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1 Machine Learning Analysis of Self-Assembled Colloidal Cones
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3

4 Optical and confocal microscopy is used to image the self-assembly of microscale colloidal 

5 particles. The density and size of self-assembled structures is typically quantified by hand, but this 

6 is extremely tedious. Here, we investigate whether machine learning can be used to improve the 

7 speed and accuracy of identification. This method is applied to confocal images of dense arrays of 

8 two-photon lithographed colloidal cones. RetinaNet, a deep learning implementation that uses a 

9 convolutional neural network, is used to identify self-assembled stacks of cones. Synthetic data is 

10 generated using Blender to supplement experimental training data for the machine learning model. 

11 This synthetic data captures key characteristics of confocal images, including slicing in the z-

12 direction and Gaussian noise. We find that the best performance is achieved with a model trained 

13 on a mixture of synthetic data and experimental data. This model achieves a mean Average 

14 Precision (mAP) of ~85%, and accurately measures the degree of assembly and distribution of 

15 self-assembled stack sizes for different cone diameters.  Minor discrepancies between ML and 

16 hand labeled data is discussed in terms of the quality of synthetic data, and differences in cones of 

17 different sizes.
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36 1. Introduction 

37 Microscopy has been a cornerstone of characterization techniques since its inception in the 17th 

38 century.1 Microscopes are widely used to study biological objects, materials and minerals, and 

39 chemicals.2–7 The resulting data from these microscopes are images, which need to be quantified 

40 for rigorous statistical analysis. However, this can require extensive user training or expertise.8,9 

41 Common outputs are the size, shape, and spacing of objects, as well as the categorization of objects 

42 by their identifying characteristics. Quantification is especially difficult for images with objects of 

43 complex shape, that are non-uniform in size, shape or spatial distribution, or closely packed or 

44 overlapping objects. For these cases, commonly used analytical methods, such as Fourier 

45 transforms to quantify periodicities, or thresholding to differentiate between objects or the object 

46 and background, may be insufficient to identify the regions of interest. Because of these 

47 limitations, achieving accurate statistics from these types of datasets is time-consuming and may 

48 be prone to large errors.

49 For the field of colloidal self-assembly of microscale particles, statistical analysis of self-

50 assembled structures is needed to quantify the quality of a method or sample and understand the 

51 underlying physics. Usually, optical images are manually analyzed in order to determine the order 

52 of assembly and distribution of assembly configurations. Sacanna et al. used optical images to 

53 quantify the self-assembly distribution between different size spheres and cavities.10 Mori et al. 

54 and Kawai et al. used optical images to quantify the order of assembly of microparticles onto 

55 templated structures.11,12 Tigges et al. used confocal images to quantify degree of assembly and 

56 other metrics.13 Although these works use similar metrics, such as degree of assembly and 

57 distribution of assembly configurations, quantifying these from optical images can be drastically 

58 different due to unique particle geometries (i.e., spheres vs cubes vs cones). This leads to 

59 developing specialized workflows that can only be applied to a specific particle geometry or 

60 intensive hand labeling. 

61 Machine learning has revolutionized image processing in many areas such as biology, 

62 medicine, material science, and mechanical engineering by identifying objects within images.14–17 

63 While the precise output of a machine learning implementation varies based on the supplied data 

64 (e.g., segmentation or bounding boxes), the most common goal is to determine the contents of an 

65 image, as related to a defined set of classifications. Two classic examples are that of machine 

66 learning applied to text recognition and general object identification.18,19 Utilizing large, manually 
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67 labeled datasets, these applications of machine learning signaled the potential for this new 

68 computational technique to rival human image recognition. However, machine learning is possible 

69 in these cases because of the copious amounts of experimental data available. Unfortunately, many 

70 applications involving microscopy, including self-assembly, do not result in enough images for 

71 training data. In the cases where there may be enough data to train a model, labeling the data is 

72 likely still limited by time and resource constraints. 

73 Here, we utilize synthetic data to supplement real microscopy images to enable us to use 

74 machine learning to identify objects in confocal microscopy images. We evaluate the efficacy of 

75 this approach on confocal images of densely packed self-assembled, colloidal microscale cones. 

