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Singularity identification for the characterization of
topology, geometry, and motion of nematic disclination
lines

Cody D. Schimming∗ and Jorge Viñals

We introduce a characterization of disclination lines in three dimensional nematic liquid crystals as
a tensor quantity related to the so called rotation vector around the line. This quantity is expressed
in terms of the nematic tensor order parameter Q, and shown to decompose as a dyad involving
the tangent vector to the disclination line and the rotation vector. Further, we derive a kinematic
law for the velocity of disclination lines by connecting this tensor to a topological charge density as
in the Halperin-Mazenko description of defects in vector models. Using this framework, analytical
predictions for the velocity of interacting line disclinations and of self-annihilating disclination loops
are given and confirmed through numerical computation.

1 Introduction
Topological defects play an important role in many physical sys-
tems in which a continuous symmetry has been broken. They
range from dislocations in crystals, vortices in superconductors,
and even cosmic strings in the universe.1–3 Disclinations in ne-
matic liquid crystals are no exception. Indeed, the observation of
disclination lines resulted in the discovery of the nematic phase
altogether.4,5 In classical (“passive") nematics, disclinations are
created when domains of mismatching orientation coalesce, or
when the boundary conditions—either on the sample itself, or
on particles immersed within—disrupt the overall topology of the
sample.5–7 An interesting example arises in the “Saturn ring" con-
figuration, in which a disclination loop surrounds a particle with
homeotropic (i.e. perpendicular) anchoring.8–10 Another exam-
ple concerns patterned defects in liquid crystal elastomers which
have proven to be a useful means of actuating surfaces.11,12

More recently, disclinations in nematics have gained attention
in the field of active nematics. In active nematics, the underlying
activity causes defects to spontaneously nucleate, and even pro-
pels them depending on their geometric character.13–15 In two-
dimensions, topological defects have been observed as points of
interest in microtubule systems, bacterial suspensions, soil bacte-
ria, and epithelial tissue.16–20 In three-dimensions, recent exper-
imental and computational work on microtubule systems shows
the nucleation, active flow, and eventual annihilation or recombi-
nation of lines and loops.21 Theoretical and computational work
has aided in understanding how the various geometric features of
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disclination loops result in differing flow patterns.22,23

There have also been recent efforts to characterize disclination
lines. Long et al.24 have shown that the geometric properties
of disclination lines can be expressed through a series of tensors
from ranks 1–3. These properties determine the force of one line
on another, as well as their active flow. Additionally, other inves-
tigations25,26 have characterized disclinations in two-dimensions
as particles, and connected their velocity to a conserved topo-
logical current density. These characterizations have important
implications for identifying defect positions and velocities in both
experimental systems and numerical computations. Further, they
shift the perspective of predicting liquid crystal behavior to de-
fects, which in some cases allows analytic calculation.

To discuss the topological character of defects in nematic liquid
crystals, one starts with the order parameter symmetry—or, more
precisely, the ground state manifold—namely the real projective
space, RPn−1. More generally, systems which break SO(n) (rota-
tional) symmetry can be represented by an n-dimensional vector
which goes to zero at defect locations, and d− n, where d is the
spatial dimension, determines the dimension of the topological
charge density.27,28 For example, in two-dimensional nematics
the topological charge density is a scalar because the ground state
manifold is RP1 ∼= SO(2) and the order parameter can be repre-
sented by a complex number.26 The situation in three-dimensions
is more complex. Although the order parameter breaks three di-
mensional rotational symmetry (SO(3)), the extra cylindrical and
apolar symmetries determine the ground state manifold to be RP2

which allows both line defects and point defects.7 Thus, two types
of topological charge densities exist: a scalar for point defects
and a vector for line defects (see Eq. (7)). Further complexities
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arise because there is only one topological equivalency class of
line defects (as opposed to infinite half-integral charges in two-
dimensions). Geometrically this appears as a “rotation vector,”
Ω̂ΩΩ.4,21 This rotation vector defines the plane the nematogens lie
in as they encircle the disclination. Fig. 1 shows a general ex-
ample of a disclination with rotation vector Ω̂ΩΩ, and unit tangent
vector T̂. The cylinders outside the disclination represent the ori-
entation of nematogens.
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^

^

^

φ

Fig. 1 Schematic example of a disclination line showing its geometric
features. T̂ is the unit tangent vector and {n̂0, n̂1, Ω̂ΩΩ} describes the ori-
entation of the nematogens (depicted as cylinders) as they encircle the
disclination core.

In this work, we extend these recent efforts to characterize
disclination lines by defining a disclination density tensor, valid
in three-dimensions. Our primary result is the definition of this
tensor as a function of first derivatives of the nematic tensor or-
der parameter, Q, which is typically the preferred representation
of the nematic near defects.29 We further show that this discli-
nation density tensor has a simple decomposition in terms of the
rotation vector Ω̂ΩΩ and the unit tangent vector T̂, and can be used
to identify and classify disclination lines. This disclination density
tensor is then used as a starting point to discuss the dynamics of
disclination lines.

