainty in the
measured particle height due to photon shot noise

∆zm ≡±β−1
√

nc
. (11)

According to eqn (11), the estimated error ∆zm in the measured
height is the penetration depth β−1 of the evanescent wave di-
vided by the square root of the average number of photons
counted during the integration time τ. It should be noted that
eqn (11) provides a lower limit on the spatial resolution of a par-
ticle’s position that can be inferred from a measurement of the
scattered intensity. In a typical experiment, the maximum photon
counting rate is about 106 cts/s and the integration time is typi-
cally about 1 ms so that the average number of photons counted
nc is about 1000. A typical optical penetration depth β−1 is about
100 nm. In this case, eqn (11) gives ∆zm ∼ 3 nm.

The fundamental problem with the conventional TIRM analy-
sis is that eqn (4) is not strictly correct. Because of the quantum
fluctuations associated with photon counting, there is not a strict
one-to-one correspondence between a measurement of the scat-
tered intensity and the particle height z. Thus I(z) in eqn (6) is
not a perfect proxy for particle position as assumed in eqn (3).
Similarly, the N(I) used in eqn (6) is not a perfect proxy for p(z),
as assumed in eqn (4). In what follows, we explore the conse-
quences of this problem through simulation and experiment and
develop strategies for minimizing and mitigating the deleterious
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effects of photon shot noise.

3 Results

3.1 Brownian dynamics simulations

To evaluate the effects of shot noise on the measured potential
energy profiles, we first numerically simulate the trajectories of
a colloidal particle and then use them to construct the noise-
corrupted scattering intensities. We use the Brownian dynamics
simulation method first described by Sholl and Prieve.19 A col-
loid’s Brownian motion in a force field along the vertical direction
can be described using a Langevin equation:

m
dv(z)

dt
=−ζ v(z)+δ f (t)+F(z) , (12)

where m is the mass of the particle, v(z) is the velocity of the par-
ticle along the vertical direction, ζ is the friction coefficient, and
F is the force applied on the particle: F = −dϕ(z)/dz. The ran-
dom fluctuating force δ f (t) accounts for the interactions of the
particle with the fluid in which it is suspended. This fluctuation
has the usual zero mean and delta function correlation consis-
tent with the fluctuation-dissipation theorem: ⟨δ f (t)⟩ = 0, and
⟨δ f (t)δ f (t ′)⟩= 2ζ kBT δ (t − t ′).

From the Langevin equation, Ermak and McCammon23 devel-
oped a method for simulating the diffusive behavior of Brownian
particles in a solution, with a displacement equation given by:

z(t +∆t) = z(t)+
dD
dz

∆t +
D

kBT
F(z)∆t +Z(∆t) , (13)

where D is the particle’s diffusion coefficient, and Z(∆t) is a Gaus-
sian random displacement with ⟨Z⟩= 0 and ⟨Z2⟩= 2D∆t.

When a particle is close to a surface, as is the case in a typical
TIRM measurement, the mobility of the particle is hindered com-
pared to its motion in a free-solution, and depends strongly on the
separation distance between the particle and the surface. When
the separation distance is small (comparable to or smaller than
the particle radius r), the close-wall effect can be taken into ac-
count using D(z) = λD0, where D0 is the free diffusion coefficient,
and λ is a function of γ = z/r, where z is the distance between the
surfaces of the substrate and the sphere. The function λ (γ) was
calculated by Brenner and is given in the form of a slowly con-
verging infinite series.24 The function is well-approximated by a
simplified form using a regression of the infinite-series results25:

λ =
6γ2 +2γ

6γ2 +9γ +2
. (14)

Using this expression and eqn (13), we can simulate the trajectory
of a colloid close to a glass wall for any known force F(z).