76 These cones can form 1D nested chains. These structures pose a challenge to conventional object 

77 detection because the cones are partially obscured while assembled and the cones looks different 

78 depending on their orientation to the substrate (i.e., circular face on the substrate, curved sidewall 

79 on the substrate, nested structures in 1D chains). Because of these unique challenges, these cones 

80 are an ideal test case for determining the potential of machine learning as applied to self-assembly. 

81 Training our machine learning model on 200 synthetic images and 4 real images allowed us to 

82 achieve a mean average precision (mAP) of ~85%. The utility of our trained models was then 

83 furthered through post-processing steps to estimate the number of cones in a self-assembled 

84 structure and the total number of assembled cones in an image. We find that these estimates, while 

85 tending to be biased to underestimating, provide an accurate representation of the relative 

86 frequency of self-assembled structures of different sizes.  

87

88 2. Fabrication and Assembly of Microcones

89 Microscale cones are fabricated on the Nanoscribe Photonic GT (Nanoscribe, GmbH) with a 

90 proprietary acrylic-based resist, IP-Dip (Nanoscribe, GmbH), and a high magnification objective 

91 (63X NA 1.40 Zeiss) according to a previously developed method (Figure 1).13,20 Cones with 

92 diameters of 4.5 μm, 7 μm, and 10 μm were fabricated and self-assembled following Tigges et al.13 

93 The 4.5 μm particle has a nominal height of 2.5 μm and a wall thickness of ~0.25 μm. The 

94 dimensions of the 7 μm and 10 μm particles are proportional to the 4.5 μm particle. After 

95 fabrication, the particles are developed in SU-8 developer, treated with Pluronic F127 to stabilize 

96 the particles in solution, and dispersed into an aqueous solution in a glass well. A 0.7g/L 
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97 concentration of 4 MDa polyethylene oxide (PEO) is then added to the solution as a depletant. The 

98 cones are allowed to assemble and are imaged after 24 hours using confocal laser scanning 

99 microscopy. A 405 nm excitation laser and 450-500 nm emission filter are used to image the 

100 particles, which are photoluminescent.

101

102

103 Figure 1. Process of printing and dispersing particles. A) Create a 3D model of conical shape using 

104 CAD software. B) Print particles on a substrate using 2 photon lithography. C) Resulting array of 

105 particles. D) Transfer particles into a glass well for imaging. E) SEM images of printed 4.5 μm 

106 conical particles. Scale bar is 1 μm. F) Optical image of 4.5 μm particle dispersed in a glass well 

107 after deposition. Scale bar is 10 μm.

108

109 3. Synthetic Data Generation 

110 Synthetic data is used to generate high-fidelity labeled datasets for training machine learning 

111 models when there is insufficient experimental data for training purposes. There are many methods 

112 to generate synthetic data. For example, generative adversarial networks (GANs), traditional CGI, 

113 and domain randomization have all been used successfully.21–23 Broadly, these methods fall into 

114 the categories of learned replication and model-centric image generation. Learned replication 

115 techniques use tools such as GANs to create synthetic images that minimize a cost function based 

116 on a set of ground-truth training data. GANs have been used to generate images for autonomous 

117 driving, facial recognition, and text recognition.24 Model-centric image generation uses a computer 

118 simulation or image rendering software (e.g., Blender) to generate synthetic data that captures the 
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119 major features of the ground-truth data specified by the user. Model-centric image generation has 

120 been previously utilized for generating images for object detection and autonomous driving.25–28 

121 Here, we choose model-centric image generation due to its ability to generate synthetic images 

122 based solely on prior knowledge of our target system; that is to say, it does not require the user to 

123 process data to then generate synthetic data. While there are promising projects that allow this for 

124 GAN’s, labeled data is generally needed.29 It is possible to combine multiple machine learning 

125 methods to combine their strengths, but this significantly increases the complexity and expertise 

126 needed for implementation. Furthermore, the model-centric approach is appealing since it is highly 

127 generalizable—studying a new particle geometry will not require the training of a new 

128 synthesizing network, such as with a GAN. Utilizing model-centric synthesis, we can fold the 

129 image generation process into a larger synthesis, training, and evaluation workflow.   