In Section 2, we define the disclination density tensor and ex-
amine its relationship to the geometric properties of a disclina-
tion. We also present several numerical realizations, demonstrat-
ing the utility of this characterization. In Section 3 we derive a
kinematic law for the velocity of disclination lines by connecting
the disclination density tensor to the topological charge density of
disclinations, and invoke the Halperin-Mazenko singularity track-
ing method27,30 to derive continuity equations for the topological
charge density in terms of Q. We show that the velocity of discli-
nation lines is dependent on derivatives of Q at the defect core.
These are kinematic results that hold regardless of any assump-
tion on the dynamic law governing the time evolution of Q, and
so they hold for both passive and active nematics with mass trans-
port. In Section 4 we use this framework and a linear approxima-
tion of Q to analytically predict the velocity for interacting discli-
nation lines, and self-annihilating passive loops as a function of
their radii. We confirm the predictions with three-dimensional

numerical solutions for the evolution of Q, and show that the re-
sult for interacting disclination lines is equivalent to that of Long
et al.24 for the Peach-Koehler force between two disclinations.

2 Disclination density tensor
2.1 Definitions

In two dimensional nematics, topological defects are point-like
singularities that can be described by a closed curve C encircling
the singularity. In particular, the charge, m, of the defect is defined
by

2πm =
∮

C
εµν n̂µ ∂kn̂ν d`k (1)

where n̂ is the representative vector of local order, called the
director. We denote by ∂k the derivative ∂/∂xk, and summa-
tion over repeated indices is assumed. It is simple to verify that
the integrand εµν n̂µ ∂kn̂ν = ∂kθ where θ is the angle the director
makes with some reference axis. Because of the apolar symme-
try in nematic liquid crystals, half-integer defects are allowed and
m = ±1/2 are the lowest energy configurations containing a de-
fect.5 Upon combining, these defects add their charges as rational
numbers.

In three-dimensions, topological defects in nematics manifest
as both lines and points. The first objective of this paper is to
classify the lines in a way that can be computed directly from the
order parameter. This has been previously done for point defects,
up to a sign ambiguity.7 However, to our knowledge, there is not
a generalization of Eq. (1) for line disclinations. This is because
the topology of lines in three-dimensional nematics is different.
All line disclinations in nematics have a charge of +1/2, but upon
combining they add as elements of the group Z2. That is, any two
line defects that combine will annihilate each other, even if they
energetically repel.

The first step to generalizing Eq. (1) for line disclinations is
to map its director field to an equivalent two-dimensional vec-
tor field. This is required because in order to have line defects
in a material with rotational symmetry breaking, the dimension
of the order parameter must be one dimension lower than that
of the ambient space.28 In Fig. 1, the director field around the
disclination in its normal plane is given by

n̂ = n̂0 cos
1
2

ϕ + n̂1 sin
1
2

ϕ (2)

where {n̂0, n̂1,Ω̂ΩΩ} is an orthonormal triad of vectors, and ϕ rep-
resents the azimuthal angle around the disclination in its normal
plane with respect to some reference axis. This parametrization
serves as an intuitive geometric definition for Ω̂ΩΩ: Ω̂ΩΩ · n̂ = 0 as n̂
circles the disclination. However, finding this vector at a point on
the disclination from a measuring circuit C is more difficult.

To exemplify this difficulty we show in Fig. 2 a disclination line
with Ω̂ΩΩ changing along the line. Two curves, C1 and C2 are used
to measure the defect charge. C1 remains in the normal plane
of the disclination and as such the corresponding curve in order
parameter space, shown in Fig. 2b, is planar. On the other hand,
C2 is out of the normal plane and so its order parameter equiv-
alent is also out of the plane. Naively integrating dn̂ along this
curve will not yield the same result, i.e. the integral is path de-
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Fig. 2 The charge of a disclination with Ω̂ΩΩ varying along the line is
measured with two curves, C1 and C2. (a) C1 remains in the normal
plane of the disclination where Ω̂ΩΩ is well-defined, while C2 is out of the
normal plane. (b) Curves C1 and C2 in order parameter space. Ξ̂ΞΞ is
defined as the vector orthogonal to both n̂ and its derivative along the
curve. Direct integration over the paths in order parameter space yield
different results. However integrating the projected Ξ̂ΞΞ · n̂×dn̂ yields the
correct charge for both curves since the projection collapses both curves
onto the half circle with ends identified.

pendent. Of course, topologically, these two curves differ only by
a continuous transformation and are equivalent; however, Ω̂ΩΩ is
not well-defined along the second curve. The resolution to this
paradox is that the charge of a disclination line is a scalar, and
Ω̂ΩΩ is not a topological invariant of the disclination line. Instead,
we can measure the charge by defining a local vector away from
the defect core. Since n̂ is a unit vector, its derivative in some
direction will be orthogonal to itself. Therefore, for a measuring
circuit C, we can define the vector Ξ̂ΞΞ locally as the vector that is
orthogonal to both n̂ and its derivative along the curve, which we
will denote dn̂. Then Ξ̂ΞΞ ≡ n̂× dn̂/|n̂× dn̂| at each point along a
chosen measuring curve. To integrate along the curves in order
parameter space, we must locally project into this orthogonal di-
rection. This has the effect of mapping a curve in order parameter
space to the half circle with end points identified, as seen in Fig.
2b. Thus, after taking the result modulo 2π we can compute the
disclination charge through the following relation:

π p =
∮

C
Ξ̂γ εγµν n̂µ ∂kn̂ν d`k (3)

where p ∈ {0, 1} is computed modulo 2 indicating the charge
m = p/2, and Ξ̂ΞΞ is not necessarily a constant vector but is defined
by n̂ and its derivative locally. The integrand of Eq. (3) mea-

sures the rate of rotation of n̂ along the curve, though we keep
this explicit form of projecting into the vector Ξ̂ΞΞ since it is useful
in both conceptualization and mathematical brevity in what fol-
lows. As the measuring circuit is taken to be smaller and smaller,
Ξ̂ΞΞ→ Ω̂ΩΩ, thus it is useful to identify Ω̂ΩΩ as a property of the defect
core since the director nearby can be approximated by Eq. (2).
However, this approximation may break down far from the defect
due to curvature of the defect, other defects, and boundary ef-
fects. Therefore, for arbitrary measuring circuits, it is important
to define Ξ̂ΞΞ along the curve chosen as in Eq. (3).

