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Abstract

Stress relaxation in network materials with permanent crosslinks is due to the transport 

of fluid within the network (poroelasticity), the viscoelasticity of the matrix and the 

viscoelasticity of the network. While relaxation associated with the matrix was studied 

extensively, the contribution of the network remains unexplored. In this work we 

consider two and three-dimensional stochastic fiber networks with viscoelastic fibers 

and explore the dependence of stress relaxation on network structure. We observe that 

relaxation has two regimes – an initial exponential regime, followed by a stretched 

exponential regime – similar to the situation in other disordered materials. The stretch 

exponent is a function of density, fiber diameter and the network structure, and has a 

minimum at the transition between the affine and non-affine regimes of network 

behavior. The relaxation time constant of the first, exponential regime is similar to the 

relaxation time constant of individual fibers and is independent of network density and 

fiber diameter. The relaxation time constant of the second, stretched exponential regime 

is a weak function of network parameters. The stretched exponential emerges from the 

heterogeneity of relaxation dynamics on scales comparable with the mesh size, with 

higher heterogeneity leading to smaller stretch exponents. In composite networks of 

fibers whose relaxation time constant is selected from a distribution with set mean, the 

stretch exponent decreases with increasing the coefficient of variation of the fiber time 

constant distribution. As opposed to thermal glass formers and colloids, in these 

athermal systems the dynamic heterogeneity is introduced by the network structure and 

does not evolve during relaxation. While in thermal systems the control parameter is the 

temperature, in this athermal case the control parameter is a non-dimensional structural 

parameter which describes the degree of non-affinity of the network. 

1 Corresponding author, Tel: 1 518 276-2195, E-mail: picuc@rpi.edu. 
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1. Introduction

Many biological and soft man-made materials can be classified as network materials. 

This class includes materials in which a network of filaments provides structural integrity 

and controls the mechanical behavior, such as in cartilage, tendons, various 

membranes within the human body, gels, molecular networks such as elastomers, 

paper and nonwovens. Most of these materials exhibit time-dependent behavior. They 

may creep under constant load, relax after an imposed deformation when held at 

constant strain or, in general, exhibit strain rate-dependent stress in a generic 

mechanical test. 

Multiple mechanisms lead to time dependence of the mechanical behavior of 

network materials, including: the time dependence of the matrix (if the network is 

embedded in a viscoelastic material), e.g.1, the transport of solvent across, and in and 

out of the network2,3, viscous interactions between filaments in contact 4, the time 

dependence of the fiber material behavior, and the process of crosslink rupture or 

dissociation 5,6. The last mechanism is inactive in permanently crosslinked networks. 

Viscous friction between filaments is essential in molecular networks with small free 

volume (i.e. when filaments are densely packed) such as in elastomers 4,7. If the 

network is embedded in a viscoelastic matrix, the matrix contributes to the time 

dependence of the material behavior, an example being connective tissue which has 

polar and hydrophilic glycosaminoglycan molecules (GAG) embedded in the collagen 

network.8 The transport of viscous fluid across the network introduces strain rate 

dependence, which is quantified by poroelastic models.9,10 The characteristic time 

constant of relaxation within poroelasticity is proportional to the viscosity of the 

embedding fluid, , and to the square of the sample size, and inversely proportional to 𝜂

the network stiffness, . Finally, the time dependent behavior of individual filaments is 𝐸0

also expected to contribute to the time dependence of the network response, but this 

aspect was not studied extensively to date.11,12 

Collagen-based biological tissue is an intensely studied system in which multiple 

mechanisms operate. Stress relaxation in reconstituted collagen was described with a 

Prony series with three time constants.13–15 The values of these constants vary from 

report to report, but fall in the range 0.6-8 s, 13-40 s and 800-1300 s, respectively. 
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Stress relaxation of collagenous tissue may be also described using a Prony series with 

three terms. In 16 the time constants reported for the rabbit periodontal ligament are 0.4 

s, 4 s and 400 s, while in 17 the time constants for fibroblast-seeded collagen are 

approximately 10 s, 100 s and 2,000 s. These works do not associate the relaxation 

modes with specific mechanisms. However, it is acknowledged that poroelasticity 

operates in all cases and is responsible for at least one of the relaxation modes. 

An example in which one mechanism is clearly dominant is provided by chemical 

gels, such as acrylamide. The large free volume of chemical gels limits the direct 

interaction of filaments which implies that poroelasticity is more important than internal 

friction. A large number of publications present data for various gels, e.g. 18–21.