130 Our machine learning workflow is seen in Figure 2 and 3. Figure 2 shows the process of 

131 generating synthetic training data. This starts with creating a 3D CAD model of the particle of 

132 interest, which matches the geometry of the cones. This particle is then imported into Blender, 

133 where the particles are manually assembled into nested stacks of 1-5 particles in size (Figure 

134 2A). This type of nested stack geometry is experimentally observed in our samples, and are regions 

135 of interest. In principle, the generation of stacked particles could be automated, but this would be 

136 prohibitively expensive computationally because of the non-convex shape of the particle. The next 

137 step is to generate an image with many stacks of particles with random location and orientation 

138 (Figure 2B). The particles are mainly oriented with the axis of the cones in the plane of the image, 

139 with a small, random, out-of-plane rotation to mimic the experimental data. This image is turned 

140 into a model of a confocal microscope image by creating slices in the imaging direction (z-slice), 

141 where the distance between the slices corresponds to the z-step size of the confocal microscope 

142 used to generate the data. These slices are convolved with a Gaussian point spread function and 

143 then added back together. Finally, Gaussian noise is added to the image. These operations are to 

144 replicate the optical processes of excitation, capture, and 2-D projection that occurs during 

145 confocal microscopy, in which point illumination is rastered in 2D or 3D to build a high-resolution 

146 image. This process is similar to a previously published method for generating confocal 

147 microscopy synthetic data.30 Finally, the synthesized image, paired with information on the 

148 location of stacked particles within the image, is used for training data.  

149
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150
151 Figure 2: Generation of synthetic training data using Blender. A) A 3D CAD model of a hollow 

152 cone is loaded into Blender and assembled into stacks of nested cones. B) Single cones and stacks 

153 of cones are randomly distributed within an image. C) 2D slices of the image are rendered. D) 

154 These 2D slices are convolved with a point spread function and added back together, along with 

155 Gaussian noise to produce synthetic data that mimics confocal images.     

156

157 4. Machine Learning Method

158 The synthetic data and a small subset of experimental data are used to train an implementation of 

159 RetinaNet for use on our target, unlabeled data (Figure 3). RetinaNet is a deep learning 

160 implementation that uses a feature pyramid network (FPN), a specialized convolutional neural 

161 network (CNN), to find features within an image.31 Within RetinaNet, an additional pair of CNN’s 

162 is then used to determine the bounding box and label objects based on features at various scales 

163 within the image. While RetinaNet uses this process to detect objects within an image, density 

164 estimation and point ID are two potential alternative techniques implemented in other machine 

165 learning models.32,33 Instead of training the model to identify and label objects within an image, 

166 density estimation uses the features in an image to regress the number of particles, but not 

167 necessarily their locations. The point ID method works similarly to RetinaNet, but with object 

168 centers (instead of bounding boxes) being the target of inference. Often a method prepared for 

169 point ID can easily be converted to the regression task.32,33 Object detection was chosen for the 

170 current study because it allows for identification of particle orientation, which greatly affects 
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171 whether two adjacent particles are “related” (stacked). RetinaNet is chosen for its speed and 

172 cutting-edge performance on image localization and identification benchmarks.31 However, in 

173 alternative implementations, models other than RetinaNet could be trained and used for inference. 

174 For example, the U-Net architecture would be reasonable for use with segmented data.15         

175

176
177 Figure 3: Diagram of model training and inference process. Synthetic and experimental images 

178 are used as inputs to train a RetinaNet model with pre-trained weights. From this training model, 

179 an inference model is generated to identify stacks of nested particles in unlabeled experimental 

180 confocal images.

181

182 5. Ablation Study on Training Inputs

183 The effect of modifying the number of data, type of data, and the use of pre-trained initial weights 

184 is evaluated using an ablation study. For our ablation study, a batch size of 2, an initial learning 

185 rate of 1x10-4, an early-stop patience of 100 epochs, and a learning rate reduction on plateau of 

186 1x10-1, with a patience of 70 epochs is used. The only class our model was trained to identify was 

187 “stacked”, as opposed to identifying different classes corresponding to the number of cones in a 

188 stack. Our standard model is trained on 200 synthetic images and 4 experimental images with the 

189 standard pre-trained ImageNet weights. Experimental images were randomly chosen for training, 