Equation (3) is the three-dimensional generalization of Eq. (1),
however, it assumes knowledge of Ξ̂ΞΞ everywhere and so is not
practically very useful. We use this relation as a starting point
to derive our first primary result. First, though, we briefly note
that the integrands in Eqs. (1) and (3) are similar to the effective
strain used by Long et al. to define the effective Peach-Koehler
force on disclination lines24. This is no accident: taking n̂ as in
Eq. (2) we find Ω̂γ εγµν n̂µ ∂kn̂ν = (1/2)∂kϕ. For a two-dimensional
nematic, the effective disclination strain is m∇ϕ where m is the
disclination charge. Hence the similarity in the expressions.

In the presence of disclinations, it is typically advantageous to
represent the nematic with a tensor order parameter, Q, as op-
posed to a singular vector. Q regularizes the singularity at the
center of the defect, and remains continuous for half integer de-
fects (note Eq. (2) reverses sign for ϕ = 2π). We parametrize
Q by Q = S [n̂⊗ n̂− (1/3)I]+P

[
m̂⊗ m̂− ˆ̀̀̀⊗ ˆ̀̀̀

]
where {n̂,m̂, ˆ̀̀̀} are

an orthonormal triad, and n̂ is the director. S and P parametrize
the eigenvalues of Q, and represent the degree of ordering of the
nematogens. Specifically, S represents uniaxial order and P rep-
resents biaxial order. Although we focus here on uniaxial liquid
crystals, it is known that the distribution of nematogens near the
core of disclinations becomes biaxial.31 However, at the center of
a disclination, two of the eigenvalues of Q cross and S−P = 0.

We now extend Eq. (3) in terms of the tensor order parameter.
To accomplish this we first assume we are working far enough
from the defect so that the distribution of nematogens is uniaxial,
that is P = 0. We restrict our measuring curve, C, to only pass
through points of constant S = S0 and we will denote this curve
as C0. Then, derivatives of Q are equivalent to derivatives of n̂
and it can be shown that the charge integral in terms of Q is

S2
0π p =

∮
C0

Ξ̂γ εγµν Qµα ∂kQνα d`k. (4)

This generalizes Eq. (3). However, because we must work away
from defects where S is constant it is not practically useful. To
construct a more useful quantity, we apply Stoke’s theorem to Eq.
(4). This yields the first main result of this paper:

S2
0π p =

∫
Γ0

Ξ̂γ εγµν εi`k∂`Qµα ∂kQνα dai ≡
∫

Γ0

Ξ̂γ Dγi dai (5)

where Γ0 is a surface bounded by curve C0 and dai is an ele-
ment of area on the surface. Note that in taking the curl of the
integrand of Eq. (4) there should be three terms since we are as-
suming Ξ̂ΞΞ is spatially varying as well. However, since Ξ̂ΞΞ is a unit
vector, its derivative will be orthogonal to itself and thus we can
move Ξ̂ΞΞ out of the derivative. The third term is also zero since it
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Fig. 3 Various defect configurations (left) with the computed decomposition of the disclination density tensor D, Eq. (6) (right). Nematic
configurations are computed using a finite element gradient flow algorithm with a Maier-Saupe bulk free energy and a one-constant elastic free energy.
In all figures, green cylinders represent nematogen orientations; black contours represent the defect core where the scalar order parameter S = 0.3S0;
black to red color map shows ω(r) with red contours showing where ω = 0.7ωmax; blue arrows show Ω̂ΩΩ; and red arrows show T̂. (a) A line defect with
varying rotation vector Ω̂ΩΩ. (b) Non-interacting disclination lines with orthogonal rotation vectors. (c) A wedge-twist disclination loop with constant
rotation vector but varying tangent vector. (d) A Saturn-ring configuration with rotation vector anti-parallel to the tangent vector at all points.

4 | 1–11Journal Name, [year], [vol.],

Page 4 of 11Soft Matter



is the curl of the gradient of Q which is not a singular quantity.
Equation (5) serves as a definition of the tensor D which we call
the “disclination density tensor.” As a check, for two-dimensional
systems the appropriate quantity is D33 = ε3µν ε3`k∂`Qµα ∂kQνα .
This quantity has been used in other investigations to track and
identify defects in two-dimensional (and quasi two-dimensional)
systems.32,33 Therefore the generalized tensor, D, goes to the ap-
propriate scalar in the two dimensional limit.

2.2 Properties of D

We now delineate some useful properties of D. First, D is a
smooth tensor field, owing to the regularization that Q provides.
Further, D = 0 where S is constant which can be seen by substi-
tuting our parametrization of Q into the definition of D, Eq. (5).
Therefore the points where D 6= 0 mark disclinations.