The mechanisms associated with solvent transport and the viscoelasticity of the 

embedding matrix do not operate in nonwovens and hence such materials may provide 

a testbed for the effectiveness of the other mechanisms causing time-dependent 

behavior listed above. Unfortunately, the literature on nonwovens does not support a 

unique conclusion in this sense, as some reports indicate that the network exhibits little 

or no time-dependent behavior despite the fact that individual fibers have time-

dependent response,22 while some other reports indicate the opposite. For example, ref. 
23 reports logarithmic relaxation for a network of polycaprolactone fibers. 

It becomes apparent that the broad range of behaviors reported in the literature 

on various network materials is due to the concomitant operation of multiple 

mechanisms. This makes difficult the evaluation of the contribution of individual 

mechanisms to global relaxation exclusively based on experimental data. As indicated 

above, of the various mechanisms, the effect of the time-dependent fiber behavior is the 

least studied and, in fact, rarely mentioned in discussions of the viscoelasticity of 

network materials. In order to isolate the contribution of the network to global relaxation, 

we construct in this work models in which all other relaxation mechanisms are absent. 

In these models fibers are viscoelastic and are characterized by a single relaxation time. 

Fiber interaction at sites which are not crosslinks is neglected. The crosslinks are 

permanent. We observe that the stochastic structure of the network introduces a slow 

relaxation regime of Kohlrausch type and study the dependence of the slowdown on the 

structural parameters of the network. It results that networks in the transition regime 
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between affine and non-affine exhibit the most heterogeneous dynamics, which leads to 

maximum slowdown. This behavior, which is broadly encountered in thermal systems 

such as monatomic and polymeric glasses close to the glass transition temperature (𝑇𝑔

), is encountered here in a purely athermal system and is due to the frozen structural 

heterogeneity of the network. 

2. Models and network structural parameters

Two (2D) and three-dimensional (3D) networks of Mikado and Voronoi type, 

respectively, are considered in this work. Such networks are widely used in the literature 

as proxies for network materials of 3D24–26 and quasi-2D27–29 types.

Mikado networks, Fig. 1a, are constructed by depositing fibers of length  in a 𝐿0

square problem domain of dimensions . The fiber center of mass and their orientation 𝐿

are defined by random variables uniformly distributed over the problem domain and 

over the angular range , respectively. Fibers are crosslinked at all points where [0,𝜋]

they cross and the crosslinks are assumed to transmit both forces and moments (weld 

type) both along given fiber and from fiber to fiber. The connectivity number, i.e. the 

number of fiber segments emerging from each crosslink is . Dangling ends are 𝑧 = 4

eliminated since, as long as inter-fiber contacts are neglected, they do not contribute to 

the mechanics of the network. Since the crosslinks located at the fiber ends have , 𝑧 = 3

the overall connectivity index of the network is somewhat smaller than 4. 
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Figure 1. (a) Mikado and (b) Voronoi networks used in this study.

Voronoi networks, Fig. 1b, are constructed in cubic domains of edge length  by 𝐿

starting with randomly distributed seed points, which are used to tessellate the space 

using the Voronoi procedure. The edges of the polyhedral domains of the tesselation 

are retained as fibers. The fiber length is controlled by adjusting the number density of 

seed points. Each fiber has 2 crosslinks, one at each end. As in the Mikado network 

case, the crosslinks are of welded type and transmit both forces and moments. The 

connectivity of this network is . 𝑧 = 4

In both Mikado and Voronoi networks, fibers have diameter, , and viscoelastic 𝑑

behavior described by a Maxwell model of stiffness  and relaxation time constant . 𝐸𝑓 𝜏𝑓

With the exception of the systems discussed in section 3.4, all fibers in given model 

have same  and . In these cases,  is considered the unit of time of the relaxation 𝐸𝑓 𝜏𝑓 𝜏𝑓

problem (i.e. it is used to normalize all relevant times). The unit of stress is . 𝐸𝑓

In order to study their relaxation, networks are loaded in uniaxial tension up to 

strain , after which the global strain is kept constant and the stress in the loading 𝜀0

direction is monitored, . Tractions in directions perpendicular to the loading direction 𝜎(𝑡)

are kept zero. The network is forced to deform in a linear elastic (although not 

necessarily affine) way up to , such to prevent relaxation during loading. To this end, 𝜀0

the constitutive behavior of fibers is taken linear elastic up to the end of the loading 

period. The constitutive description is then switched to viscoelastic to trace the 

subsequent relaxation. The stress at the end of the loading period is denoted by . In 𝜎0

most simulations reported here, . Larger , up to 30%, are considered in order 𝜀0 = 3% 𝜀0

to determine to what extent structural changes introduced by the large imposed strains 

modify the relaxation behavior, and the results are reported in section 3.3.

