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Abstract 

Protein domains, such as ENTH (Epsin N-terminal homology) and BAR 

(bin/amphiphysin/rvs), contain amphipathic helices that drive preferential binding to 

curved membranes. However, predicting how the physical parameters of these domains 

control this ‘curvature sensing’ behavior is challenging due to the local membrane 

deformations generated by the nanoscopic helix on the surface of a large sphere. We here 

use a deformable continuum model that accounts for the physical properties of the 

membrane and the helix insertion to predict curvature sensing behavior, with direct 

validation against multiple experimental datasets. We show that the insertion can be 

modeled as a local change to the membrane’s spontaneous curvature, , producing 𝑐ins
0

excellent agreement with the energetics extracted from experiments on ENTH binding to 

vesicles and cylinders, and of ArfGAP helices to vesicles. For small vesicles with high 

curvature, the insertion lowers the membrane energy by relieving strain on a membrane 

that is far from its preferred curvature of zero. For larger vesicles, however, the insertion 

has the inverse effect, de-stabilizing the membrane by introducing more strain. We 

formulate here an empirical expression that accurately captures numerically calculated 

membrane energies as a function of both basic membrane properties (bending modulus  𝜅

and radius ) as well as stresses applied by the inserted helix (  and area ). We 𝑅 𝑐ins
0 𝐴ins

therefore predict how these physical parameters will alter the energetics of helix binding 

to curved vesicles, which is an essential step in understanding their localization dynamics 

during membrane remodeling processes.  
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I. Introduction

The recruitment of cytosolic proteins to membranes is an essential step in a variety of 

membrane remodeling processes, including clathrin-mediated endocytosis [1] and cell 

division [2, 3]. Proteins that participate in membrane remodeling contain membrane 

binding domains that use positively charged interfaces to specifically target negatively 

charged lipids such as PI(4,5)P2 on cell membranes [4-6]. In addition to this electrostatic 

interaction, these proteins exploit additional mechanisms, including helix insertion, 

scaffolding, crowding, and entropy gain by disordered proteins [7-10]. These mechanisms 

cause proteins to bind more strongly to more highly curved membranes, driving them to 

both sense and induce membrane curvature [11]. Amphipathic 𝛼-helices are common 

protein domains that are frequently found in peripheral membrane proteins like septins, 

epsins, endophilins, and amphiphysins. Playing key remodeling roles in cell division and 

endocytosis, these proteins insert themselves into a single leaflet of a membrane, where 

they can sense curvature independently of any additional curvature sensing mechanisms 

[9]. The stronger binding of helix-containing domains to membranes of high curvature can 

thus control their localization dynamics, helping to regulate subsequent steps in assembly 

and remodeling. Understanding how the strength of membrane binding depends on helix 

insertion and membrane properties is thus an essential component of predicting the spatial 

control of protein localization and corresponding remodeling dynamics. 

Several lines of experimental evidence support curvature sensing by amphipathic 

helices and its direct coupling to membrane deformations and membrane energy changes. 

Tethered vesicle assays visualize increased binding to highly curved membranes for 

domains with 𝛼-helix [9, 12]. Without the 𝛼-helix present, these same domains are 

insensitive to membrane curvature, demonstrating the significance of the helix in curvature 

sensing. The insertion or the 𝛼-helix changes the membrane local curvature and induces 

curvature generation [13-15]. Equilibrium observations of proteins bound to small 

unilamellar vesicles (SUVs) can be converted into dissociation constants by determining 
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the relative partitioning of proteins to smaller vesicles (Fig 1A). These dissociation 

constants can then be used to extract changes of energy upon binding (Fig 1B). This data 

on ENTH binding to vesicles provides a basis for our modeling comparison, where we can 

then address how the key parameters of curvature, bending modulus, tension, insertion size, 

and spontaneous curvature control membrane energies following helix insertion. As further 

validation for this modeling approach, we perform similar comparisons with experimental 

measurements of binding of the ArfGAP1 ALPS motifs on vesicles [16], and of ENTH 

binding to cylindrical membrane tethers [17]. 

Modeling and simulation using other approaches have illuminated several ways in 

which helix insertion alters membrane structure and stress. Molecular dynamics 

simulations have measured depth and orientation of helices in bilayers, deformations of the 

surface and lipid structure [18, 19], and corresponding changes to membrane stress around 

the insertion [20]. However, these simulations are limited to relatively small (nanometer 

scale) and typically flat membranes. Curved all-atom membranes have shown that the 

underlying deformation matches molecular factors, like protein shape [21], but 

measurements of the energy changes arising from helices inserted into membranes of 

varying curvature have remained intractable using molecular dynamics. In contrast, models 

that use elasticity theory have quantified how stress profiles and energetics [22] in initially 

curved membranes will respond to helix insertion differentially, depending on how the 

curvature was generated and the depth of the insertion [13]. However, the modeled 

membrane patch varies with only two variables (thickness in one dimension, arc length in 

the other dimension), whereas our modeled vesicles exist in 3D space. These elasticity 

calculations thus only capture variation along one axis of principal curvature on a surface, 

assuming translational symmetry along the other. They cannot directly model spherical 

vesicles, where a highly localized and anisotropic insertion will impact curvature along 

both principal axes.

Deformable continuum membrane surfaces are an attractive model for studying 
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membrane mechanics because they can adopt diverse geometries in 3D space, and their 

shape and energy will relax in response to perturbations. The calculations are relatively 

efficient, typically taking on the order of minutes or days depending on surface size (see 

Methods), vs molecular simulations, where protein binding energy calculations would only 

be computationally tractable on the smallest of vesicles. Continuum membranes capture 

how the material bending modulus of the membrane, the membrane tension, and osmotic 

pressure will impact energetics and membrane shape [23]. Local perturbations driven by 

proteins adsorbed to the surface can be modeled via changes to the membrane’s 

spontaneous curvature , with values that can vary from 0 to ~1 nm-1 [24]. The 𝑐0

spontaneous curvature can vary spatially across the membrane surface, driving changes in 

membrane shape and tension [25], thus providing an effective material parameter that 

captures changes to membrane stress on the outer vs inner bilayer leaflets [24]. Even before 

protein adsorption, any asymmetries in lipid composition between the inner and outer 

leaflets can contribute to a nonzero spontaneous curvature across the bilayer surface [26], 

since each lipid has its own  spontaneous curvature (see ref [27]). Continuum models can 

capture this asymmetry, as we show below, by specifying an initial spontaneous curvature 

to the bilayer, prior to any insertion. Continuum models can be coupled to models with 

attached and diffusing proteins [28-30] to capture interactions that drive membrane-

mediated collective behavior [31], or response of cell-shape to flow [32]. Thus, these 

models provide a flexible platform for integrating mechanical responses with 

environmental changes or biochemical interactions. We apply this detailed curvature 

model here to protein curvature sensing, showing that changing the local spontaneous 

curvature is an effective parameter for capturing a helix insertion.      