For disclination lines, D decomposes nicely as

D(r) = ω(r)
(

Ω̂ΩΩ⊗ T̂
)

(6)

where ω(r) is a non-negative scalar field which is at its maxi-
mum at the disclination core, and T̂ is the disclination line tan-
gent vector. This decomposition can be seen immediately if we
take ω(r) = δ (r−R) where R is the location of the defect line
and substitute Eq. (6) into Eq. (5). The delta-function expression
for ω is valid for a singular field such as n̂, though ω smooths
out to the size of the core for a regularized field like Q. We also
find that ω goes to zero at the core of integer line defects where,
in three dimensions, the escape to the third dimension5 destroys
the linear character of the defect.

Another useful property of D is that it inherently fixes the sign
of Ω̂ΩΩ · T̂. A common issue with determining the character of a
disclination line is that the independent vectors Ω̂ΩΩ and T̂ are de-
fined only up to a sign and it is the sign of their scalar product
that determines the winding character of the disclination. For D,
this scalar product is proportional to its trace and, hence, once
a direction for T̂ (or Ω̂ΩΩ) is chosen the sign of the other vector is
fixed by definition. Thus, if one is only interested in the winding
character of a disclination line, one needs only to compute the
trace of D.

To demonstrate the practical usefulness of the decomposition,
Eq. (6), we show in Fig. 3 several examples of disclination lines
and loops, alongside their respective ω, Ω̂ΩΩ, and T̂ fields. To com-
pute these, one must have access to the first derivatives (or nu-
merical equivalents) of the order parameter, Q. Then, using Eq.
(5), one can compute D. ω is computed as the Frobenius norm of
D while Ω̂ΩΩ (T̂) is the non-degenerate eigenvector of DDT (DT D).
The final step is to ensure that both T̂ and Ω̂ΩΩ are continuous along
the disclination line, which can be done by fixing the direction of
the tangent line and then fixing Ω̂ΩΩ by sgn

(
Ω̂ΩΩ · T̂

)
= sgn(TrD). The

examples were numerically computed using a Maier-Saupe bulk
free energy with a “one-constant” Landau-de Gennes elastic free
energy (more details on the computations are given below in Sec-
tion 4).

In Fig. 3a we show the “counter-example” for the normal plane
measuring circuit also shown in Fig. 2. As evidenced by the fig-
ure, the decomposition of D picks out the value of Ω̂ΩΩ that changes

along the line. Fig. 3b shows two disclination lines with orthog-
onal rotation vectors, which were shown by Long et al.24 to be
non-interacting. Fig. 3c shows a snapshot of a self-annihilating
wedge-twist loop disclination,21 showing that the decomposition
is just as useful for curved disclinations. Finally, Fig. 3d shows a
Saturn ring8,10 configuration where homeotropic anchoring on a
colloidal particle topologically requires the existence of a disclina-
tion loop with rotation vector anti-parallel to the tangent vector.

T

T

�

�

^

^

^

^

t/�t = 35

t/�t = 47

Fig. 4 Defect geometry near the recombination of disclination lines with
skewed initial tangent and rotation vectors. The configurations at two
separate iteration numbers are shown, t/∆t = 35, 47. The green cylinders
represent the nematogen orientation, the black contours represent the
defect core where the scalar order parameter S0 = 0.2S, the blue arrows
show Ω̂ΩΩ, and the red arrows show T̂. As the lines recombine at the closest
point between them, the tangent vectors rotate to be nearly parallel,
however the rotation vectors show little change.

Because we only need to compute the first derivative of the
tensor order parameter, this method of identifying defects and
obtaining geometric information is powerful, and should prove
useful, particularly in studies of active nematic systems in three-
dimensions in which defect lines and loops are spontaneously nu-
cleated and annihilated.21,22 To exemplify this we show in Fig.
4 the disclination line geometry computed from D as two discli-
nation lines with skewed tangent vectors and rotation vectors are
close to annihilating. This example is more complex than those
shown in Fig. 3 since the annihilation of the disclination lines
causes changes in the curvature of the defects and rotation of the
tangent vectors (see Fig. 6 as well). The tangent vector rotation
can be seen from comparing the two plots in Fig. 4. Additionally,
we find that the rotation vectors, Ω̂ΩΩ, rotate little in the annihila-
tion process.

While we have shown both simple and complex examples of
computation of the disclination density tensor for weakly curved
defects, we do not expect this construction to hold for strongly
curved defects such as in the transient stages of defect nucleation.
By strongly curved, we mean that κa ∼ 1 where κ is the defect
curvature and a is the radius of the defect core. For curvatures
this large, the continuum description of the disclination breaks
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down and the construction of D is no longer valid.
To conclude this section we comment on the methods for de-

termining Ω̂ΩΩ laid out in the supplementary information of Ref.21

and how they compare to our methods presented above. First,
the local formula, Ω̃ΩΩ = n̂× (n̂ ·∇) n̂ is similar to the definition of
Ξ̂ΞΞ, except that there is no reference to a measuring curve and the
directional derivative is in the direction of n̂ rather than in the
direction of the curve. Thus Ω̃ΩΩ is proportional to Ω̂ΩΩ at the discli-
nation core since Ξ̂ΞΞ→ Ω̂ΩΩ but goes to zero for pure twist disclina-
tions. The other method is a non-local construction of the curve
in order parameter space where n̂ near the disclination core is
extracted along a curve in the normal plane to the disclination
and Ω̂ΩΩ is the normal vector to the curve in order parameter space.
This gives the correct Ω̂ΩΩ as long as n̂ is as in Eq. (2) (see the curve
C1 in Fig. 2). However, a local formula is more desirable since n̂
may deviate from Eq. (2) due to external constraints. Hence, the
disclination density tensor represents a local construction that can
robustly determine the character of a disclination line and should
prove useful for future investigations.