Fibers are modeled using Timoshenko beam elements (B22 in 2D and B32 in 

3D) and the solution is obtained with the commercial finite element software 

Abaqus/Standard (version 62.3). In average 5 elements are used per fiber, 

discretization which led in previous studies to adequate convergence of the energy, and 

hence provides the best compromise between accuracy and computational cost. 
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One of the main goals of the present work is to establish the relation between 

network structural parameters and the relaxation behavior. Therefore, it is necessary to 

review the parameters used to describe the structure. The network density, , is defined 𝜌

as the total length of fiber per unit area (in 2D) or volume (in 3D). In both Mikado and 

Voronoi networks, the segment lengths are Poisson distributed; the mean value, , is 𝑙𝑐

the only parameter of this distribution.  is related to  as  in the Mikado case,30 𝑙𝑐 𝜌 𝜌𝑙𝑐 = 𝜋 2

and as  in the Voronoi case, where  for the unperturbed Voronoi network 𝜌𝑙2
𝑐 = 𝑐 𝑐 = 0.95

of straight fibers.31 If fibers are not straight,  depends on fiber crimp,32 as well as on 𝑐

any geometric perturbation applied to the basic Voronoi structure.31 

At constant , increasing the fiber diameter, , increases the bending rigidity 𝑙𝑐 𝑑

faster than the axial rigidity, which makes the axial mode gradually energetically less 

expensive than the bending mode. It is broadly reported in the literature on network 

mechanics27,33,34 that dense networks of fibers with large  store most of the strain 𝑑

energy in the axial deformation mode of fibers. Consequently, such structures deform 

approximately affinely. Decreasing  and/or  leads to networks whose deformation is 𝜌 𝑑

controlled by the bending mode of fibers and which exhibit non-affine deformation 

patterns. Network stiffness scales linearly with the density (  and is proportional to 𝐸0~𝜌)

 (where  is Young’s modulus of the fiber material and  is the area of the fiber 𝐸𝑓𝐴 𝐸𝑓 𝐴~𝑑2

cross-section) in the affine regime. In the non-affine regime , where  for 𝐸0~𝐸𝑓𝐼𝜌𝑞 𝑞 = 2

the Voronoi structures25,35 and  for 2D Mikado networks,27,29,36 while  is the axial 𝑞 = 8 𝐼

moment of inertia of the fiber cross-section ( ). These scaling relations hold provided 𝐼~𝑑4

 is well above the transport percolation threshold for the respective stochastic 𝜌

geometry. 

The degree of non-affinity is defined by a non-dimensional structural parameter, 

, which combines the effect of  and . In the Mikado case, , 𝑤 𝜌 𝑑 𝑤 = 𝑙𝑜𝑔10[(𝜌𝐿0)7(𝑑/4𝐿0)2]

while in the Voronoi case, . The non-affine to affine transition takes 𝑤 = 𝑙𝑜𝑔10[𝜌(𝑑/4)2]

place in Mikado and Voronoi networks in the vicinity of  and of 𝑤𝑁𝐴 ― 𝐴 = 4.5 𝑤𝑁𝐴 ― 𝐴

, respectively.29,37 In this work we construct networks with a broad range of  = ―1.2 𝑤

values such to span the non-affine range and the non-affine to affine transition. We note 
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that the majority of network materials, particularly the biological collagen-based 

networks, have parameters that place them in the non-affine category.   

3. Results and discussion

3.1 Relaxation of networks with identical fibers

We consider first networks of fibers made from the same viscoelastic material, 

represented by a Maxwell model with relaxation time constant, . Stress relaxation 𝜏𝑓

following an imposed uniaxial strain of  is evaluated for Mikado and Voronoi 𝜀0 = 3%

networks with a broad range of  values in the non-affine and affine regimes.  is 𝑤 𝑤

varied by changing  and  and we confirm that networks with different  and , but with 𝜌 𝑑 𝜌 𝑑

same  relax identically. Hence, the non-dimensional parameter  provides a sufficient 𝑤 𝑤

representation of the structure in this problem and for this type of networks. Given the 

duality between linear elasticity and viscoelasticity, this is expected; note that  is also 𝑤

the unique parameter that controls the small strain stiffness, , in networks of fibers 𝐸0

made from the same material. 