In this paper, we first describe the model design, and the approach used to compare 

model results with in vitro experiments measuring surface coverage on SUVs of varying 

curvature. We then show how the spontaneous curvature of the insertion, , and the 𝑐ins
0

bending modulus  have dominant effects on the membrane energy changes following 𝜅
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insertion. Both the size and spread of the insertion further modulate the magnitude of the 

energy changes. In contrast, constraints on the area and volume that would arise due to area 

compressibility and osmotic pressure have minimal impact on controlling energetic 

responses to insertion. With these results we are able to define parameter regimes that 

produce excellent agreement with the experimental observations of curvature sensing. We 

validate that the results are robust to our numerical methods, including mesh size, 

integration scheme, and optimization protocol. We then recapitulate curvature sensing by 

helices reported in experiments on ENTH binding to membrane tethers and ALPS motifs 

binding to vesicles, also showing that the model reproduces stronger binding to membranes 

with higher diacylglycerol content [33]. Finally, through our numerical results we derive 

an empirical formula that predicts how membrane energies will change following insertion 

as a function of variations in , , radius and insertion area. This expression can thus be 𝑐ins
0 𝜅

used to estimate curvature sensing by amphipathic helices without additional 

computational measurements, and we show it provides an excellent model fit to curvature 

sensing observed by the eAH and aAH helices [9]. 

II. MODEL DESIGN 

Continuum membrane model: The membrane is modeled using a continuum thin-film 

surface captured via a triangular mesh using the subdivision limit surface method [23] (Fig 

1). Given  as the membrane surface that is parameterized by curvilinear coordinates  ℳ 𝑠1

and , the position  of each point on the surface in three-dimensional space (  𝑠2 𝒔 𝒔 ∈ ℝ3)

is given by , . The energy of the membrane is due to a bending energy (via the 𝒔 = 𝒔(𝑠1 𝑠2)

Helfrich Hamiltonian [34]) and constraints on the volume V and area A, defined as [23]:

         (1)𝐸 = ∫ℳ
1
2𝜅[2𝐻(𝒔) ― 𝑐0(𝒔)]2 𝑎𝑑𝑠1𝑑𝑠2 +

1
2𝜇A

(𝐴 ― 𝐴0)2

𝐴0
+

1
2𝜇V

(𝑉 ― 𝑉0)2

𝑉0
+ 𝐸reg

The first bending energy term integrates over all positions  on the surface , where 𝒔 ℳ 𝑎

. The energy varies with mean curvature, , and the spontaneous = ‖ ∂𝒔
∂𝑠1

×
∂𝒔
∂𝑠2‖ 𝐻(𝒔)
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curvature of the membrane, , where  is the constant bending modulus.  is 𝑐0(𝒔) 𝜅 𝐻(𝒔)

the mean of the calculated curvature summed along the two principal axes at point s; for a 

sphere of radius , it is a constant  at all points. For a cylinder, the mean curvature is 𝑅 1/𝑅

.  thus changes when the membrane deforms.  is zero for membrane 1/2𝑅 𝐻(𝒔) 𝑐0(𝒔)

bilayers (without proteins attached) when both leaflets have the same lipid composition. 

The second and third terms capture the area and volume constraints, with respective 

coefficients  and .  is the membrane area,  is the target area of the membrane, 𝜇A 𝜇V 𝐴 𝐴0

 is the vesicle volume, and  is the target volume of the vesicle. The fourth term is the 𝑉 𝑉0

regularization energy, , which is added to eliminate the in-plane shearing deformations 𝐸reg

of the triangular mesh as the structure is optimized. This technical rather than physical 

constraint (due to the numerical mesh) should go to zero in equilibrated structures, and in 

Methods we describe specific forms we tested to minimize its contribution to the total 

energy. 

Although the insertion is localized to a few mesh points, it drives the local region of 

the surface to bulge and deform to minimize the energy after the insertion, and thus requires 

integration over the 3D surface to evaluate energy changes (Methods). To study the 

curvature sensing effect, we ran simulations on vesicles with five different radii:  7 𝑅 =

nm, 14 nm, 28 nm, 56 nm, 112 nm respectively, as shown in Fig 1E. For comparison with 

experimental data, we also used vesicles with  10 nm, and we studied cylinders of 𝑅 =

similar radii, as described in Methods. The curvature is defined as the inverse of the vesicle 

radius, so the initial vesicles have curvature in a range of 0.009-0.14 nm-1, which covers a 

range of relevant membrane curvatures in biological systems.

Modeling helix insertion: The spontaneous curvature of bilayers is dependent on the lipid 

composition. For the vesicles studied here, we primarily assume the leaflets are symmetric, 

thus having a spontaneous curvature of zero, meaning the membrane prefers to be 

everywhere flat. We test in the Results how an initial asymmetry in the bilayer leaflets, 
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producing a nonzero bilayer spontaneous curvature, would impact curvature sensing. The 

insertion of the oblong α-helix into a leaflet of the bilayer will induce conformational 

changes of nearby lipids. We therefore model the effect of the insertion as a local change 

to the spontaneous curvature of the membrane [24]. The area of this local change is chosen 

to mimic the size of the α-helix domain, which for ENTH occupies about 2 nm2, i.e. 1 nm 

in width and 2 nm in length, on the membrane [7, 35]. We thus select 4 triangles of the 

mesh to assign a nonzero value of , which we will refer to as  (Fig 1C). In the 𝑐0 𝑐ins
0

Results we verify that the conclusions are unchanged with either higher mesh resolution, 

or with a more diffuse spreading of the local change in . The rest of the membrane 𝑐ins
0

surface retains the initial bilayer spontaneous curvature, usually zero. Optimized structures 

thus can form a bulge around the insertion (Fig 1D). In this paper, we focus on the impact 

of one protein binding to the membrane, effectively assuming each binding event is local 

and independent of one another. 

Comparison to experimental observables: The experimentally measured coverage of 

ENTH proteins per vesicle of radius  is reported in Ref. [12], along with the 𝑅

experimental methods. We compute the corresponding  via , where 𝐾D 𝐾D = [𝑃]eq𝜌eq
l /𝜌eq

el

 is the concentration of free ENTH in solution,  is the free lipid density on the [𝑃]eq 𝜌eq
l

surface, and  is the density of membrane-bound ENTH proteins. We exploit that both 𝜌eq
el

the proteins and the lipid sites are in great excess to the number of bound complexes, such 

that  (150 nM) and . The lipid binding-site density is calculated [𝑃]eq = [𝑃]tot 𝜌eq
l  =  𝜌tot

l

from the 7.5% mol fraction of lipids that are PI(4,5)P2, as 0.125 nm-2 on all vesicles. The 

bound protein densities vary from 0.0038 to 0.0002 nm-2. This  is thus dependent on 𝐾D

radius (Fig 1A), and the energetics of binding of one ENTH to the membrane surface can 

be extracted via the well-known relation

,       (2)𝐾D(𝑅) = [1M] ∙ exp[∆𝐺(𝑅)
𝑘B𝑇 ]

where  is the binding free energy and  is the standard state concentration. ∆𝐺 [1M]
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Specifically,  quantifies the free energy difference between 1) an unbound ENTH and ∆𝐺

the unperturbed membrane surface and 2) a bound ENTH to a perturbed membrane. For 

binding of ENTH domains with the helix removed, the  becomes effectively 𝐾D

independent of radius, indicating that the enthalpic and entropic contributions due to 

binding the ENTH domain (minus helix) to the membrane do not change with membrane 

curvature (Fig S1). 

While the binding free energy is clearly dependent on membrane curvature (Fig 1), we 

decompose it into contributions that do not all vary with curvature. We emphasize that our 

calculations are not able to measure the binding free energy (Eq. 2), because we do not 

account for all chemical contributions to binding energy. Instead, our calculations measure 

the energy change upon binding that varies with curvature, due to membrane mechanics. 