3 Kinematic equations for disclination lines
We now derive a kinematic equation for the velocity of discli-
nation lines which holds regardless of details of the dynamical
model chosen for Q. We first connect the tensor D to the Jaco-
bian appearing in the Halperin-Mazenko formalism of topological
defects in systems with SO(n) symmetry.27,28,34 The appropriate
density for disclination lines is27

ρρρ(r) =
1
2 ∑

j

∫ dR j

ds
δ [r−R j(s)]ds (7)

where R j(s) is the jth disclination line’s position at point s along
the curve. In the Halperin-Mazenko formalism, one connects this
line defect density to order parameter space through a “zero-
finding” delta function of a complex order parameter (i.e. one
whose amplitude goes to zero at defect locations).

In two dimensions, one searches for zeros of Q and
the defect density is related to δ [Q] via the Jacobian26

(1/2)εµν ε`k∂`Qµα ∂kQνα . In three dimensions, however, Q 6= 0 at
the location of defects. Instead, two of its three eigenvalues cross,
and S−P = 0 at the core. Additionally, since n is orthogonal to Ω̂ΩΩ

near the core, there is only one degree of freedom describing its
orientation. Hence, instead of looking for zeros of Q, we search
for zeros in a two dimensional subspace of the full five dimen-
sional order parameter space. This subspace is defined by S−P
and the orientation of the nematogen. We denote the correspond-
ing delta function symbolically as δ [Q⊥(r)].

Now it remains to calculate the Jacobian. Since the space we
are working with is two dimensional, we may work in polar coor-
dinates in order parameter space. We take our radial component
to be (S−P)2 while the azimuthal component is θ , representing
the orientation of the nematogens. Note that near the core, the
integrand of Eq. (4) can be written in terms of (S−P)2 and θ :

Ω̂γ εγµν Qµα ∂kQνα = (S−P)2
∂kθ . (8)

In the typical polar coordinate representation, the Jacobian can

be computed as (1/2)∇× (r∇ϕ). Hence, identifying (S−P)2 ≡ r,
the Jacobian of our subspace is the curl of Eq. (8). Comparing
with Eq. (5), and noting that we are working near the core so we
can substitute Ξ̂ΞΞ with Ω̂ΩΩ, the Jacobian is (1/2)Ω̂ΩΩ ·D. We note that
this expression reduces to the correct Jacobian in two dimensions.

With this expression for the Jacobian, the disclination density
can be written in terms of the order parameter,28

ρi(r) =
1
2

δ [Q⊥(r)]Ω̂γ Dγi. (9)

Note that, from the decomposition of D, Eq. (6), ρρρ is parallel to
the tangent line of the disclination. This is also the case for Eq.
(7) since dR/ds is directed along the tangent line. If Q is time
dependent, then ρρρ and D are as well and D satisfies a continuity
equation (1/2)∂tDγi = ∂kJγik with

Jγik = εik`εγµν ∂tQµα ∂`Qνα . (10)

Similar to Mazenko,28,34 we write Jγik = εik`gγ` which will prove
useful for analytic computations in the next section.

To derive a continuity equation for ρρρ, we first note that mul-
tiplying the continuity equation for D by a delta function gives
(1/2)Dγi∂tδ [Q⊥] = Jγik∂kδ [Q⊥] which follows from properties of
delta functions. With this result in hand, taking a time derivative
of Eq. (9) yields

∂tρi = ∂k
(
δ [Q⊥]Ω̂γ Jγik

)
. (11)

Note that, as was the case in Section 2, even if Ω̂ΩΩ is time depen-
dent, the term proportional to ∂tΩ̂ΩΩ is zero since Ω̂ΩΩ is a unit vector
so its time derivative is orthogonal to itself, thus ∂tΩ̂ΩΩ ·D = 0. Eq.
(11) is the standard result for topological continuity equations
and the interpretation is that the disclination current is the topo-
logical density current restricted to the element of defect line.
This result is important because we can write Jγik in terms of the
nematic order parameter. Additionally, connecting Eq. (11) with
the time derivative of Eq. (7) allows us to connect the velocity of
the defect along the line, v(s), with the topological density cur-
rent. We find ∂tρi = ∂k (viρk− vkρi) so that

Ω̂τ Jτik =
1
2

Ω̂γ

(
viDγk− vkDγi

)
. (12)

This leads to vi = 2Ω̂γ DγkΩ̂τ Jτik/|D|2 or, substituting Eq. (6),

v(s) = 2
T̂×

(
Ω̂ΩΩ ·g

)
ω

∣∣∣∣∣∣
r=R(s)

(13)

with
gγk = εγµν ∂tQµα ∂kQνα . (14)

Eq. (13) is the second key result of this paper. Note that the
velocity as written is explicitly orthogonal to the tangent vector
of the disclination. Also of note is that g depends on the time
evolution of Q, but does not explicitly reference the source of the
time evolution. That is, this expression is equally valid for ne-
matics undergoing relaxational dynamics or active nematics with
mass transport. To use this equation, one needs only to supply
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the appropriate time derivative of Q. In the next section we use
this result to predict the velocities analytically for a few examples
of passive disclination lines and loops.