Figure 2a shows stress relaxation curves for Mikado networks of  and 𝑤 = 3.47

, which correspond to the non-affine regime, , and  in the initial 4.38 𝑤 < 𝑤𝑁𝐴 ― 𝐴 𝑤 = 5.47

range of the affine regime. The time-dependent stress, , is normalized by the stress 𝜎(𝑡)

at the onset of relaxation, . It is observed that relaxation is exponential at early times, 𝜎0

regime in which networks with different  relax identically, but becomes slower at later 𝑤

times. To test whether the data conforms to a stretched exponential function 

(Kohlrausch relaxation) of the form

, (1)𝜎(𝑡) = 𝜎0exp [ ― (𝑡 𝜏)𝛽]

we replot the curves in Fig. 2a as  vs. , in Fig. 2b. If the 𝑦 = ln [ ― ln (𝜎(𝑡) 𝜎0)] ln 𝑡 𝜏𝑓

stretched exponential is an adequate representation of the data, the plot must become 

linear, of slope equal to the stretch exponent, , and intercept . 𝛽 𝛽ln 𝜏 𝜏𝑓

Figure 2b confirms the existence of two relaxation regimes: the first (regime I) is 

exponential ( ), while the second (regime II) is described by Eq. 1, as also shown 𝛽 = 1
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schematically in Fig. 2d. Mikado networks with different  lead to overlapping curves in 𝑤

regime I, that enter regime II at different transition times  marked by point O in Fig. 2d. 𝑡𝑡

For  in the affine regime, exponent  of regime II increases with , as shown 𝑤 𝛽 𝑤

schematically in Fig. 2d, line OC. A similar behavior is observed for Voronoi networks, 

Fig. 2c. 

For both Mikado and Voronoi cases, networks of increasing size were considered 

to check for size effects. With the models used to evaluate the data reported here being 

of edge size L (the total number of fibers in a typical Voronoi and Mikado network used 

is approximately 120,000 and 700, respectively), we considered models of size 2L and 

4L and observed no difference in the relaxation curves, which indicates that the 

reported results are free of model size effects. 

𝑡 / 𝜏𝑓

Mikado
w=3.47
w=4.38
w=5.47�(�)

�o

(a)

w=3.47
w=4.38
w=5.47 (b)

y

ln (𝑡 / 𝜏𝑓)

Mikado

w=-2.22
w=-1.96
w=-1.01 (c)

Voronoi

y

ln (𝑡 / 𝜏𝑓)

(d)

y

ln 𝑡t/ 𝜏𝑓

Affine

Non-affine
B

C

Regime IIRegime I

ln 𝑡 / 𝜏𝑓

O

�

               

Figure 2. (a) Semi-logarithmic representation of normalized stress vs. time relaxation 
curves for Mikado networks with  and 5.47; (b) The data in (a) replotted as 𝑤 = 3.47, 4.38

 vs. ; (c) similar data for Voronoi networks with 𝑦 = ln [ ― ln (𝜎(𝑡) 𝜎0)] ln 𝑡 𝜏𝑓
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 and -1.01. Panel (d) shows a schematic of the curves in (b) and (c) 𝑤 = ―2.22, ― 1.96
emphasizing the two relaxation regimes and the associated parameters. 

Similar phenomenology, including an initial exponential relaxation followed by 

slowing down of relaxation dynamics, is generally observed in glass forming systems in 

the vicinity of ; see reviews in 38,39. The origin of the slowing down was debated in a 𝑇𝑔

large number of publications and was captured by models.40 The control parameter in 

these cases is the temperature. For , relaxation is exponential, while the 𝑇 ≫ 𝑇𝑔

stretched exponential function becomes dominant as  approaches . The stretch 𝑇 𝑇𝑔

exponent  was placed in relation to the fragility parameter, , which 𝛽 𝑚 = 𝑑log 〈𝜏〉 𝑑(𝑇𝑔 𝑇)

represents the departure of the temperature dependence of the mean relaxation time  〈𝜏〉

from the prediction of the Arrhenius function.41 This establishes the common physical 

origin of the slowing down of relaxation and of fragility. The stretched exponent was also 

related to the dynamic free volume.42 The non-equilibrium physics perspective on this 

phenomenon is based on the concept that spatial correlations of dynamics appear in 

disordered systems as they approach jammed states. Correlated local dynamics leads 

to slowing down of relaxation probed on scales larger than the correlation length, which 

itself increases in time.39  

Similar phenomenology is observed here in an entirely athermal system and is 

introduced by the intrinsic structural heterogeneity of the network. This issue is 

discussed further in section 3.2. The control parameter in this case is , which 𝑤

represents the degree of heterogeneity. As opposed to thermal systems in the vicinity of 

the glass transition, here the heterogeneity is structural and does not evolve during 

relaxation.