190 with at least one image of each cone size included when possible. All experimental images are pre-
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191 processed by matching the color distribution to a template image to reduce contrast variance 

192 between images. The images are then split into 612 pixel by 612 pixel sub-images. The mean 

193 average precision (mAP) for a 50% intersection over union (IoU) is estimated by validating the 

194 model over 79 experimental images. mAP is a measure of the area under the Precision-Recall 

195 curve, which is a curve plotting precision (the ratio of correct detections to total detections) against 

196 recall (the ratio of correct detections to total possible correct detections). Loss, a common measure 

197 of model performance during training, is the sum of the smooth L1 loss associated with regressing 

198 the bounding box coordinates and the focal loss, which is associated with label predictions. 31 For 

199 the standard model, the highest mAP is ~82%. This ImageNet model is then compared to a model 

200 with no pre-trained weights, and a model using weight pre-trained on Microsoft’s Common 

201 Objects in Context (COCO) dataset. The mean average precision (mAP) and loss are measured per 

202 epoch for each case (see Figure 4A). The highest achieved mAP for no weights and COCO are 

203 ~53% and ~77%, respectively. The mAP plateaus at a training epoch of ~80 in all cases. The 

204 results of the COCO and ImageNet runs both show that our analysis can take advantage of transfer 

205 learning from more traditional datasets. The better performance of ImageNet compared to COCO 

206 is likely because ImageNet is a larger dataset that consists of more diverse categories than 

207 COCO.19,34   

208 Different combinations of synthetic and experimental images are also investigated. The 

209 number of synthetic images (0, 200, 400) is varied while keeping the number of experimental 

210 images (4) the same. The number of experimental images (0, 4, 8) is then varied while keeping the 

211 number of synthetic images (200) the same. All these models are trained with ImageNet pre-trained 

212 weights. The mAP and loss are measured per epoch for each case (see Figure 4B and C). The 

213 highest achieved mAP is ~85% with 200 synthetic images and 8 experimental images. It is notable 

214 that the use of 200 synthetic images with 4 experimental images outperforms the model trained on 

215 400 synthetic images and 4 experimental images. This is despite the 400 synthetic image model 

216 having a lower loss. This indicates that, above a certain threshold, the inclusion of more synthetic 

217 data leads to a degradation in performance due to overfitting. A similar effect was noted in Yao et. 

218 al. and also motivated their use of a relatively small sample of synthetic data for training.35 The 

219 use of only experimental images (2, 4, 6, 8, 10) is evaluated in Figure 4D. The highest achieved 

220 mAP is ~81% for 10 experimental images, which is marginally better than 8 experimental images 
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221 (mAP ~79%). This performance is comparable to the use of 200 synthetic data with 4 experimental 

222 images.  

223
224 Figure 4: Mean average precision (mAP) and loss vs training epoch for A) 200 synthetic images 

225 and 4 experimental images with different pre-trained weights (ImageNet, COCO, and no weights). 

226 B) 200 synthetic images with 0, 4, and 8 experimental images with ImageNet pre-trained weights.  

227 C) 0, 200, and 400 synthetic images and 4 experimental images with ImageNet pre-trained 

228 weights. D) 0 synthetic images and 2, 4, 6, 8, and 10 experimental images with ImageNet pre-

229 trained weights.

230 6. Validation and Discussion 

231 A 100 - 200 μm square region is experimentally imaged to quantify the degree of self-assembly. 

232 This region contains approximately 900 particles for the 4.5 μm cones, 1100 particles for the 7 μm 

233 cones, and 1200 particles for the 10 μm cones. This number is estimated by calculating the density 
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234 of a smaller region and extrapolating it to the rest of the image. From this data, the degree of 

235 assembly, and the stack size distribution are determined manually. Degree of assembly is defined 

236 as the total number of stacked particles divided by the total number of particles in the imaged 

237 region. The stack size distribution can be characterized using the stack number average, which is 

238 a weighted average of the conical particles in a stack divided by the total number of stacks. The 

239 degree of assembly is determined to be ~2% for the 4.5 μm cones, ~30% for the 7.5 μm cones, and 

240 ~33% for the 10 μm cones (Figure 6A). The stack distribution is shown in Figure 6B, 6C, and 

241 6D for the 4.5 μm cones, 7 μm cones, and 10 μm cones, respectively. 