4 Disclination velocity calculations for pas-
sive nematics

Here we apply the formula for the velocity of a disclination, Eq.
(13), to a few examples in passive nematics. To do this, we first
make some simplifying assumptions. To compute g, Eq. (14), we
must know Q and its spatial and time derivatives. We assume its
time evolution is simply relaxational, ∂tQ = −ΓδF/δQ, where Γ

is a rotational diffusion constant. We also assume that the free
energy, F , has a functional derivative whose bulk term is analytic
in Q at the core (such as the Landau-de Gennes free energy29),
and has a one-constant elastic free energy. The former condition
ensures that the only terms that survive in the calculation of g
are those associated with the elastic energy, since it can be shown
that εγµν (Qn)µα ∂kQνα = 0 at the core of a defect for any power n.
Thus we can write ∂tQ = ΓL∇2Q where L is the elastic constant.

We begin with a calculation for interacting defect lines. Specif-
ically, we calculate the velocity of the closest point between two
disclinations. We assume the lines are straight and have con-
stant rotation vectors which are otherwise arbitrary, and choose
our axes so that the first disclination has tangent vector T̂(1) = ẑ,
while the tangent vector for the second disclination is left arbi-
trary. This set up is sketched in Fig. 5 where the line segment
connects the closest points of the disclinations.

Ω(1)^

Ω(2)^φ

φ~

Ω(1)

Ω(2)

^

^φ

φ~

Fig. 5 Interacting disclination lines at the closest point between the
disclinations, represented by the line between them. ϕ represents the
azimuthal angle in the normal plane of the first disclination, while ϕ̃

represents the same for the second. Ω̂ΩΩ
(1)

and Ω̂ΩΩ
(2)

are assumed to be
arbitrary for the calculation.

We first present an approximate, analytic calculation for the
line velocity. For both lines, the director field near the disclination
core is given by Eq. (2) with a small perturbation occurring from
the director field of the other. We define the two azimuthal angles
to be zero along the line segment orthogonally connecting the
lines. We denote the azimuth of the second disclination as ϕ̃ so
that the perturbation of n̂ near the first disclination is expanded

around ϕ̃ = 0:

n̂≈
(

n̂0 +
1
2

ϕ̃p̂0

)
cos

1
2

ϕ +

(
n̂1 +

1
2

ϕ̃p̂1

)
sin

1
2

ϕ (15)

where we define p̂j ≡ Ω̂ΩΩ
(2)× n̂j and Ω̂ΩΩ

(2)
is the rotation vector of

the second disclination. The effect of the perturbation is to rotate

the director slightly around Ω̂ΩΩ
(2)

near the first disclination. Eq.
(15) is then used with a linear core approximation24 to yield an
effective Q near the disclination,

Q≈ S0

[
1
6

I− 1
2

Ω̂ΩΩ
(1)⊗ Ω̂ΩΩ

(1)
+

1
2

x
a
(ñ0⊗ ñ0− ñ1⊗ ñ1)

+
1
2

y
a
(ñ0⊗ ñ1 + ñ1⊗ ñ0)

]
(16)

where a is the core radius and ñj ≡ n̂j +(1/2)ϕ̃p̂j.

Equation (16) is particularly useful because the vectors n̂j and
p̂j are constant. We compute g, keeping in mind the fact that

{n̂0, n̂1,Ω̂ΩΩ
(1)} form an orthogonal triad so that Ω̂ΩΩ

(2)
can be written

as a linear combination of the three. The result is

εγµν (ΓL∇
2Qµα )∂kQνα

∣∣∣
r=0

=−
ΓLS2

0
a2 Ω̂

(2)
γ ∂kϕ̃ + n̂0γ Ak + n̂1γ Bk

(17)
where A and B are vectors containing derivatives of ϕ̃ but are
inconsequential to the result since n̂0 and n̂1 are orthogonal to

Ω̂ΩΩ
(1)

. Using ∇ϕ̃ = (T̂(2)×R)/|R|2 where R is the vector between
the two disclinations, (i.e. R= r(1)−r(2)) we find that the velocity
of the closest point between disclinations is

v = 2ΓLS2
0

(
Ω̂ΩΩ

(1) · Ω̂ΩΩ(2)
)(

T̂(1) · T̂(2)
) R
|R|2

. (18)

Equation (18) indicates that if either the rotation vectors, or the
tangent vectors of the two disclinations, are mutually orthogonal,
the velocity vanishes. This qualitative result was also obtained
by Long et al.24 in which the effective Peach-Koehler force was
applied to a similar configuration. In fact, Eq. (18) is identical
to their result of the force between the two disclinations at their
closest point up to coefficients. This suggests that Eq. (13) for the
velocity may be used to generalize the expression for the Peach-
Koehler force to configurations with anisotropic elasticity or non-
optimal orientation. We note that here we have assumed the ori-
entation to be optimal in approximating Q near the disclination
core. By optimal, we mean that there is no relative difference be-
tween the extra degree of freedom of polarity of the defects (see
Refs.35,36). However, Eq. (13) holds regardless of this difference
and the challenge of predicting the motion of defects in this case
is in finding an accurate description of Q at the core.