 Figure 3 shows the variation of the stretch exponent with  for Mikado (Fig. 3a) 𝑤

and Voronoi (Fig. 3b) networks. The triangles show all systems studied and the bars 

represent the standard error of a set of 4 replicas for each of the conditions indicated by 

square symbols. The data indicates well-defined minima at the transition between the 

non-affine and affine regimes, i.e. at . The smallest  is approximately 0.14 𝑤 = 𝑤𝑁𝐴 ― 𝐴 𝛽

in the 2D Mikado case, and 0.3 in the 3D Voronoi case.   values for a large number of 𝛽
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glass-forming polymers in the vicinity of glass transition are presented in 41.  at  is 𝛽 𝑇𝑔

generally larger than 0.5, but several systems exhibit low , such as poly vinylchloride 𝛽

which has .𝛽 = 0.24

Lower values of  indicate that relaxation is more constrained by heterogeneity. 𝛽

The problem has two theoretical limits: in the limit of very small , filaments have 𝑤

negligible bending stiffness. Since the bending mode is the softest, the axial mode is not 

engaged. This implies that interactions in the network are weak and hence fibers relax 

independently. In this limit, relaxation of the network should be identical to that of 

individual fibers, i.e. regime II in Fig. 2d is absent and  throughout the entire 𝛽 = 1

relaxation history. In the limit of large , deformation is affine, which is equivalent to 𝑤

saying that the correlation length of the local relaxation modes diverges. The network is 

forced to relax as a homogeneous continuum. Hence, in this limit  and relaxation 𝛽 = 1

becomes exponential. This physical picture indicates that in the non-affine range, as  𝑤

increases and the cooperativity of relaxation increases,  should decrease, while as the 𝛽

system moves into the affine regime,  should increase towards 1. This argument does 𝛽

not predict the value of  at which  reaches its minimum. The numerical study reported 𝑤 𝛽

here indicates that, interestingly, the minimum  results at the transition between the 𝛽

non-affine and affine regimes, .𝑤 = 𝑤𝑁𝐴 ― 𝐴

w-wNA-A

�

Mikado

(a)

w-wNA-A

�

Voronoi

(b)

          

Figure 3. (a) Variation of the stretch exponent with  for (a) Mikado and (b) Voronoi 𝑤
networks. Triangles represent single replica simulations. Squares indicate conditions for 
which 4 replicas (different realizations of the network) are considered and the bars 
represent standard error of . The dashed lines represent fits with a polynomial of order 𝛽
3 to the entire data set.
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We turn now to the relaxation times,  and  , of regimes I and II, respectively. 𝜏𝐼 𝜏𝐼𝐼

During regime I, , and  is independent of  for both 2D and 3D 𝜎(𝑡) = 𝜎0exp [ ― 𝑡 𝜏𝐼] 𝜏𝐼 𝑤

networks. This is expected since the initial exponential regime corresponds to the 

independent relaxation of small networks subdomains. In the limit in which the size of 

these subdomains is equal to , fibers relax independently and hence . This limit 𝑙𝑐 𝜏𝐼 = 𝜏𝑓

is recovered in the present study for all Mikado networks considered. In the Voronoi 

case,  is somewhat larger than  ( ), but it is independent of , which supports 𝜏𝐼 𝜏𝑓 𝜏𝐼 ≈ 2𝜏𝑓 𝑤

the idea that regime I is not controlled by the network structure and parameters. 