3.2 Simulation of double-layer repulsion and gravity

We start by simulating a charge-stabilized polystyrene (PS) col-
loidal particle in dynamic equilibrium close to a glass surface in
an ionic solution, which corresponds to the experiment we in-
troduced in §2. We assume there are only two dominant inter-
actions: electrostatic repulsion and gravity. We disregard other
close-range interactions such as van der Waals forces, which is a

valid assumption for systems with low ionic strength and highly-
charged surfaces.1 The screened electrostatic interaction is mod-
eled by the DLVO theory using the Derjaguin approximation,
which leads to a Yukawa potential.2,26,27 The total potential ϕ(z)
is the sum of the screened electrostatic interaction and gravity:

ϕ(z) = Be−κz +Gz , (15)

where G is the net buoyant weight of the particle, κ−1 is the De-
bye length, and

B =
16r

kBT λB
∏

σi=σC ,σG

tanh
[

1
2

sinh−1
(

2πλBσi

eκ

)]
.

Here, λB = e2/4πεkBT is the Bjerrum length, ε is the permittivity
of the solvent, and σC and σG are the surface charge densities of
the colloid and the glass, respectively.

In TIRM measurements, a reference potential height zr is intro-
duced to eliminate B:

ϕ(z)−ϕ(zr)

kBT
=

G
kBT κ

[
e−κ(z−zr)−1

]
+

G
kBT

(z− zr) . (16)

In our experiments, ϕ(zr) and its corresponding reference posi-
tion zr are usually set to 0, which is the usual practice with TIRM
experiments as the absolute distance to the substrate and param-
eters B are typically unknown. In the simulations, however, it is
helpful to use a reasonable value of B to estimate the actual posi-
tion of the colloid. In a 0.5 mM NaCl solution, B is calculated to
be 8.4×103kBT for a 8 µm-diameter PS sphere based on literature
values.1

We use eqn (13) to generate the height trajectories zi of an 8-
µm PS particle in a 0.5 mM NaCl solution, using a temporal step
size of ∆t = 0.2 ms (small enough to capture particle movement,
see Fig. S2 in SI) and a total of 12.5 million steps (corresponding
to a physical run time of about 40 minutes). The particle starting
position is taken to be the distance where the potential reaches
its theoretical minimum, zm = 133 nm. The simulated height tra-
jectories are shown in Fig. S1.

The simulated vertical trajectories are used to generate light
scattering intensity data in multiple steps. First, the mean number
of classical counts nci , uncorrupted by shot noise, is generated
using eqn (3) for each time step in the simulation

nc = ∆t I0 e−β zi , (17)

where I0 is set such that the maximum intensity corresponds
to the typical maximum experimental value of about 106 cts/s,
which occurs when z is at its point of closest approach to the sub-
strate. Next, the mean number of counts nc j accumulated over
each integration time interval τ is generated by summing over
successive integer number k time steps where τ = k ∆t:

nc j =
k j

∑
i=k( j−1)+1

nci . (18)

These are the data that are used to construct the P(nc) histogram
of intensities without shot noise. Finally, the sequence of inten-
sity data n j with shot noise is constructed by selecting a random
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number n j from a Poisson distribution for each nc j :

n j = Pois(nc j ) . (19)

These are the data that are used to construct the P(n) histogram
of intensities with shot noise.

As shown in Fig. 2(b), the data for ϕ(z) obtained from the
simulated P(n) agrees well with both the experimental measure-
ment and the analytical calculations from eqn (15), confirming
that our simulation can quantitatively describe experimental data
from TIRM measurements. In fact, for the parameters used here,
the potential ϕ(z) obtained from the simulated P(n) is statistically
indistinguishable from that obtained from P(nc). Under such cir-
cumstances, shot noise poses no problem for extracting the poten-
ital ϕ(z) using TIRM. As we shall see, however, this is not always
the case.

3.3 Effect of shot noise on double-layer repulsion and grav-
ity potentials

To evaluate the effect of shot noise on the potential profile ob-
tained from TIRM measurements, we simulate the scattering in-
tensities using integration times τ of 1 and 0.1 ms. For each value
of τ, we construct histograms of the simulated scattering intensi-
ties in two ways, one with shot noise, P(n), and the other without,
P(nc). The results are shown in Fig. 3(a) and (b) for τ of 1 and
0.1 ms, respectively.