We distinguish three contributions: a chemical potential due to electrostatic interactions 

between protein and lipids ( ), the cost of protein conformational change like the α-helix ―𝜇

folding ( ), and a mechanical energy due to helix insertion into the bilayer ( ). Without 𝜀 ∆𝐸

the helix, the ENTH domain still binds the membrane, but the binding is insensitive to 

curvature (Fig S1), hence we treat  as curvature independent. We will assume that the ―𝜇

protein conformational change  is also not dependent on the curvature given that the 𝜀

structure of the ENTH N-terminal α-helix is the same despite the different size of vesicles. 

Thus,  and inserting this into Eq 2, we can write  ∆𝐺(𝑅) = ―𝜇 + 𝜀 + ∆𝐸(𝑅)

,      (3)∆𝐸(𝑅) = 𝑘B𝑇 ∙ log[𝐾D(𝑅)
𝐾D0 ]

where  is independent of the membrane shape, . To compare 𝐾D0 𝐾D0 = [1M] ∙ exp[ ―𝜇 + 𝜀
𝑘B𝑇 ]

with simulations, we measure how these mechanical energies change relative to that of the 

smallest vesicle ( ), defining: ∆𝐸ref

,       (4)∆∆𝐸(𝑅) = ∆𝐸(𝑅) ― ∆𝐸ref = 𝑘B𝑇 ∙ log[ 𝐾D(𝑅)
𝐾D(𝑅min)]

where  10 nm (Fig 1B). When the proteins and lipid binding sites are in excess of 𝑅min =

the membrane bound proteins (true here), this expression is independent of  and . [𝑃]tot 𝜌tot
l
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, where  is the copies of membrane bound proteins per ∆∆𝐸(𝑅) = 𝑘B𝑇 ∙ log[𝑁(𝑅min)𝑅2

𝑁(𝑅)𝑅2
min

] 𝑁

vesicle of size .𝑅

Figure 1. Experimental curvature sensing by ENTH domains with amphipathic 

helices and the corresponding model design to quantify these results. (A) The 

dissociation constant of the amphipathic helix-containing ENTH domain is stronger with 

more highly curved (smaller) vesicles. The solution concentration of the ENTH domain is 

150 nM and the PI(4,5)P2 density on the vesicle is 0.125 nm-2. (B) From the , we can 𝐾D

measure the difference in binding energy with vesicle size, using the smallest vesicle as 

the zero point. The positive energy changes reflect weaker binding. (C) The helix insertion 

is modeled as occupying four adjacent triangles on the vesicle surface (  7 nm), which 𝑅 =

are assigned a nonzero spontaneous curvature, , while the rest of the surface has a 𝑐ins
0

spontaneous curvature of zero. (D) The insertion modifies the membrane energy, with 

equilibrated structures deforming to produce local bulges that increase with larger . 𝑐ins
0

Here  0.4 nm-1 and the color bar shows the distance of triangular face to the center 𝑐ins
0 =
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of the vesicle. (E) Five vesicles of different sizes in our simulations. The vesicle radii are 

7 nm, 14 nm, 28 nm, 56 nm and 112 nm from left to right.

III. RESULTS

IIIA Spontaneous curvature of the insertion drives opposite changes in energy in small vs 

large vesicles 

The impact of our helix insertion on the membrane energy is controlled by its size, ,  𝐴ins

(2 nm2 unless otherwise noted) and by its spontaneous curvature, . For  0, the 𝑐ins
0 𝑐ins

0 =

insertion would not change the membrane energy at all for any vesicle size, which we 

measure via 

,          (5)∆𝐸 = 𝐸bound ― 𝐸0

where  is the membrane energy with one helix bound and  [34] is the 𝐸bound 𝐸0 = 8π𝜅

energy of the spherical vesicle with no insertions and a surface spontaneous curvature 𝑐0

 that is everywhere zero. This unperturbed energy  results from the cost of bending (𝒔) 𝐸0

the membrane into a sphere, when it prefers a flat curvature (  across the unperturbed 𝑐0

surface is zero), and is independent of vesicle radius.  

As we increase  of the insertion from 0.01 nm-1 to 0.3 nm-1, we find that for smaller 𝑐ins
0

vesicles, the insertion lowers the cost of bending the membrane, producing  0 (Fig ∆𝐸 <

2A). For these highly curved vesicles, the insertion thus improves the stability of the bound 

system. Conversely, for larger vesicles, we see the opposite effect. Once  28 nm, 𝑅 >

insertions with increasing  cause an increase in the cost of bending the membrane 𝑐ins
0

(  0), thus de-stabilizing these flatter surfaces. ∆𝐸 >

These inverse costs and benefits of adding the insertion result from the initial strain 

that the membranes are under by being forced into curved (instead of flat) enclosed vesicles. 

For the highly curved small vesicles, the local mean curvature  is high and 𝐻(𝒔)

introducing an insertion that prefers higher curvature relieves strain in the membrane, even 
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as it drives local shape changes. With larger vesicles, the local mean curvature  𝐻(𝒔)

decreases, and the creation of local shape changes around the insertion eventually costs 

energy. The transition occurs at ~  28 nm, where the corresponding membrane 𝑅 =

curvature is about 0.036 nm-1. The transition between the positive and negative energy 

responses cannot be predicted from the vesicle size and insertion spontaneous curvature 

alone, as it depends on the relaxation of the surface around the insertion, as described 

further in Section IIIK. 

Figure 2. The addition of insertions to spherical vesicles can stabilize or de-stabilize 

the bending energy dependent on vesicle size and bending modulus. (A) As  𝑐ins
0

increases, the insertion has a larger impact on the membrane energy, stabilizing small 

vesicles and de-stabilizing large ones.  20 . (B) As the bending modulus  𝜅 = 𝑘B𝑇 𝜅

increases, the insertion is again more stabilizing for small vesicles, but de-stabilizing for 

large vesicles.  0.1 nm-1. The plotted energy change is due solely to the membrane 𝑐ins
0 =

mechanics, and is not the same as the binding free energy defined in Eq. 2. 

IIIB. Stiffer membranes also show opposite response to insertion in small vs large vesicles

The response of the membrane energy to changes in bending modulus  is also 𝜅

coupled with the vesicle size. For small curved vesicles, as we stiffen the membrane against 

bending (larger ) the insertion produces a greater benefit in stabilizing the membrane (Fig 𝜅

2B), retaining a  0 and  0. This result is again in agreement with the ∆𝐸 < dΔ𝐸/d𝜅 <

Page 12 of 38Soft Matter



13

insertion relieving the strain in the membrane, which increases in the unperturbed vesicle 

with larger . For intermediate vesicles, the energy change becomes less sensitive to 𝜅

changes in , until we reach  112 nm. Now we see the opposite trend, where the 𝜅 𝑅 =

increasing stiffness causes a larger cost to adding the insertion, producing  0. dΔ𝐸/d𝜅 >

The sign of  does not change with , only the magnitude, as we quantify in Section ∆𝐸 𝜅

IIIK. However, we note that in Fig 2B, the spontaneous curvature of the insertion zone is 

fixed at  0.1 nm-1 for each data point, which means we effectively assume that the 𝑐ins
0 =

insertion (e.g. the insertion depth) is not influenced by the stiffness of the membrane. In 

reality, the insertion parameters of a specific α-helix type could be coupled to the 

membrane stiffness. So, given a specific helical structure, the response of the membrane 

energy to varying bending modulus  could reflect simultaneous changes in both  and 𝜅 𝜅

. A relationship between  and  would depend on molecular properties of the 𝑐ins
0 𝜅 𝑐ins

0

protein-lipid interactions, and is beyond the scope of this paper. 