Figure 4a shows the variation of the relaxation time constant in regime II, , with 𝜏𝐼𝐼

, for all Mikado and Voronoi networks considered in Fig. 3.  is normalized by  and 𝑤 𝜏𝐼𝐼 𝜏𝐼

the horizontal axis represents . Just like ,  has a minimum at . 𝑤 ― 𝑤𝑁𝐴 ― 𝐴 𝛽 𝜏𝐼𝐼 𝑤 = 𝑤𝑁𝐴 ― 𝐴

Figure 4b shows the transition time between regimes I and II, , function of . 𝑡𝑡 𝑤 ― 𝑤𝑁𝐴 ― 𝐴

The transition time is normalized by  of the respective network. The transition time 𝜏𝐼

increases for  in the non-affine regime, while in the affine regime it remains 𝑤

approximately constant. At ,  in the Voronoi case and   in the 𝑤 = 𝑤𝑁𝐴 ― 𝐴 𝑡𝑡 ≈ 3𝜏𝐼 𝑡𝑡 ≈ 4𝜏𝐼

Mikado case.      

w-wNA-A

Voronoi

(a)

Mikado

�II

�I

w-wNA-A

Voronoi

(b)

Mikado

tt

�I

Figure 4. (a) Variation of the relaxation time constant in regime II, , with  for all 𝜏𝐼𝐼 𝑤
Mikado and Voronoi networks considered in Fig. 3. (b)Transition time between regimes I 
and II, , function of . Triangles represent single replica simulations. Squares 𝑡𝑡 𝑤 ― 𝑤𝑁𝐴 ― 𝐴
indicate conditions for which 4 replicas (different realizations of the network) are 
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considered and the bars represent standard error. The lines connect the square 
symbols. 

3.2 Network-scale dynamics

In order to understand the mechanism of relaxation, it is useful to observe the local 

relaxation dynamics. To this end, we work with Mikado networks (such to facilitate 

visualization) and compute the velocity of each crosslink throughout the relaxation 

history. The domain is divided in square patches of size  and the crosslink velocities 4𝑙𝑐

are averaged over each patch. Figure 5 shows the resulting velocity field for a non-

affine network with  at time , i.e. into regime II. This network is loaded 𝑤 = 3.47 𝑡 𝑡𝑡 = 8.3

in tension to   in the horizontal direction, after which the vertical boundaries of 𝜀0 = 3%

the model are held fixed, while the upper and lower boundaries are kept traction free. 

The field shown in Fig. 5 is normalized by the mean  of the distribution of velocity 𝑣

magnitudes .𝑣 = |𝐯|

Figure 5. Velocity field for a non-affine network with  at time . The 𝑤 = 3.47 𝑡 𝑡𝑡 = 8.3
velocities are coarse grained on the scale of square sub-domains of size .4𝑙𝑐

Figure 5 shows a complex relaxation pattern which demonstrates that the 

structure is strongly mechanically heterogeneous. Based on field  we compute the 𝐯

symmetric component of the velocity gradient tensor , i.e. , and ∇𝐯 𝛆 = (∇𝐯 + ∇𝐯𝑻)/2

further compute the hydrostatic and deviatoric components of . The hydrostatic 𝛆

component is , where𝜀ℎ𝐈
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 . (2)𝜀ℎ = (𝜀11 + 𝜀22) 2 = ((∇𝐯)11 + (∇𝐯)22) 2

The deviatoric component, , has two eigenvalues of equal magnitude and 𝛆 ― 𝜀ℎ𝐈

opposite sign. We take the positive eigenvalue which, in terms of components of  is ∇𝐯

given by

(3)𝜀𝑠 =
1
2 ((∇𝐯)11 ― (∇𝐯)22)2 + ((∇𝐯)12 + (∇𝐯)21)2

to be representative for the shear strain rate of the relaxation field. Further, we evaluate 

the spin, which is the only nonzero component of the anti-symmetric part of the velocity 

gradient, . 𝑆 = ((∇𝐯)12 ― (∇𝐯)21) 2

We use the scalar quantities ,  and  to characterize the rates of volumetric 𝜀ℎ 𝜀𝑠 𝑆

and shear relaxation strains and the angular velocity of the relaxation field, respectively. 

Let ,  and  represent the averages of the respective fields over the entire problem 𝜀ℎ 𝜀𝑠 𝑆

domain, and ,  and  be the corresponding standard deviations. The coefficients 𝜎𝜀ℎ 𝜎𝜀𝑠 𝜎𝑆

of variation of these fields are computed as ,  and .𝐶𝑉𝜀ℎ =  𝜎𝜀ℎ 𝜀ℎ 𝐶𝑉𝐷𝑠 =  𝜎𝜀𝑠 𝜀𝑠 𝐶𝑉𝑆 =  𝜎𝑆 𝑆