We then calculate the interaction potentials for the two cases,
and compare them with analytical predictions from eqn (15), as
shown in Fig. 3(c) and (d). When τ = 1 ms, the simulated po-
tential shown in Fig. 3(c) with and without shot noise are both in
good agreement with the ideal analytical profile. The fitted Debye
length from simulations with and without shot noise are 15.5 nm
and 13.9 nm; while the fitted buoyant weights G are 0.156 pN
and 0.157, respectively. Both are reasonably close to the true val-
ues of Debye length (13.7 nm) and buoyant weight (0.152 pN)
we input for the simulation. Indeed, this conclusion could be
anticipated from Fig. 3(a), where the two histograms with and
without shot noise, P(n) and P(nc), are nearly indistinguishable.

On the other hand, the effect of shot noise becomes significant
when a smaller value of τ = 0.1 ms is used. As shown in Fig. 3d,
the potential curve with shot noise is visibly broadened. Notably,
the distortion of the potential profile in Fig. 3(d) is much more
pronounced in the short-range electrostatic repulsion region than
in the gravity-dominated region. The broadened shape yields a
Debye length of 23.6 nm, significantly longer than the true Debye
length of 13.7 nm. The fitted buoyant weight, G = 0.157 pN, is
however close to the true value of 0.152 pN.

Two factors play important roles in determining the degree of
distortion of the measured intensity histogram P(n) and the po-
tential ϕ(z) derived from P(n): (1) the number of counts n per
integration time τ and (2) the steepness (spatial gradient ∂ϕ/∂ z)
of the potential.

In Fig. 3a and b, we plot the intensity axis as the number of
counts n per integration time τ in order to highlight the role of n
in determining the shot noise. Because the maximum count rate
(intensity) is the same in both cases, approximately 106 cts/s, the

number of counts per integration time is a factor of 10 lower
for the case where τ = 0.10 ms compared to the case where
τ = 1.00 ms. If there were no shot noise associated with pho-
ton counting, both data sets would result in statistically the same
histogram of intensities, because in this hypothetical case there
would be a one-to-one correspondence between the number of
counts per integration time and particle height z, as given by eqn
(8). Changing the number of counts per integration time simply
changes the horizontal intensity scale of the histogram but noth-
ing else. This is what is shown by the histograms of open blue
bars in in Fig. 3a and b, which correspond to the probability dis-
tribution P(nc) introduced in eqn (9). Indeed, the potentials ϕ(z)
determined from these two histograms both track the expected
result, as shown by the blue data points in Fig. 3c and d, which
follow the dotted lines indicating the theoretically-defined poten-
tial that was used in the Brownian dynamics simulation.

To emphasize the one-to-one correspondence between the av-
erage counts nc and z, which are related by eqn (8), we include a
second horizontal axis in Fig. 3a and b that gives the values of z
associated with nc axis.

Next we consider the actual case where there is shot noise from
photon counting. The histograms obtained in this case are shown
as solid orange bars in Fig. 3a and b and correspond the P(n),
which is what is measured experimentally. In this case the his-
tograms for the two integration times of 1.0 ms and 0.1 ms differ
dramatically, particularly for the higher intensities in each plot,
which correspond to the smaller values of z where the potential
ϕ(z) is steepest. The differences in the histograms obtained with
and without photon counting shot noise can be understood by
recalling eqn (9):

P(n) = ∑
nc

P(nc)Pτ (n;nc) ,

where Pτ (n;nc) is the Poisson distribution given by eqn (7). In Fig.
3a and b, we plot Pτ (n;nc) on top of the histograms for the values
of nc corresponding to two values of z: 177 nm and 110 nm.
These two values correspond to two different sets of values for n:
450 and 880 for Fig. 3a, where τ = 1.0 ms, and 45 and 88 for Fig.
3b, where τ = 0.1 ms.