IIIC. Area and volume changes have minimal impact on curvature sensing

The membrane energy is dependent on changes in volume and surface area due to insertion 

(Eq 1), although we find they make negligible contributions relative to the bending energy. 

The volume constraint reflects an influence of osmotic pressure, where water may pass in 

and out of the vesicle to change its volume. The coefficient  controls the penalty to 𝜇V

changes in volume, and we find that over a broad range of values, it has minimal impact 

on the membrane energy after insertion (Fig S2). Similarly, the expansion or compression 

of the membrane area upon insertion is controlled by the coefficient , where experiments 𝜇A

estimate this membrane elastic modulus in the range of 230-260 pN/nm [36]. Here again, 

over a broad range of values of , we see minimal changes to the membrane energy, 𝜇A

indicating that global area changes upon insertion are not significant contributors to 

curvature sensing (Fig S2). In all of our simulations (unless otherwise noted), we thus use 

fixed values of  83.4 pN/nm2 and  250 pN/nm. The fact that these terms do 𝜇V = 𝜇A =
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not contribute to curvature sensing does not mean that they do not contribute at all to the 

binding free energy (Eq. 2), but only that the contribution is not sensitive to changes in 

curvature. 

IIID. Helix insertion energies are sensitive to local curvature, not membrane surface area

Our results above show that the effect of the insertion on membrane energy is sensitive to 

the curvature of the membrane surface, as coupled to changing vesicle size. For a helix 

insertion with a fixed value of , we can thus see that as the vesicle gets smaller and 𝑐ins
0

more curved, the insertion drives more stable energies (  0), with a steeper dΔ𝐸/d𝑅 >

benefit occurring for larger values of  (Fig 3A). For vesicles, both the curvature and 𝑐ins
0

the total membrane surface area change with varying vesicle radius, and on small vesicles 

the perturbation due to the insertion occupies a larger fraction of the total area than for 

larger vesicles. Therefore, we further tested whether curvature sensing would be retained 

when the surface area is fixed, and only the local curvature varies. We thus generated a 

single enclosed red-blood-cell-shaped membrane (by decreasing the vesicle volume [37]) 

that exhibits variations of curvature across its surface. Four different points with different 

curvatures on the surface were selected as the insertion zone (Fig 3B). Our simulation 

results recapitulate the same curvature sensing phenomena, where binding to the most 

highly curved region produces the largest benefit in membrane energy changes, and 

binding to regions of negative curvature produces a cost in membrane energy (Fig 3B). The 

curvature sensing ability is thus robustly driven by the local curvature and resulting 

deformation around the insertion, rather than the relative size of the perturbation to the total 

surface area. 
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Figure 3. Helix insertions will drive stronger binding to more highly curved 

membranes. (A) Curvature sensing on spherical vesicles. Inset illustrates a sphere of  𝑅 =

7 nm along with the insertion area (red color). Insertions increase the stability of the 

membrane energy (  0) more robustly with smaller radius and correspondingly higher Δ𝐸 <

curvature ( ). The magnitude of this response is larger with higher spontaneous 1/𝑅

curvature of the insertion . . (B) Curvature sensing on an enclosed, red-𝑐ins
0 𝜅 = 20 𝑘B𝑇

blood cell shaped ‘vesicle’ with heterogeneous curvatures. Inset illustrates the side view 

with position 1 having highest curvature, and 4 having lowest (negative in this case) 

curvature. To get this asymmetric oblate structure, we started with the spherical vesicle 

 14 nm and set the target volume , target area . A 𝑅 = 𝑉0 = 0.65 × 4π𝑅3/3 𝑆0 = 4π𝑅2

much stronger area and volume constraints were added with  pN/nm2 and 𝜇V = 8.34 × 104

 pN/nm.  and  0.1 nm-1. The membrane curvature at 𝜇A = 2.50 × 104 𝜅 = 20 𝑘B𝑇 𝑐ins
0 =

the positions labeled 1, 2, 3, 4 is 0.14, 0.08, 0.06, 0.06 nm-1 respectively. The membrane ―

energy change  is more stabilizing with higher curvature. Δ𝐸

IIIE. Curvature sensing is retained when the insertion area is spread out

In the above models, the spontaneous curvature of the membrane at the site of the insertion 

is non-zero over an area of 2 nm2, and immediately drops back to zero in adjacent surface 

elements. To test the effect of having a more continuous drop-off in spontaneous curvature 

as a function of distance from the helix, driven by a stressed distribution of lipids around 

the insertion [20], we expanded the region of non-zero spontaneous curvature around the 
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insertion (Fig S3A).  The value of  is thus largest at the center of the insertion, and 𝑐ins
0

decays with distance away. We model this decay using a Gaussian function: 

,         (6)𝑐ins
0 (𝑥) = 𝑐ins

0  exp[ ―
(𝑥 ― 𝑥0)2

2𝜎2 ]
where x is the distance to the insertion zone center , and  is the width of the spread. 𝑥0 𝜎

A Gaussian function introduces only one extra parameter in  and concentrates most of 𝜎

the perturbation directly around the helix. The induced stress or strain is limited to ~1 nm 

scale around the insertion [20], so we choose  1.5 nm. We find that the curvature 2𝜎 ≤

sensing effect is robustly retained, with a larger spreading of the insertion producing a 

larger change in the membrane energy (Fig S3B). Using a linear instead of a Gaussian 

function for the decay produces similar results (Fig S3C and D). 

IIIF. The model recapitulates in vitro measurements of curvature sensing on vesicles of 

varying size

To most directly compare the simulation results to the experimental results of ENTH 

binding to vesicles [12], we measure the energy change upon insertion relative to the value 

in the smallest vesicle ( ), so following Eq. 4,∆𝐸ref(𝑅 = 10 nm)

.        (7)∆∆𝐸(𝑅) = ∆𝐸(𝑅) ― ∆𝐸ref

We see excellent agreement between the shape of the energetic changes between both our 

numerical results and the experiment (Fig 4), where in fact more than one set of -  𝜅 𝑐ins
0

values agree quantitatively with the experiment. Hence, within physically reasonable 

values of the membrane bending moduli, a softer membrane reproduces the data with a 

larger spontaneous curvature (  0.4 nm-1, ) or a stiffer membrane matches 𝑐ins
0 = 𝜅 = 15 𝑘B𝑇

with a weaker spontaneous curvature (  0.2 nm-1, ). We can see then that 𝑐ins
0 = 𝜅 = 30 𝑘B𝑇

if the spontaneous curvature is either too large or too small, then the numerical results 

cannot reproduce observed bending energy changes for reasonable value of .𝜅
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Figure 4. Numerical simulations reproduce in vitro curvature sensing results of ENTH 

for realistic bending moduli and spontaneous curvature values. In all panels, the 

experimental data on binding to vesicles of varying radii is shown in black open circles 

[12], same as in Fig 1B (note the y-axis range varies with each panel). (A) For a lower 

spontaneous curvature (  0.1 nm-1), the curvature sensing is too weak to reproduce 𝑐ins
0 =

the experiment. (B-D) For values of  0.2-0.4 nm-1, we see excellent agreement with 𝑐ins
0 =

the experimental energetics, where the agreement is dependent on pairing of  and . 𝑐ins
0 𝜅