Figures 6a show the variation of the means of the three scalar measures during 

the relaxation of the network whose velocity field is shown in Fig. 5 ( ); ,  and 𝑤 = 3.47 𝜀ℎ 𝜀𝑠

 are rendered non-dimensional by normalization with . We observe that, while all 𝑆 𝑣/𝑙𝑐

three fields ,  and  are non-zero, relaxation is controlled by the shear mode, as  is 𝜀ℎ 𝜀𝑠 𝑆 𝜀𝑠

one order of magnitude larger than the dilatational and spin components,  and  , at 𝜀ℎ 𝑆

all times. This observation is not unexpected since the shear mode is softer than the 

dilatational mode. We observe that the contribution of the spin is similar to that of the 

dilatational mode. Further, we observe (not shown in Fig. 6a) that the time variation of  𝜀𝑠

is similar to that of the stress shown in Fig. 2b, i.e. it exhibits a stretched exponential 

time dependence at times larger than . Based on these observations, we use further 𝑡𝑡

the shear component to characterize the relaxation.

The coefficient of variation of the shear rate, , provides a measure of the 𝐶𝑉𝜀𝑠

magnitude of dynamic heterogeneity during relaxation. Figure 6b shows the time and  𝑤

dependence of . Each curve represents  computed at a given time, . The 𝐶𝑉𝜀𝑠 𝐶𝑉𝜀𝑠(𝑤) 𝑡 𝜏𝑓
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main observation is that all curves have a maximum at . This 𝑤 = 𝑤𝑁𝐴 ― 𝐴 = 4.5

demonstrates that dynamic heterogeneity reaches a maximum at the non-affine to affine 

transition, and provides a physical justification for the presence of a minimum in the 

stretch exponent  at , Fig. 3. Comparing the three curves indicates the 𝛽 𝑤 = 𝑤𝑁𝐴 ― 𝐴

evolution of the shear rate field heterogeneity during relaxation. We observe that for 𝑡 >

, the fluctuation magnitude, as measured by , does not vary in time. This depicts a 𝑡𝑡 𝐶𝑉𝜀𝑠

physical picture quite different from that of thermal glass formers close to . The 𝑇𝑔

heterogeneity of the relaxation field emerges from the structural heterogeneity of the 

network, which does not change in time. Since parameter  represents the degree of 𝑤

structural disorder, it also controls the magnitude of dynamic heterogeneity, much like 

the temperature is the control parameter in thermal systems. 

Mikado (a)

w=3.47

𝑡 / 𝜏𝑓

𝜀slc/ v

𝜀hlc/ v

S   lc/ v

(b)Mikado

CV𝜀s 𝑡 / 𝜏𝑓

11
21
31

w-wNA-A         

Figure 6. (a) Variation of ,  and  during the relaxation of the network whose velocity 𝜀ℎ 𝜀𝑠 𝑆
field is shown in Fig. 5 ( ). (b) Time and  dependence of . 𝑤 = 3.47 𝑤 𝐶𝑉𝜀𝑠

It is interesting to put this result in relation with polymeric glass formers with 

network structure. Relaxation in these systems is controlled by the dynamic 

heterogeneity which becomes more pronounced close to the glass transition. In general 

terms, relaxation is thought to be controlled by packing. However, the structure of the 

network is expected to play a role. One may modify  of these networks by increasing 𝑤

the stiffness of the polymer backbone (equivalent to increasing  in athermal networks). 𝑑

Considering that such networks belong to the non-affine range, the present results 

indicate that increasing the chain stiffness should lead to the decrease of the stretch 
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exponent, . Based on the results in 41, decreasing  should be associated with an 𝛽 𝛽

increase of fragility, which implies a shift of the temperature dependence of relaxation 

(and viscosity) from Arrhenius to Vogel-Fulcher-Tammann-type. Such dependence of 

fragility on the chain stiffness was observed recently in a vitrimer system,43 which 

provides support of the conjecture introduced here that both the dynamic heterogeneity 

(as in monatomic glasses) and the structural heterogeneity (as in athermal networks) 

control relaxation in network-like, thermal polymeric glass formers. 