From Fig. 3a and b, we see that for a given value of n, P(n)
is smeared out over the range spanned by Pτ (n;nc), or about
±√

nc. Note, however, that what matters when comparing the
histograms in Fig. 3a and b is not the width of Pτ (n;nc) but the
relative width, which is ±√

nc/nc =±n−1/2
c . Thus, as illustrated by

Fig. 3a and b, the rounding effect of shot noise on P(n) is greater
when the counts per integration time is smaller.

The other feature that plays an important role in the distortion
of P(n) by shot noise is the gradient of the potential. A steep
potential leads to a steep P(nc), which in turn is more readily
rounded by the shot noise distribution Pτ (n;nc). This is evident
in Fig. 3b where the width of the noise distribution Pτ (n;nc) is
comparable to the width of the change in P(nc) for n ∼ 88.

For each plot, we pick out two values of particle height z̄,
110 nm and 177 nm, and show using solid black lines the Pois-
son distribution for the corresponding value of nc from eqn (7).
These curves give the distribution of values of n that are mea-
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B 110±3.4 nm

A

177±4.7 nm

B

A

A

177±15 nm
B

110±10.7 nm

A

B

(a) (b)

(d)(c)

Fig. 3 Scattering intensity histograms from a simulation of an 8.0-µm-diameter PS sphere in 0.5 mM monovalent saline solution with a photon
counting time interval τ of (a) 1 ms and (b) 0.1 ms. The solid orange and empty blue bars show histograms P(n) and P(nc) obtained with and without
shot noise included, respectively. The solid black curves show the Poisson distributions when the means in panel (a) are n̄ =450 and 880 counts and
in panel (b) are n̄ =45 and 88 counts. The widths of the Poisson distributions are indicated by vertical gray lines drawn at n = n̄±

√
n̄ in panels (a)

and (b). The potential curves are calculated with τ equal to (c) 1 ms and (d) 0.1 ms. The solid orange and empty blue circles show potential curves
obtained with and without shot noise included, respectively. The dotted lines show the potential curve used in the simulation.

sured in a TIRM experiment for a particle at a single height z. For
example, in Fig. 3a, for z̄ = 177 nm (label A), nc = 450 cts per
integration time, for which the Poisson distribution has a width
of

√
nc =

√
450 ≃ 21. According to eqn (11), this leads to an un-

certainty in z of ±4.7 nm, where β−1 = 100 nm. Similarly, in Fig.
3b, for z̄ = 177 nm (label A), nc = 45 cts per integration time, for
which the Poisson distribution has a width of

√
nc =

√
45 ≃ 6.7.

According to eqn (11), this leads to an uncertainty in z of ±15 nm,
where β−1 = 100 nm. The relative uncertainty ∆nc/nc = n−1/2

c is
much larger when nc is small, which is also reflected in the rela-
tive widths of the Poisson distributions in Fig. 3a and b.

Performing the same analysis for z̄ = 110 nm (label B), where
nc = 880 and 88 cts per integration time, respectively, in Fig. 3a
and b, we obtain uncertainties in z of 3.4 nm and 10.7 nm for the
two cases.

The uncertainty in position leads to an uncertainty in the po-
tential, which can be roughly estimated by

∆ϕ(n) =
(

∂ϕ

∂ z

)(
∂ z
∂n

)
∆n =−

(
∂ϕ

∂ z

)
β−1
√

n
. (20)

where n is the number of scattering photons counted by the de-
tector within the integration time τ (i.e., n = Iτ), and thus the

photon shot noise is
√

n. One can see that the potential gradi-
ent ∂ϕ/∂ z, or the force, plays a critical role in determining how
strongly photon shot noise can affect the derived potential. For
example, in the gravity-dominated region (location B) with τ =
0.1 ms where the potential changes very slowly, the height un-
certainty is as large as 26.8 nm, but the noise-corrupted potential
curve still shows good agreement with the theoretical prediction.
By contrast, in the sharp electrostatic repulsion region (location
B), the noise-corrupted intensities do not provide a faithful repre-
sentation of the potential shape, leading to the broadening of the
resultant potential profile.