So far, we have assumed the spontaneous curvature across the bilayer surface is zero, 

 0, except at the insertion patch where . This will be true if both 𝑐0(𝒔) = 𝑐ins
0 > 0

monolayers are symmetrical and identical in lipid composition, and thus we tested the role 

of a nonzero initial curvature driven by leaflet asymmetries. The simulation results show 

that curvature sensing persists and remains in close agreement with the experimental data 

(Fig 5). Here we note that calculation of  (Eq. 5) requires that  also be calculated ∆𝐸 𝐸0

numerically, as it can deviate from the perfect sphere value of . Leaflet 𝐸0 = 8π𝜅
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asymmetries can arise during the generation of vesicles, as specific lipids could prefer the 

inner leaflet over the outer leaflet due to the opposing curvature experienced by the head 

groups. For the vesicles used in the experiments, the composition is mainly DOPC (~90% 

of total lipids). DOPC has a negative spontaneous curvature about 0.05 nm-1 [38], ―

meaning that the spontaneous curvature of each monolayer is about 0.05 nm-1. Because ―

a nonzero bilayer spontaneous curvature is only caused by asymmetries between the 

monolayers, no matter their individual values, we thus tested bilayer values starting from 

a maximal asymmetry: . Overall, for small deviations from ― 0.05 nm ―1 ≤   𝑐0(𝒔) ≤ 0

zero, the influence is negligible (compare Fig 4B and Fig 5A), while for the larger 

deviations we observe enhanced curvature sensing with the same insertion parameters (Fig 

5B). 

Figure 5. Numerical simulations reproduce the in vitro curvature sensing on vesicles 

even when the bilayers initially have a nonzero spontaneous curvature. A-B) In both 

panels, the experimental data is shown in black open circles and  0.2 nm-1. A) The 𝑐ins
0 =

bilayer spontaneous curvature is initialized to 0.01 nm-1 to reflect possible 𝑐0(𝒔) =  ―

asymmetries in the inner and outer leaflet. Results are very similar to the same model with 

 0 nm-1 shown in Fig 4B. B) With a more negative initial value, 0.05 𝑐0(𝒔) = 𝑐0(𝒔) =  ―

nm-1, the experimental data agrees better with a softer (lower ) membrane given the same 𝜅

value of . Thus realistic values of -  describe the experimental data even with 𝑐ins
0 𝜅 𝑐ins

0

initial asymmetries between membrane leaflets.
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IIIG. The model recapitulates in vitro measurements of curvature sensing of distinct 

amphipathic helices, ALPS1 and ALPS2 

Our above results focused on the epsin N-terminal (ENTH) amphipathic helix, which is ~2 

nm2 in area. The ArfGAP1 protein contains two slightly longer amphipathic helices, termed 

ALPS1 and ALPS2, that can also insert into membranes [11]. Both these helices have been 

shown experimentally to exhibit curvature sensing, with ALPS1 being a stronger sensor of 

curvature [16]. Based on structural data [16], we therefore set the ALPS1 insertion area to 

6 nm2, and the ALPS2 insertion area to 3.5 nm2. Our continuum model was again able to 

reproduce the experimentally measured curvature sensing for both these helices with 

realistic pairs of bending modulus  and insertion spontaneous curvature  (Fig 6). 𝜅 𝑐ins
0

Specifically, both helices were experimentally studied on vesicles of radii 90, 42, and 34 

nm, with the same composition in each [16]. We therefore expect similar values of  to 𝜅

describe sensing for both helices, and indeed for , we found very good 𝜅 = 24 𝑘B𝑇

agreement for both helices using  0.5 nm-1 for ALPS1, and  0.4 nm-1 for 𝑐ins
0 = 𝑐ins

0 =

ALPS2. Fig 6 highlights other pairs of -  with good agreement to the experiments. 𝜅 𝑐ins
0
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Figure 6. Numerical simulations can reproduce the in vitro curvature sensing of the 

two ArfGAP1 ALPS helices. In all panels, the color bars indicate the increased binding 

observed on highly curved vesicles (  34 nm in A-C and  42 nm in B-D) relative 𝑅 = 𝑅 =

to a reference vesicle of  90 nm. (A-B) Simulation results for the ALPS1 motif, with 𝑅 =

 6 nm2. The experimentally measured values are  46.75, 𝐴ins = 𝐾eq(34)/𝐾eq(90) = 𝐾eq

 11.51 [13, 16]. Thus the red dashed circles represent the possible -  (42)/𝐾eq(90) = 𝜅 𝑐ins
0

pairs that reproduce this experimental data, with the red star indicating a conserved  𝜅

values across all 4 panels. (C-D) Simulation results for the ALPS2 motif, with  3.5 𝐴ins =

nm2. The experimentally measured values are  5.33, 𝐾eq(34)/𝐾eq(90) = 𝐾eq(42)/𝐾eq

 2.25 [13, 16]. Thus the red dashed circles represent the possible -  pairs that (90) = 𝜅 𝑐ins
0

reproduce this experimental data, with the pink star indicating a conserved  values across 𝜅

all 4 panels.

IIIH. The model recapitulates in vitro measurements of curvature sensing by ENTH on 

cylinders of varying size

Curvature sensing of the ENTH domain was also experimentally observed on cylindrical 

membrane tethers of varying size by Capraro et al [17]. In Fig 7, we show that our model 

produces good agreement with the experimental results. The optimal parameters for the 

model used the same  2 nm2 as the ENTH on the vesicles, with  and 𝐴ins = 𝜅 = 20 𝑘B𝑇

 0.45 nm-1.  This insertion spontaneous curvature is somewhat larger but still 𝑐ins
0 =

relatively similar to the value for ENTH used on the vesicles, where we found excellent 

agreement when  and  0.3 nm-1 (Fig 4). One reason for a difference in 𝜅 = 20 𝑘B𝑇 𝑐ins
0 =

 for the same protein on cylinders vs vesicles could be the different lipid compositions 𝑐ins
0

used in the two experiments. In addition, due to the change in geometry, specific proteins 

have been shown to sense curvature more strongly in vesicles over cylinders (although 

ENTH was not studied) [39]. Our model does not assume that sensing need be identical in 

cylinders and vesicles of the same mean curvature. This is evident because the shape of the 
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membrane deforms following insertion, and the exact shape and energetic cost of the 

deformation can be sensitive to the unperturbed surface topology. In section IIIK below we 

quantify how the shape deformation, on its own, impacts energetics as a function of vesicle 

size.  