242 The best machine learning model (i.e., RetinaNet trained with 200 synthetic images and 8 

243 experimental images with ImageNet pre-trained weights) is used to analyze the same images. 

244 Figure 5 shows different cone sizes labeled by the machine learning model, along with close-ups 

245 of the stack configurations. From the machine learning model, the estimated degree of assembly 

246 is ~1% for the 4.5 μm cones, ~26% for the 7 μm cones, and ~32% for the 10 μm cones (Figure 

247 6A). Stacks of cones inferred by the model are categorized by aspect ratio and area to determine 

248 the stack size distribution. Labeled experimental data is used to determine the aspect ratio and 

249 average area of the bounding box for each stack size. The resulting inference bounding boxes are 

250 then binned using these metrics to determine the stack size.

251

252 Figure 5: Machine learning model inference of stacked particles. Images of stacked particles, with 

253 closeups, identified by machine learning for the A) 4.5 μm cones, B) 7 μm cones, and C) 10 μm 

254 cones. Close up image of a longer stacked particle being identified as a combination of smaller 

255 stacks. Scale bars are 25 μm.
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256

257 Figure 6: Histograms of hand labeled data and machine labeled data. A) Degree of assembly (%) 

258 of 4.5 μm, 7 μm, and 10 μm cones for hand labeled (green) and machine labeled (red) data.  

259 Distribution of stack size for B) 4.5 μm, C) 7 μm, and D) 10 μm cones. 

260 The degree of assembly predicted by the model is within 2% of the manually calculated value for 

261 the 4.5 μm cone, within 4% for the 7 μm cone, and within 1% for the 10 μm cone. For all cases, 

262 both the degree of assembly and the stack average number are underestimated by the machine 

263 learning model. However, the trend of increasing degree of assembly with increasing cone 

264 diameter is captured. Figure 6B and 6C shows that the stack distribution seems to capture a similar 
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265 number of stack instances for the 7 μm and 10 μm but severely underestimates the larger stacks. 

266 Stack instances are underestimated in the 4.5 μm case. 

267 These errors can be partially attributed to the machine learning model inference, the 

268 synthetic data used, and the post-processing algorithm. Although RetinaNet implements FPN, 

269 which should result in a scale-invariant model, the experimental images are not scale-invariant. 

270 The machine learning model was trained on at least one image of each cone size. However, the 

271 low degree of assembly of the 4.5 μm cones led to a sparsity of labeled data for training, which 

272 makes it more difficult to accurately identify 4.5 μm cones using the machine learning model. In 

273 addition, due to the resolution of the confocal microscope, the features that the model uses to 

274 identify stacks is slightly different between the 4.5 μm cones and the larger cones. As shown in 

275 the close-up images of the identification of cones in Figure 5, the smaller 4.5 μm cones have a 

276 slightly different contrast profile than the 7 μm or 10 μm cones. This may account for the larger 

277 discrepancies that we see for the 4.5 μm cones. We would also like to note that since the 4.5 μm 

278 cones have a low degree of assembly, there are few objects to identify, such that missing one object 

279 leads to a large statistical difference. 

280 The machine learning model also had difficulty identifying larger stack sizes accurately. For 

281 example, for the 10 μm particles, a stack of 9 particles was identified by hand but not by the 

282 machine learning model. Figure 5C shows that the machine learning model splits up the 9 stack 

283 into smaller stacks. This is because the stack has some curvature. The machine learning model 

284 cannot accurately identify this stack because curvature is not represented in the synthetic images 

285 that are generated. In addition, a stack of this size appears rarely, such that it is unlikely that a 

286 similar stack was represented in the experimental images used to train the model. Only stacks of 

287 size less than 5 were represented in our synthetic images. Additional synthetic data of large stacks 

288 with a variety of curvature would help with this issue. This motivates future work on procedurally 

289 generating the synthetic stacks due to the difficulty of generating a large amount of varied synthetic 

290 stacks by hand. Another issue with identifying large stacks is that the machine labeled data holds 