To check this calculation, we perform three-dimensional nu-
merical calculations of recombination of disclination lines. We
assume relaxational dynamics with a Maier-Saupe bulk poten-
tial37–39 and a one-constant elastic free energy. The calculations
are performed by using the finite element Matlab/C++ pack-
age FELICITY40 with a time dependent gradient flow algorithm41

and an algebraic multi-grid linear equations solver.42–45 We cast
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Fig. 6 Analysis of recombining disclination lines. (a) Snapshots of the recombination of disclination lines with initial T̂(1) · T̂(2) = 0.3 and Ω̂ΩΩ
(1) ·Ω̂ΩΩ(2)

=−1
at iteration numbers t/∆t = 20, 40, and 50. Contours represent surfaces of S = 0.3S0. Early in the computation, bends in the defects form near the
closest points while late in the calculation, after the closest points annihilate, horseshoe shaped domains continue to recombine. (b) Distance of
closest points, |R| versus iteration number for initial T̂(1) · T̂(2) varying from 0–1. The inset shows |R|2 versus iteration number, indicating a scaling

|R| ∼ t1/2 as predicted by Eq. (18). (c) Instantaneous v ·R versus instantaneous T̂(1) · T̂(2) with Ω̂ΩΩ
(1) · Ω̂ΩΩ(2)

=−1 (left) and instantaneous Ω̂ΩΩ
(1) · Ω̂ΩΩ(2)

with

T̂(1) · T̂(2) = 1 (right) for calculations with various initial T̂(1) · T̂(2) and Ω̂ΩΩ
(1) · Ω̂ΩΩ(2)

. Eq. (18) predicts a linear scaling between these quantities which
is confirmed by the numerical analysis. Note that the left plot only considers points where the line defects have no curvature since this is the valid
regime for Eq. (18).

the system in dimensionless units by defining the length scale
ξ = kBT/L and time scale τ = 1/ΓkBT and work in dimension-
less position and time. We set the temperature so the liquid crys-
tal is in the nematic phase (S0 = 0.6751) and set the time-step
∆t = 0.1. A standard tetrahedral mesh with 41×41×41 vertices is
used with Neumann conditions at the boundary for all numerical
calculations. The closest point between disclinations is initial-
ized to be |R| = 5. We perform computations varying the initial

T̂(1) · T̂(2) from 0–1 with Ω̂ΩΩ
(1) · Ω̂ΩΩ(2)

= −1 as well as varying the

initial Ω̂ΩΩ
(1) · Ω̂ΩΩ(2)

from 0–1 with T̂(1) · T̂(2) = 1. This allows us to
independently analyze the effects of T̂(1) · T̂(2) and Ω̂ΩΩ

(1) · Ω̂ΩΩ(2)
on

the velocity of the lines.

Fig. 6a shows several snapshots of the recombination process
of two disclination lines. The contours represent surfaces of con-
stant S = 0.3S0. Before the closest points annihilate, the discli-
nation bends towards this point since the velocity is greatest be-
tween the two defects here. After the closest point annihilates, the
remainder of the lines form two horseshoe shaped domains that
continue to recombine until the texture disappears. Fig. 6b shows
|R| as a function of iteration number, t/∆t, for varying initial rela-
tive orientations of disclinations. The inset plots |R|2 vs iteration
number which is linear for all events, indicating that |R| ∼ t1/2,
as expected from Eq. (18). Note that the fastest recombination is
when the disclinations are parallel, while recombination never oc-

curs when disclinations are perpendicular. We find similar results

in calculations with varying initial Ω̂ΩΩ
(1) · Ω̂ΩΩ(2)

. In Fig. 6c we show
the instantaneous v ·R as a function of instantaneous T̂(1) · T̂(2)

and Ω̂ΩΩ
(1) · Ω̂ΩΩ(2)

. As predicted by Eq. (18), we see a linear relation-
ship between the two. We note that since Eq. (18) only applies to
straight defect lines and since the defect lines develop curvature
relatively early into their evolution, the left plot of Fig. 6c only
shows points for the early evolution of the defects. As the de-
fects develop curvature, the annihilation slows even though the
tangent vectors are becoming more parallel due to an aligning
torque. We also note that when numerically computing the ve-
locity using Eq. (13) at other points besides the closest points
between defects we find velocities that qualitatively reflect the
motion in the numerical calculations. A quantitative comparison
would necessitate a finer mesh to more accurately compute the
derivatives of the order parameter.

We now calculate the velocity for a disclination loop. We will
first focus on a loop with zero point charge, by which we mean
that upon covering the loop with a measuring surface there is not
an overall covering of the order parameter space. Such loops
have recently been the focus of three-dimensional active nematics
since they are the fundamental excitations.21,22 For these loops
the rotation vector is typically treated as being constant along the
loop. In a passive nematic, there are two “forces” acting on a
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zero charge disclination loop. The first is the usual interaction
between oppositely charged defects since at opposite ends of the
loop Ω̂ΩΩ · T̂ changes sign (or handedness for the case of the twist
deformation when Ω̂ΩΩ · T̂ = 0). The second force seeks to make
the defect as small as possible due to the self energy of the defect
core. Hence, for a zero charge disclination loop, both forces act
to annihilate the defect.