We note that to compare our measurements directly to the quantitative experiments 

(see Methods for all cylinder simulation details), the experimental results showed that the 

ratio of protein ( ) and lipid ( ) fluorescence intensities on the tether, , is linear 𝐼p 𝐼l 𝐼r =  𝐼p/𝐼l

with the square root of tension on the tether, or equivalently, with the inverse of the tether 

radius  [17]. This normalized intensity ratio, , where  is the fluorescence 𝑅 𝐼r 𝐼0
r 𝐼0

r

intensity ratio of a reference cylinder, is the same as a normalized binding constant 

, when, similar to the vesicle experiments, the abundance of unbound protein and 𝐾eq 𝐾0
eq

of lipid binding sites are in excess and thus effectively constant across . Using Eq. 4, we 𝑅

quantify  where , as defined in Eq. 7. 𝐾eq 𝐾0
eq = exp ( ― ∆∆𝐸 𝑘B𝑇) ∆∆𝐸 = ∆𝐸(𝑅) ―∆𝐸ref

Thus, by measuring the membrane energy change caused by inserting an amphipathic helix 

on cylinders of decreasing radii down to  10 nm, our model recapitulates the 𝑅 =

experimentally observed curvature sensing (Fig 7), with a similar dependence on  of 𝑅

ENTH on the spherical vesicles (Fig S4). We note that our model results are not as linear 

as the experimental data, and this could be due to our assumption that . 𝐼r 𝐼0
r = 𝐾eq 𝐾0

eq

Although the solution proteins are in clear excess of the bound proteins, the lipid sites are 

not strictly in excess. While unbound lipid binding sites could remain constant due to 

exchange between the tether membrane and the reservoir, this is difficult to verify, and a 

correction term would account for changes in unbound lipid populations with increasing 

. We do not attempt this here because the absolute values of  are not known (i.e. 𝐾eq 𝐾eq

our model does not report on enthalpic contributions to binding strength). 
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Figure 7. Numerical simulations reproduce the in vitro curvature sensing results 

observed on cylindrical membrane tethers. (A) Modeled cylinder showing the local 

bulge that occurs following one insertion on the cylinder membrane. Here  10 nm, 𝑅 =

, and  0.3 nm-1. The color bar shows the distance of each triangular face 𝜅 = 20 𝑘B𝑇 𝑐ins
0 =

to the axis of the cylinder. All modeled cylinders have a length of 55.4 nm with both ends 

constrained by periodic boundary conditions, with this image zooming in on a length of 

 30 nm to highlight the bulge. (B) The experimental data measured increased binding 𝐿 =

on tethers as tension increased and their radii decreased (  increased), as plotted in Fig 1/𝑅

2E of ref. [17] and  according to their system set-up. Our numerical 𝜅eff = 13.33 𝑘B𝑇

simulations were carried out with ,  0.45 nm-1, and  2 nm2. 𝜅 = 20 𝑘B𝑇 𝑐ins
0 = 𝐴ins = 𝐾0

eq

. In Fig S4, we plot the same data in (B) vs , to show the similar = 𝐾eq(𝑅 = 500 nm) 𝑅

representation as our earlier figures.  

IIIJ. The model captures increased binding on membranes with lipid composition of 

increasingly negative spontaneous curvature 

Lastly, we consider a set of experiments that showed how binding affinities for 

amphipathic helices could also vary across vesicles that have a fixed size but changing 

membrane composition [13, 33]. We make two new assumptions for these model 

calculations, and emphasize that this renders this specific comparison less robust than 

previous results. Nevertheless, our model achieves good agreement with experiment (Fig 
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8), and thus we consider the results at least qualitatively promising. The first key 

assumption is that the changing lipid composition does not affect the enthalpic or entropic 

contributions of the binding interaction. Instead, by keeping the percentages of negatively 

charged lipids constant, but increasing the fraction of the wedge-shaped diacylglycerol 

(DAG) lipid, both monolayers of the bilayer exhibit an increasingly negative spontaneous 

curvature, . This could therefore alter the membrane bending energy following 𝑐0(𝒔)

insertion, and thus the binding affinity. Experiments showed that a truncated ArfGAP1 

containing its ALPS1 helix has a higher affinity to vesicles with more DAG (see Fig 7B in 

[13]). A second key assumption of our model is that we here use the continuum surface to 

represent only a monolayer of the membrane (the outer-leaflet of the vesicle), with the 

assumption that energetic coupling to the inner-leaflet is neglectable. It will be important 

to test and quantify this assumption in future work with a multi-leaflet continuum model 

(see Discussion), but here we simply show the results based on these assumptions. 

Therefore, our model has only one layer, with  9-10  (the value for a monolayer), 𝜅 = 𝑘B𝑇

and we again measure  due to one insertion as the initial spontaneous curvature of the ∆∆𝐸

membrane is made more negative. Similar to the experiment, we also find stronger binding 

to membranes with more DAG (a more negative ), using  0.1 nm-1 and  𝑐0(𝒔) 𝑐ins
0 = 𝜅 =

9 , or  0.01 nm-1 and  10  (Fig 8). We use one insertion with  𝑘B𝑇 𝑐ins
0 = 𝜅 = 𝑘B𝑇 𝐴ins =

4 nm2, which was found to be optimal from numerical calculations performed using 

elasticity theory [13].

Figure 8. Numerical simulations show stronger binding to membranes with a 
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composition that has a more negative spontaneous curvature, similar to in vitro results 

The experimental data is shown in blue dots [13, 33] in both plots, our numerical results in 

red circles. A) With softer monolayer , a larger  0.1 nm-1 agrees best. B) With 𝜅 𝑐ins
0 =

stiffer monolayer , a smaller  0.01 nm-1 is needed. Simulations were run on a 𝜅 𝑐ins
0 =

vesicle with  28 nm, consistent with the experiments.  is the normalized 𝑅 = 𝐾eq 𝐾0
eq

equilibrium constant that can be calculated from Eq. 4 given , and  ∆∆𝐸 = ∆𝐸 ― ∆𝐸0 ∆𝐸0

is the energy change due to insertion on the reference membrane defined to have initial 

spontaneous curvature  across the vesicle surface.𝑐0(𝒔) = ―0.06 nm ―1

IIIK Predictive model for membrane energy changes following insertion captures effect of 

membrane shape changes

To combine all of our numerical results into a simpler mathematical framework, we derived 

a phenomenological expression to predict how the membrane energy changes would vary 

with , , vesicle radius , and insertion area . This expression clarifies how the 𝑐ins
0 𝜅 𝑅 𝐴ins

observed energy change results not only from the local change in spontaneous curvature at 

the insertion (which can be calculated analytically), but the membrane shape changes that 

occur following membrane relaxation around the insertion. The results apply for initial 

bilayer spontaneous curvature of  0, or symmetric bilayers.𝑐0(𝒔) =

We write the total observed membrane energy change calculated from numerical 

simulation as

       (8)∆𝐸(𝑅,𝑐ins
0 ,𝜅,𝐴ins) = ∆𝐸0 +𝛿,

where  is the change in bending energy due solely to changes in spontaneous ∆𝐸0

curvature at the insertion, without any shape change to the surface. Therefore,  captures 𝛿

energy changes due to deformation of the membrane shape to relieve induced strain in the 

surface. We calculate  analytically using Eq. 1. The only change in energy across the ∆𝐸0

surface occurs at the site of the insertion. Before the insertion, the membrane bending 
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energy of the area  is , with the spontaneous curvature of the membrane being 𝐴ins
𝜅𝐴ins

2 (2
𝑅)2

zero. After the amphipathic helix inserts into this area , the bending energy on this area 𝐴ins

is  with  being the effective spontaneous curvature on this binding area 
𝜅𝐴ins

2 (2
𝑅 ― 𝑐ins

0 )2
𝑐ins

0

. We thus have: 𝐴ins

     (9)∆𝐸0(𝑅,𝑐ins
0 ,𝜅,𝐴ins) =

𝜅𝐴ins

2 (2
𝑅 ― 𝑐ins

0 )2
―

𝜅𝐴ins

2 (2
𝑅)2

=
𝜅𝐴ins

2 (𝑐ins
0

2 ―
4𝑐ins

0

𝑅 )
as the membrane energy change from one insertion before the relaxation of the stress or 

strain (Fig 9A). 