291 no information about the spatial relationship between stacks. This leads to the situation observed 

292 in Figure 5C, in which two stacks in close proximity, with an aligned orientation is not identified 

293 as a single stack. Addressing this shortcoming would require an alternative labeling scheme and a 

294 different machine learning model. 
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295 In addition to misidentifying larger stack sizes, the underestimation of stack size can also be 

296 attributed to the post-processing algorithm which categorizes stacks size by aspect ratio and area 

297 of the bounding box. We expect that a stack larger than 4 or 5 has a larger aspect ratio (length to 

298 width) than a smaller one. However, this does not necessarily translate to a larger bounding box 

299 aspect ratio. The larger stack can be positioned at a diagonal, making its bounding box effectively 

300 1:1.  This can be mitigated by accounting for the area of the bounding box, but the correspondence 

301 between bounding box size and stack size is not perfect, leading to the misidentification of stack 

302 size. This post-processing algorithm could be replaced with another CNN, which would classify 

303 the stack size. 

304

305 7. Conclusion 

306 In this paper we demonstrate the use of machine learning, trained on a mix of synthetic and 

307 experimental data, for the identification of self-assembled microscale cones in densely packed and 

308 noisy confocal images. We have implemented a model-based process for synthesizing training 

309 data. Through post-processing steps, we were able to obtain estimates of percent assembly within 

310 an image and the distribution of cone stack size, which was found to follow the same trends as in 

311 hand labeled data. Further improvements in object detection and accuracy could be achieved by 

312 implementing the procedural generation of synthetic images and better rendering. With improved 

313 synthetic images, the variation in the experimental data could be captured more accurately. With 

314 improved rendering, we would be able to better represent the unique elements of our experimental 

315 data in our synthetic data, allowing for more efficient learning transfer. This work shows that 

316 machine learning paired with effective synthetic data synthesis can enable the rapid and accurate 

317 quantification of microscale structures, such as self-assembled colloids. 

318 Conflict of Interests

319 There are no conflicts to declare.

320

321 Acknowledgements 

322 DD acknowledges the National Science Foundation Graduate Research Fellowship under Grant 

323 No. 1656518. JK is supported by a Stanford Graduate Fellowship. DD, JK, and XWG acknowledge 

324 funding from the Hellman Foundation, and the National Science Foundation under Grant No. 

Page 13 of 16 Soft Matter



325 CMMI-2052251. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), 

326 which is supported by the National Science Foundation under award ECCS-1542152. Part of this 

327 work was performed at the Stanford Cell Sciences Imaging Facility.

328

329

330

331 References

332 1 G. McNamara, M. J. Difilippantonio and T. Ried, Current Protocals in Human Genetics, 

333 2005, 46, 1.

334 2 D. J. Stephens and V. J. Allan, Science, 2003, 300, 82–86.

335 3 W. R. Zipfel, R. M. Williams and W. W. Webb, Nature Biotechnology, 2003, 21, 1369–

336 1377.

337 4 D. B. Hovis and A. H. Heuer, Journal of Microscopy, 2010, 240, 173–180.

338 5 W. Hoheisel, W. Jacobsen, B. Lüttge and W. Weiner, Macromolecular Materials and 

339 Engineering, 2001, 286, 663–668.

340 6 S. Nie, D. Chiu and R. Zare, Science, 1994, 266, 1018–1021.

341 7 V. Vukojevic, M. Heidkamp, Y. Ming, B. Johansson, L. Terenius and R. Rigler, PNAS, 

342 2008, 105, 18176–18181.

343 8 F. Pesapane, M. Codari and F. Sardanelli, European Radiology Experimental, 2018, 2, 35.

344 9 D. Shen, G. Wu and H.-I. Suk, Annual Review of Biomedical Engineering, 2017, 19, 221–

345 248.

346 10 S. Sacanna, W. T. M. Irvine, P. M. Chaikin and D. J. Pine, Nature, 2010, 464, 575–578.

347 11 Y. Mori, R. Kawai, H. Suzuki, Y. Mori, R. Kawai and H. Suzuki, Micromachines, 2019, 

348 10, 428.

349 12 R. Kawai, Y. Mori and H. Suzuki, Journal of Microelectromechanical Systems, 2019, 28, 

350 678–684.