Here, we will only compute the velocity due to the self en-
ergy as a careful consideration of the interaction induced by other
parts of the defect is beyond the scope of this work. To compute
this, we take n̂ as in Eq. (2) and work in cylindrical coordinates,
assuming the loop lies in the xy-plane. Taking a linear core ap-
proximation, Q near the core is given by

Q = S0

[
1
6

I− 1
2

Ω̂ΩΩ⊗ Ω̂ΩΩ+
1
2

ρ−R
a

(n̂0⊗ n̂0− n̂1⊗ n̂1)

+
1
2

z
a
(n̂0⊗ n̂1 + n̂1⊗ n̂0)

]
. (19)

where R is the disclination radius. We assume the triad
{n̂0, n̂1, Ω̂ΩΩ} is constant throughout the loop and so we find

v =−
ΓLS2

0
R

ρ̂ρρ, (20)

indicating that the loop is shrinking at a rate inversely propor-
tional to R. Note that the interaction with the rest of loop should
scale similarly since the interaction is Coulomb-like.5 This means
the effect of the interaction only changes the coefficient in front
of Eq. (20) and the qualitative results hold. Thus we expect the
time dependence of the radius to be R(t) ∼ t1/2, the same time
dependence as the distance between two annihilating defects in
two dimensions.46 Because this loop has zero point charge, it can
self-annihilate and the configuration will eventually become uni-
form.

Fig. 7 shows results of a numerical calculation for a zero charge
loop. Specifically, we simulate a pure-twist loop where Ω̂ΩΩ · T̂ = 0
everywhere along the loop. The details of the numerics are simi-
lar to those outlined above except here we use a tetrahedral mesh
with 81×81×81 vertices. Fig. 7b shows the time dependence of
the radius, R(t), while the inset shows R2(t). The time depen-
dence demonstrates that the radius scales as R(t) ∼ t1/2 which is
expected from Eq. (20). We note that, for a one-constant elastic
energy, the value Ω̂ΩΩ does not change the dynamics of the loop. We
also note that the loop shrinks much faster than the pair of discli-
nations studied in Fig. 6. The initial diameter of the loop is the
same as the initial distance between disclination lines, yet upon
comparing the recombination time we see the disclination loop
annihilates at time-step 12 while the parallel disclination lines an-
nihilate at time-step 20. This behavior is inconsistent with the cal-
culated coefficients in Eqs. (18) and (20); however, this is likely
due to the fact that there are two forces acting on the disclination
loop as opposed to one on the disclination lines and the compu-
tation above only reflects one such force as discussed. We further
note that both the t1/2 scaling for lines and loops, and the qual-
itative features, such as the bends in the disclination lines and
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Fig. 7 Self-annihilating pure twist loop. (a) Snapshot at t/∆t = 5 of
a pure twist disclination loop with Ω̂ΩΩ = ẑ along the loop. The contour
represents a surface of constant S = 0.3S0. (b) Loop radius R plotted
against iteration number. The inset shows R2 versus iteration number,
demonstrating the scaling R∼ t1/2.

the remaining horseshoe structures have been recently observed
experimentally by Zushi and Takeuchi.47

We conclude this section with a qualitative prediction for
the velocity of a nonzero point charge loop defect. Loops of
this nature are typically associated with colloidal particles with
homeotropic boundary conditions.8–10,48 Here, we assume there
is no particle and there is only a loop with Ω̂ΩΩ · T̂ = 1, which, in
the far field, appears as a radial hedgehog point defect. As above,
we will only compute the contribution from the self energy. Here,
one must be careful since the triad {n̂0, n̂1, Ω̂ΩΩ} changes along the
loop. To do the calculation we assume n̂0 = ρ̂ρρ and Ω̂ΩΩ = T̂ =−φ̂φφ so
that ∂ n̂0/∂φ =−Ω̂ΩΩ and ∂ Ω̂ΩΩ/∂φ = n̂0. By using these relations we
arrive at

v = ΓLS2
0

(
− 1

R
+

a
R2

)
ρ̂ρρ. (21)

Because there is an overall point charge one might assume that
the defect loop would shrink and become a typical hedgehog de-
fect. However, this result shows that there is a stable size for the
loop instead. If the loop is much larger than this size, the nonzero
charge loop behaves similarly to the zero charge loop. However,
if the loop is smaller than this size, it grows rapidly. Since we are
only considering the self energy of the defect, the physical inter-
pretation is that a small loop has a smaller energy than a point
defect core. This stability of a loop defect over a point defect has
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been seen in previous numerical and analytic studies of hedge-
hog defect cores.9,48 This is similar to the case in two-dimensions
where a single ±1 defect splits into two ±1/2 defects to lower the
energy. However, in that case, the defects repel each other and
are only stabilized by other defects or boundary conditions.6,35

Of course, if the interaction with other parts of the loop are taken
into account, we expect that the coefficient on the 1/R term would
change. Thus, one would need to perform a more detailed calcu-
lation for a quantitative prediction of the size of the stable loop.

5 Conclusion
In this work we have extended recent efforts to fundamentally
understand the nature of defect lines and loops in nematics. We
have introduced a disclination density tensor, D, that can be com-
puted from first derivatives of the tensor order parameter and is
nonzero at defect locations. This tensor decomposes as a dyadic
combination of unit vectors that geometricly define the disclina-
tion. We have derived a continuity equation for the topological
charge, and explicitly written a velocity for the defect line. Fur-
ther, we have demonstrated with several examples the practicality
of the velocity equation, Eq. (13), by analytically deriving results
for different disclination configurations.

There is still more work to be done in understanding discli-
nation dynamics. As demonstrated by Eq. (13), the velocity of
a line disclination depends on its instantaneous rotation vector,
Ω̂ΩΩ. The issue of understanding how the rotation vector evolves
in time remains a challenge. Recent theory and experiment23,47

have begun to explore this issue. Moreover, it will be interest-
ing to see how Eq. (13) can be applied to systems with a more
complex time dependence, either for active systems, systems with
anisotropic elasticity or both.
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