To further demonstrate the effect of potential sharpness on
measurement tolerance against photon shot noise, we increase
the salt concentration to 140 mM in the simulation, creating a
much sharper potential in the double-layer repulsion region with
Debye length of 0.82 nm. Fig. 4 shows the effect of shot noise
on intensity histograms when τ is 1 ms and 0.1 ms in panels (a)
and (b), respectively. In this case, the potential is so sharp that
neither choice of integration times provides a completely faithful
measurement of the interaction potential. Nevertheless, using the
shorter integration time of τ = 0.1 ms yields significantly poorer
results than using τ = 1 ms, as shown in Fig. 4c and d.
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66±4.1 nm
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7.2±3.0 nm
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A
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AB

(a) (b)
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Fig. 4 Scattering intensity histograms from a simulation of an 8.0-µm-diameter PS sphere in 140 mM monovalent saline solution with a photon
counting time interval τ of (a) 1 ms and (b) 0.1 ms. The solid orange and empty blue bars show histograms P(n) and P(nc) obtained with and without
shot noise included, respectively. The solid black curves show the Poisson distributions when the means in panel (a) are n̄ = 600 and 1080 counts and
in panel (b) are n̄ = 60 and 108 counts. The widths of the Poisson distributions are indicated by vertical gray lines drawn at n = n̄±

√
n̄ in panels (a)

and (b). The potential curves are calculated with τ equal to (c) 1 ms and (d) 0.1 ms. The solid orange and empty blue circles show potential curves
obtained with and without shot noise included, respectively. The dotted lines show the potential curve used in the simulation.

In Fig. 5, we summarize the fitting parameters extracted from
our simulated TIRM data for integration time intervals spanning
the range from τ = 0.025 ms to 1000 ms for the two monovalent
salt concentrations considered above: 0.5 mM, which gives a soft
repulsive potential with κ−1 = 13.7 nm, and 140 mM, which gives
a hard repulsive potential with κ−1 = 0.82 nm.

Fig. 5a and b show that the buoyant weight G is well fit over a
broad range of τ, which simply reflects the fact that the potential
does not vary sharply in the large-distance (z ≳ 30 nm) gravity-
dominated part of the potential from which the fitted value of G
is extracted.

By contrast, Fig. 5c shows that the Debye length κ−1 is well
fit only over a relatively narrow range, 1 ms < τ < 25 ms for a
soft repulsive potential with κ−1 = 13.7 nm while Fig. 5c shows
that κ−1 is not well fit at all for a hard repulsive potential with
κ−1 = 0.82 nm, except near τ = 30 ms where different offsetting
errors, which we discuss next, accidentally cancel.

The errors in the fitted values of G and κ−1 for the smaller val-
ues of τ arise from the photon counting shot noise which broad-
ens the intensity distribution N(I) and thus broadens the poten-
tial. This decreases the fitted values of G and increases the fitted
values of κ−1. The errors in the fitted values of G and κ−1 for the
larger values of τ arise from particles diffusing too far—particle

dynamics—which suppresses the wings of the intensity distribu-
tion N(I) making the potential that is inferred from it sharper,
which increases the fitted value of G and decreases the fitted
value of κ−1.

As a check on our simulations, potentials extracted from both
simulated and real experimental data are compared for the case
κ−1 = 13.7 nm in Fig. S5 in the Supplemental Information for
a wide range of integration times τ. We find that the simulated
data sets agree very well with real experimental data and are fully
consistent with the fitting parameters shown in Fig. 5a and c.