351 13 T. Tigges and A. Walther, Angewandte Chemie, 2016, 55, 11261–11265.

352 14 T. Falk, D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm, J. Deubner, 

353 Z. Jäckel, K. Seiwald, A. Dovzhenko, O. Tietz, C. Dal Bosco, S. Walsh, D. Saltukoglu, T. 

354 L. Tay, M. Prinz, K. Palme, M. Simons, I. Diester, T. Brox and O. Ronneberger, Nature 

355 Methods, 2019, 16, 67–70.

Page 14 of 16Soft Matter



356 15 Y. Weng, T. Zhou, Y. Li and X. Qiu, IEEE Access, 2019, 7, 44247–44257.

357 16 A. Chowdhury, E. Kautz, B. Yener and D. Lewis, Computational Materials Science, 

358 2016, 123, 176–187.

359 17 T. A.-Q. Tawiah, International Journal of Advanced Robotic Systems, 2020, 17, 25.

360 18 G. Cohen, S. Afshar, J. Tapson and A. van Schaik, presented in part at 2017 International 

361 Joint Conference on Neural Networks (IJCNN), IEEE, May, 2017.

362 19 Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li and Li Fei-Fei, presented in part at 2009 

363 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, June, 2009.

364 20 D. Doan, J. Kulikowski and X. W. Gu, Particle and Particle Systems Characterization, 

365 2021, 38, 2100033.

366 21 A. Ghorbani, V. Natarajan, D. Coz and Y. Liu, arXiv, 2019, arXiv:1804.06516, 

367 https://arxiv.org/abs/1804.06516v3.

368 22 T. Baltrusaitis, E. Wood, V. Estellers, C. Hewitt, S. Dziadzio, M. Kowalski, M. Johnson, 

369 T. J. Cashman and J. Shotton, arXiv, 2020, arXiv: 2007.08364, 

370 https://arxiv.org/abs/2007.08364v1.

371 23 J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E. Cameracci, 

372 S. Boochoon and S. Birchfield, presented in part at IEEE Computer Society Conference on 

373 Computer Vision and Pattern Recognition Workshops, IEEE, June, 2018.

374 24 S. I. Nikolenko, in Springer Optimization and Its Applications, Springer, 2021, vol. 174, 

375 pp. 1–354.

376 25 X. Peng, B. Sun, K. Ali and K. Saenko, presented in part at 2015 IEEE International 

377 Conference on Computer Vision (ICCV), IEEE, December, 2015.

378 26 P. S. Rajpura, H. Bojinov and R. S. Hegde, arXiv, 2017, arXiv: 1706.06782, 

379 https://arxiv.org/abs/1706.06782v2.

380 27 G. Ros, L. Sellart, J. Materzynska, D. Vazquez and A. M. Lopez, presented in part at 2016 

381 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, June, 

382 2016.

383 28 M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen and R. Vasudevan, 

384 presented in part at 2017 IEEE International Conference on Robotics and Automation 

385 (ICRA), IEEE, June, 2017.

386 29 L. Sixt, B. Wild and T. Landgraf, Frontiers in Robotics and AI, 2018, 5, 9.

Page 15 of 16 Soft Matter



387 30 S. Dmitrieff and F. Nédélec, SoftwareX, 2017, 6, 243–247.

388 31 T.-Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, IEEE Transactions on Pattern 

389 Analysis and Machine Intelligence, 2017, 42, 318–327.

390 32 W. Xie, J. A. Noble and A. Zisserman, Computer Methods in Biomechanics and 

391 Biomedical Engineering: Imaging and Visualization, 2018, 6, 283–292.

392 33 E. Lu, W. Xie and A. Zisserman, arXiv, 2018, arXiv: 1811.00472, 

393 https://arxiv.org/abs/1811.00472v1.

394 34 T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. 

395 Ramanan, C. L. Zitnick and P. Dollár, arXiv, 2014, arXiv: 1405.0312, 

396 https://arxiv.org/abs/1405.0312v3.

397 35 L. Yao, Z. Ou, B. Luo, C. Xu and Q. Chen, ACS Central Science, 2020, 6, 1421–1430.

398

Page 16 of 16Soft Matter