We use our numerical results to derive an expression for . Our results show  is 𝛿 𝛿

always a negative value (Fig 9B), which means the relaxation process always causes the 

membrane energy to decrease, whereas  is positive when . From our ∆𝐸0 𝑐ins
0 > 4/𝑅

analysis, we find that  varies with all four parameters, . The 𝛿 𝛿 = 𝛿(𝑅,𝑐ins
0 ,𝜅,𝐴ins)

simulation results show  and that  is a linear function of  (Fig S5), which is 𝛿 ∝  𝜅 𝛿 𝑅 ―1

the same dependence that  has (Eq 9). For the insertion parameters, however, we find ∆𝐸0

that  has distinct scaling with  and . Specifically, we find that  is 𝛿 𝑐ins
0 𝐴ins

𝛿 𝑐ins
0

1.5

independent of , and  is independent of  (see Fig S5 for details on 𝑐ins
0

𝛿 𝐴ins
1.25 𝐴ins

parameter estimation). By fitting our numerical data, we thus recover a final practical 

expression for how  depends on all four variables:𝛿

 .   (10)𝛿(𝑅,𝑐ins
0 ,𝜅,𝐴ins) = ―𝜅𝑐ins

0
1.5𝐴ins

1.25( 3
2𝑅 +

1
𝑅0)

This expression contains 4 fit parameters: the exponents 1.5 and 1.25, the 3/2 prefactor for 

, and finally  10 nm is a fit parameter necessary to capture the apparent 𝑅 ―1 𝑅0 =

plateauing of  at negative values when  → ∞. 𝛿 𝑅

By combining Eqs (8-10), we have the final analytical expression of the membrane 

energy change due to one helix insertion as:

,    (11a)∆𝐸(𝑅,𝑐ins
0 ,𝜅,𝐴ins) =

𝜅𝐴ins

2 (𝑐ins
0

2 ―
4𝑐ins

0

𝑅 ) ―𝜅𝑐ins
0

1.5𝐴ins
1.25( 3

2𝑅 +
1

𝑅0)
or
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 .     (11b)∆𝐸(𝑅,𝑐ins
0 ,𝜅,𝐴ins) = 𝜅𝐴ins𝑐ins

0 [𝑐ins
0

2 ―
2
𝑅 ― 𝑐ins

0 𝐴ins

1
4( 3

2𝑅 +
1

𝑅0)]
Eq (11) provides excellent agreement with the numerical data as shown in Fig 9C, 

recovering the proper limits that as the size or spontaneous curvature of the insertion goes 

to zero, there is no change in the membrane energy, as expected. This model further 

predicts when the helix insertion will cause stabilization (  < 0) or de-stabilization ∆𝐸

(  to the membrane energy, dependent on , , and now also . The sign is ∆𝐸 > 0) 𝑐ins
0 𝑅 𝐴ins

thus independent of , as seen in Fig 2B. This expression shows that the membrane energy 𝜅

changes for vesicles is most sensitive to changes in , which is coupled to the vesicle 𝑐ins
0

radius most strongly via the membrane shape changes, as seen in the last term of Eq. 11a 

( . The trend is similar for the insertion size, where it couples more strongly to the 𝑐ins
0

1.5/𝑅)

vesicle radius in the membrane shape changes ( . The magnitude of the energy 𝐴ins
1.25/𝑅)

change following relaxation is comparable to the energy change due to the insertion (Fig. 

S5E), meaning that the contribution of the membrane shape changes in response to helix 

insertion cannot be ignored when quantifying the strength of helix localization to 

membranes.  

As an example application of this formula, we used Eq 11 to fit experimental data of 

curvature sensing of two helices, eAH and aAH, on liposomes of varying radii (from Fig 

2E in [9]). Similar to all previous calculations, we re-plot the reported  values [9] ∆𝐺(𝑅)

by subtracting off , to directly compare with the analytically predicted ∆𝐺(𝑅0) ∆𝐸(𝑅) ―

, with  24.3 nm, the smallest vesicle in their experiments. The best fit of the ∆𝐸(𝑅0) 𝑅0 =

data to Eq 11 is in excellent agreement, and is in the expected parameter ranges, with  𝜅 =

19  and  0.08 and 0.13 nm-1 for aAH and eAH (Fig 9D). 𝑘B𝑇 𝑐ins
0 =
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Figure 9. Empirical formula predicts dependence of membrane energy change on 

physical parameters due to the insertion and subsequent membrane shape changes. 

(A) The dashed lines show , which is defined analytically in Eq. 9 as the change in ∆𝐸0

bending energy due solely to changes in spontaneous curvature at the insertion, without 

membrane shape relaxation. This simple estimate significantly overestimates the energy 

changes observed at equilibrium from our simulations ( , which are shown in the blue ∆𝐸)

and pink data points. These data points are the same as the matching color/symbol in part 

(C). (B) From our numerical simulations that produce , we can extract the energy ∆𝐸

change  that arises only due to membrane shape relaxation using , where 𝛿 𝛿 = ∆𝐸 ― ∆𝐸0

 is defined analytically in Eq. 9. (C) The total energy change  is found from our ∆𝐸0 ∆𝐸

numerical simulations (data points), as also shown in previous figures.  arises due to ∆𝐸

both changes to the spontaneous curvature at the insertion, and subsequent membrane 

shape relaxation. Our empirical model derived in Eq. 11 (solid curves) provides excellent 

agreement with the simulated results. (D) Application of Eq 11 to quantify experimental 

data of helix-containing eAH and aAH [9]. Based on this published study, we set  𝐴ins =
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4 nm2 for eAH and  4.75 nm2 for aAH.  , where  𝐴ins = ∆∆𝐸 = ∆𝐸(𝑅) - ∆𝐸(𝑅0) ∆𝐸(𝑅)

is calculated by Eq. 11 and  24.3 nm. 𝑅0 =

IV. Discussion

Curvature sensing by amphipathic helices emerges from their localized disruption of, 

primarily, the leaflet of the bilayer where they embed. The energy change that results from 

this localized perturbation is up to a few , based on experimental measurements. We 𝑘B𝑇

show here that curvature sensing by amphipathic helices and the corresponding energy 

changes can be accurately captured by deformable continuum membrane models, despite 

lacking an explicit double leaflet structure. Instead, the spontaneous curvature of an 

insertion area, which is a material property reflective of stresses induced on only one leaflet, 

can effectively couple inserted helices to the membrane bending energy.  Our numerical 

results predict stronger binding of helices to membranes of higher curvature. The form of 

the curvature-dependent binding energy (not the complete binding free energy which is not 

accessible with this model) is in excellent quantitative agreement to experiments. 

Furthermore, using literature standard values for  (15-20 )[40], and predicted values 𝜅 𝑘B𝑇

for  (0.2-0.5 nm-1) [22], the experimental observations are directly within the range of 𝑐ins
0

reasonable parameters. The energy change that accompanies helix insertion is due to the 

bending energy, and we decompose this energy change into two parts: the cost of the helix 

insertion (change in ) and the energy of the shape change following insertion. Both 𝑐ins
0

components make comparable contributions to the overall change in bending energy. We 

develop an empirical formula that can then predict these energy changes, which quite 

accurately captures dependence on the bending modulus, sphere radius, helix insertion size, 

and insertion spontaneous curvature. We can therefore predict when helix insertion acts to 

relieve stress in the membrane (highly curved vesicles) or introduce new strain (low curved 

vesicles). We verify that the observed energy changes are due to sensing of the local 

curvature around the insertion, as the result is retained in non-spherical surfaces of constant 
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surface area, and as the helix insertion is spread.  