The data sets analyzed in Fig. 5 serve as a cautionary note for
interpreting the potentials obtained in TIRM experiments. Thus,
one may ask how to determine if the potentials obtained using
TIRM are artificially broadened or narrowed. A simple way to
check if the photon shot noise is broadening the potentials is
to plot the Poisson distributions on the intensity histograms and
compare their width to the slope of N(I) as we have done in Figs.
3a and c and 4a and c. While this is helpful in determining
whether τ is too small such that shot noise is broadening N(I),
it does not aid in determining if τ is too long so that particle dy-
namics are narrowing N(I). The best results are obtained when
these two regimes of shot noise and dynamics-limited data are
well separated, as they are in Fig. 5a and c when the potential is

Journal Name, [year], [vol.],1–10 | 7

Page 7 of 10 Soft Matter



(a) (b)
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shot noise 
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shot noise 
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Fig. 5 Simulated interaction parameters of an 8-µm-diameter PS sphere in (a), (c) 0.5 mM and (b), (d) 140 mM monovalent salt. (a), (b) Fitted
buoyant weight G and (c), (d) Debye length κ−1 from potential profiles simulated with different τ. Blue circle are fitted parameters without considering
of photon counting uncertainties. Dotted lines are the theoretical values of the expected parameter. (d) inset is the same plot in (d) shown in y-log
scale.

relatively soft. In this case, there is a range of values of τ that give
nearly identical results; here that occurs for 1 ms < τ < 25 ms.

3.4 Effect of shot noise on measurement of potential wells:
Morse potential

In this section, we investigate the effect of shot noise on the mea-
surement of a short-range attractive interaction. Such potentials
are common in interacting particle systems and include the de-
pletion interaction28, attractive electrostatic29,30, Casimir9, and
the interaction between DNA-coated colloids10,32. The range of
these attractions goes from about a nanometer to hundreds of
nanometers.

To model a generic attractive interaction, we choose a Morse
potential as our model potential, as it is frequently used to de-
scribe attractive interactions between colloidal particles33,34:

ϕ(z) = ε[e−2(z−z0)/a −2e−(z−z0)/a] . (21)

It has a depth of ε that occurs at a height z0; the width and stiff-
ness of the potential well are conveniently set by a.

Consider a colloidal sphere that has close-range attractive in-
teractions with the glass surface. Its potential energy ϕ(z) can be
written a combination of the Morse potential and gravitation:

ϕ(z) = ε[e−2(z−z0)/a −2e−(z−z0)/a]+Gz . (22)

For TIRM, we need to choose a reference height zr, which we
take to be z0. With this choice,

ϕ(z)−ϕ(z0) = ε[e−2(z−z0)/a −2e−(z−z0)/a +1]+G(z− z0), (23)

Using the Brownian dynamics simulation method introduced in
§3.1, we simulate the height trajectories of an 5-µm PS particle
with a Morse potential energy profile. Fig. 6 shows the Morse po-
tential simulation results with a = 10 nm and ε = 5kBT . Equation
(22) is plotted as a gray dotted line in Fig. 6.

We carry out simulations using different photon-counting inte-
gration time intervals τ. Fig. 6 shows results for two values of τ:
0.1 ms and 10 ms.

When τ = 10 ms, the light scattering intensity distribution N(I)
is essentially indistinguishable from what one would obtain in the
absence of photon counting shot noise, as can be seen in Fig. 6a.
In this case, the potential obtained from the usual TIRM analysis
corresponds closely to the true potential, as can be seen in Fig.
6b.

When τ is reduced to 0.1 ms, however, the intensity distribu-
tion N(I) is blurred considerably, particularly when the particle
is in the vicinity of the potential minimum, as shown in Fig. 6a.
As a consequence, the potential obtained from the TIRM analy-
sis is broadened considerably. The depth of the potential is also
reduced.