3.3 Effect of pre-strain

Networks are usually subjected to large strains. Since their elasticity is non-linear, their 

viscoelasticity is also expected to be non-linear. In both cases, non-linearity is of 

geometric type and emerges from the structural re-organization of the network under 

large strains. For example, ref. 13,44 report that in collagen networks the time-dependent 

modulus  is independent of the initial strain at relatively small strain levels, but 𝐸(𝑡)/𝐸(0)

the relaxation time constants decrease (relaxation becomes faster) with increasing . 𝜀0

To test the effect of large strains on relaxation we consider a Voronoi network 

with  and vary the pre-strain parameter  from 3% to 30%. The two relaxation 𝑤 = ―1 𝜀0

regimes reported in Fig. 2 are observed for all values of  considered, with the stress 𝜀0

being described by exponential and stretched exponential functions in regimes I and II, 

respectively. The stretch exponent becomes a weakly decreasing function of , as 𝜀0

shown in Fig. 7a. The relaxation time constant of regime II also decreases with , as 𝜀0

shown in Fig. 7b, and in agreement with experimental observations in collagen 

networks. 
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Voronoi
w=-1
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�I

 

Figure 7. Variation of the (a) stretch exponent and (b) relaxation time constant, , with 𝜏𝐼𝐼
the pre-strain, , for a 3D Voronoi network with . The bars represent standard 𝜀0 𝑤 = ―1
error for 4 replicas of the respective networks.  is normalized by the relaxation time of 𝜏𝐼𝐼
regime I, .𝜏𝐼

3.4 Relaxation of networks with non-identical fibers

Many network materials are composite, in the sense that material properties of fibers 

vary from fiber to fiber. Such variability adds to the intrinsic structural stochasticity of the 

network, increasing the degree of heterogeneity. Therefore, it becomes of interest to 

determine to what extent the results presented in the preceding sections apply to 

composite networks. 

To this end, we consider Mikado networks of  in which all fibers have the 𝑤 = 3.47

same Young’s modulus, , but the relaxation time constant, , is selected from a 𝐸𝑓 𝜏𝑓

Gamma distribution, . The mean of the distribution, , is kept fixed and equal to 𝑝(𝜏𝑓) 𝜏𝑓

the value considered above for the analysis of networks composed from fibers with 

identical material properties. The coefficient of variation of the distribution, , is kept 𝐶𝑉𝜏𝑓

as parameter and varied in the interval . [0,0.8]

A similar analysis pertaining to elastic networks was reported in 45, where the 

fiber material was linear elastic and fiber Young’s modulus was selected from a 

distribution. The mean of the distribution was kept constant and the variance was 

increased such to evaluate the effect of increasing heterogeneity on network modulus. It 
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was concluded that the overall network stiffness decreases with increasing variance, a 

result which also applies to the elasticity of continuum composites.46

Mikado
w=3.47

�
�0

CV��   

Figure 8. Variation of the stretch exponent with the coefficient of variation of the 
distribution of fiber relaxation times, . The stretch exponent of composite networks 𝐶𝑉𝜏𝑓

is normalized by that of networks in which all fibers have the same relaxation time 
constant (denoted here by ), equal to the mean of the distribution of fiber relaxation 𝛽0
time constants in the composite network case, .𝜏𝑓

We observe that relaxation preserves the two regimes shown in Fig. 2, with the 

first regime being exponential and the second being described by a stretched 

exponential with exponent . Figure 8 shows the variation of  with the magnitude of the 𝛽 𝛽

pre-strain, ;  is normalized by the stretch exponent  of the same network in which 𝜀0 𝛽 𝛽0

all fibers have the same relaxation time constant, equal to . The stretch exponent 𝜏𝑓

decreases with increasing the variability of the relaxation time of individual fibers. This is 

expected, since increasing  leads to increased structural heterogeneity. The result 𝐶𝑉𝜏𝑓

underlines, once again, the causal relationship between the stretched exponential and 

the structural heterogeneity of the network. 

4. Conclusions

In this work we study the component of the relaxation behavior of network materials 

associated with the viscoelasticity of the fiber material. We focus on athermal 2D and 

3D stochastic networks and observe that relaxation has two regimes, of which the first is 

exponential, while the second is of Kohlrausch type. The relationship between the 

stretch exponent and the structural parameter , which defines the degree of non-𝑤
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affinity of the network, is established. It is seen that relaxation is slowest (smallest 

stretch exponent) for networks at the transition between the affine and non-affine 

regimes. The physical origin of the slowdown is related to the structural heterogeneity of 

the network. In composite networks in which the relaxation time of individual fibers is 

different from fiber to fiber, relaxation slows down further due to the enhanced structural 

heterogeneity. We discuss that these findings are similar to observations made in glass 

forming systems. However, while the dynamic heterogeneity in such systems evolves 

during relaxation, the heterogeneity in networks is structural and is not evolving in time. 

The control parameter of the relaxation process, which in thermal system is the 

temperature, is identified in athermal networks to be the non-dimensional structural 

parameter . 𝑤
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