To better quantify the effect of τ on potential well measure-
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(a)

(b)

Fig. 6 (a) Histogram of simulated scattered intensities of a 5-µm-
diameter PS particle with Morse potential profile(ε = 5kBT , a = 10 nm,
z0 = a.). Step size is 5 µs with 5×108 steps. Imax = 1 MHz. Grey
bars are intensities from original simulated trajectories without account
for shot noise or photon counting interval (effectively τ = ∆t). Blue,
purple bars correspond to intensities with τ being 0.1 ms and 10 ms
respectively. Inset shows the same plot in y-log scale. (b) Potential
curves corresponding to the conditions in (a) when τ = 0.1 ms (blue),
10 ms (purple) and 5 µs (grey, no shot noise). Potential minimum is
placed at 0 kBT and height at 0 nm.

ments, we simulate Morse potentials with varying width, taking
a as 1, 2, 5, 10, 15, and 20 nm. For each value of a, we use dif-
ferent values τ to simulate different TIRM data sets from which
we extract a measured potential. We characterize the potential
well inferred from a TIRM measurement by two parameters: the
well depth and width. To characterize the well depth and width,
we first subtract the contribution from gravity, G(z− z0), from the
potential (see Fig. S6 in SI). We define the characteristic width as
the full width at half maximum (FWHM).

Fig. 7a shows the potential width (FWHM) measured from the
simulated TIRM data as a function of τ for different values of
a. The gray horizontal dotted lines indicate the true FWHM =

1.763a for each value of the width parameter a. For each of the
wider Morse potentials with a = 20, 15, and 10 nm, there is a
clear plateau over a range of integration times τ near the expected
width. One can discern evidence of an incipient plateau for a =

5 nm but all evidence of a plateau vanishes for the smaller values
of a. Nevertheless, even below a = 5 nm, the measured width is
different for different values of a for a given choice of τ, indicating

(a)

(b)

Fig. 7 Simulated 5 kBT deep Morse potentials with different a and
the corresponding apparent potential width (FWHM) (a) and depth (b)
when using different τ. Horizontal colored dotted lines in (a) and gray
dashed line in (b) indicate the theoretical width or depth for the Morse
potentials.

that even in this limit TIRM can be expected to follow changes in
the width of the potential.

Fig. 7b shows the simulated potential depth obtained using dif-
ferent values of τ. Here we see that the correct potential depth
is obtained only for a somewhat narrower range of τ centered
around a few milliseconds, where there is a mild plateau, again
for wells wider than about 5 nm. Thus, correct measurements of
the well depth and width can be obtained, but only for a some-
what narrow range of τ. The proper range of τ can be identified
by the existence of a plateau.

4 Conclusions
In this paper, we establish the critical role of shot noise and inten-
sity integration time τ in TIRM measurements of colloidal inter-
action potentials. Sharp potential profiles, e.g. steric repulsion6,
depletion7, strong double-layer repulsion20 and close-range sur-
face bindings10,35 are particular prone to the corruption of shot
noise. Shot noise should be taken into consideration when inter-
preting such measured potential profiles. While shot noise can-
not be removed from deconvolution, the expected signal-to-noise
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ratio can be experimentally controlled by selecting the photon
counting time interval.

The choice of photon counting time interval is a trade-off be-
tween minimizing shot noise and preserve the temporal resolu-
tion. For smaller τ, the temporal resolution of the simulated mea-
surement is sufficient to resolve the particle movement. However,
small τ means large shot noise and tends to blur the sharp fea-
tures of a potential curve. For large τ, shot noise is reduced due
to the increased number of photons counted. However, the mea-
sured scattering intensity is averaged over large particle displace-
ments, which will distort the potential profiles for excessively
large τ. If spatial gradients ∂ϕ/∂ z in the potential are not too
large, there can be a regime of intermediate values of τ for which
the intensity distribution N(I) is accurately measured without sig-
nificant distortion. In this case, the potential ϕ(z) can be faithfully
measured by TIRM. Even in cases where the photon counting shot
noise cannot be reduced to the point that it does not broaden
sharp features in ϕ(z), useful information can be extracted about
the potential and, in particular, changes in ϕ(z) due to changing
sample conditions (temperature, salt concentration, etc.) can be
readily discerned.
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