We assume the binding of each amphipathic helix is independent of each other. This 

applies for the low concentrations used in the experiments here, where the density of ENTH 

on the vesicle membrane surface never surpassed 0.0038 nm-2 (< 5% surface coverage-Fig 

S6) and no clustering of proteins was observed [12]. For the experiments with ALPS motifs 

[16] and ENTH on cylinders [17], we estimate similarly low surface coverage of at most 4% 

and 12%, respectively (see Methods). However, at higher densities, the local shape changes 

could alter the binding energetics of subsequent proteins, leading to mechanically induced 

feedback. The shape and energetics of the deformation can vary as protein pairs move 

closer together [41], and mechanical feedback can alter rates of binding to membranes [42]. 

The spatial distribution or interactions between proteins on the membrane can also vary 

due to localized changes to bending energy and membrane shape [31]. At coverage above 

20%, additional curvature induction mechanisms such as crowding [7], would enhance 

shape changes beyond helix insertion alone. The modeling approach used here is capable 

of quantifying even small changes in energy that could emerge due to cooperative effects. 

In future work we will address how feedback and cooperativity can drive enhanced or 

depressed recruitment to surfaces of varying curvature.

A limitation of the thin-film surface model is that it does not explicitly capture the 

thickness of the bilayer or any explicit asymmetry between inner and outer leaflets. The 

model thus cannot quantify how the stress profile in the membrane varies [13] from the 

embedded leaflet, where the helix causes stretching, relative to the presumably more 

compressed opposite leaflet. Initial asymmetries between leaflets prior to insertion also 

influences the initial bilayer spontaneous curvature, although we showed here that 

curvature sensing persists even when  0, causing minimal changes to bending 𝑐0(𝒔) ≠

energies as it approaches zero (Fig S7). However, explicitly capturing each monolayer 

leaflet would be important for more accurately testing how changes to lipid composition 

[33] would impact bending energies (see Section IIIJ), including more directly accounting 
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for lipid-packing defects that influence monolayer spontaneous curvature [11]. Where 

finer-grained detail is required, applications of material-elastic theory [13] to membrane 

patches thus have an advantage in this regard, although they have significantly less 

flexibility in studying topological variations of surfaces that exist in three-dimensions. Our 

approach here benefits from previous material-elastic studies that have predicted ranges of 

 from helix shape and mechanical strain [20, 22]. Furthermore, membrane thickness 𝑐ins
0

has been shown to be an important variable for interactions between fully transmembrane 

proteins that span both leaflets [20, 22]. Studying the role of membrane thickness in 

continuum models can be achieved through coupling of two layers together, and hybrid 

methods that combine continuum membranes with atomistic proteins capture realistic 

deformations around transmembrane proteins [31, 43]. Coupling the two layers would 

introduce an energy term due to thickness changes (typically modeled harmonically), and 

could also include energetics of lipid tilt. Similar to the area and volume constraints, we 

anticipate that these terms will be relatively small compared with the bending energy cost, 

and thus would not significantly shift our energetic measurements for curvature sensing by 

a single helix. Here, we found that capturing explicit membrane thickness was not 

necessary to reproduce experiment, as the spontaneous curvature accurately quantified 

helix-induced membrane strain on vesicles and cylinders. 

Overall, the modeling approach used here offers an accurate, experimentally verified 

platform to study membrane shape changes and bending energies arising from adsorbed 

proteins, despite relatively few free parameters. To quantify curvature sensing by 

amphipathic helices, we found it to be efficient across multiple changes to material 

properties of the membrane and the insertion, even over ~  or smaller energy changes. 𝑘B𝑇

The direct comparison between quantitative experiments and modeling provides a 

mechanism to determine coarse material parameters of proteins, where here we found that 

inserted helices have a spontaneous curvature of 0.1-0.4 nm-1, using realistic membrane 

bending moduli. Modeling membranes at the mesoscale has proved critical for studying 
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key steps in processes from clathrin-mediated endocytosis [44], to fluctuations in red-blood 

cell membranes[45], where molecular approaches are simply intractable. By further 

coupling mesoscale membranes to dynamical protein systems using, for example, reaction-

diffusion methods [46], the time-evolution of surface shape driven by multiple interacting 

proteins could also be captured in addition to energetics. Our code is therefore provided 

open-source under a Gnu Public Licence (GPL) at 

github.com/mjohn218/NERDSS/continuum_membrane. Given the breadth of membrane 

bending processes that occur in the cell [47], this mesoscale approach can be usefully 

applied and extended to quantifying key mechanisms of protein-driven membrane 

remodeling.   

V. Methods

VA Set-up of vesicles: An enclosed spherical triangular mesh is set up by the Loop’s 

subdivision scheme at the radius of interest [48]. The limited surface area is calculated as 

the vesicle area S, and the volume enclosed by the vesicle area is calculated as the vesicle 

volume V. 

VB Energy minimization: The equilibrium state of the vesicle is produced by minimizing 

the total energy using nonlinear conjugate gradient methods (NCG) [49]. The force on each 

vertex is expressed as the derivative of the total energy to the vertex position

 ,          (12)𝑓𝑖 = ―
∂𝐸
∂𝑥𝑖

where  and  are the position and nodal force on vertex i respectively, and the detailed 𝑥𝑖 𝑓𝑖

expression can be found in [23, 37]. The total energy includes terms due to the 

regularization and area constraint on the insertion described below. As criteria for stopping 

the minimization (finding the optimum), we use a mean nodal force is smaller than  10 ―2

pN and that the energy curve slope is  (Ei is the total energy (𝐸𝑖 + 500 ― 𝐸𝑖) 500 < 10 ―3
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in simulation step i), as shown in Fig S8. 

The calculation time depends on the vesicle size. The larger vesicle has more triangular 

faces and vertices, requiring more time to finish the energy minimization. For the small 

vesicle (R = 10nm), each minimization takes 5-30 minutes on 48 cores, with the code 

written in c++ using OpenMP threading. Minimization takes longer with larger values of 

. For the large vesicle (R = 120nm), the same calculation takes about 2-4 days.𝑐ins
0

VC Insertion Area constraint: We constrain the area of the insertion zone, as the nonzero 

 makes the triangular mesh nonuniform around the insertion, and we do not want the 𝑐ins
0

mesh deformation to change the area of the insertion (which is typically fixed at 2 nm2 for 

ENTH insertion). Therefore, we tried two methods which produce very similar results, and 

neither of which measurably impacts the total energy of the system, which is dominated by 

the bending energy (Fig S9). Using an edge length energy we have:

,    (13a)𝐸𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 = ∑
𝑖
1
2𝐾(𝑙𝑖 ― 𝑙0)2

where  is the edge length of the insertion zone,  nm is the targeted length 𝑙𝑖 𝑙0 = 2 3

for the insertion zone, and  is the spring coefficient. The sum of Eq (13a) covers all the 𝐾

edges of the insertion zone. Alternatively, the insertion area can be constrained via a local 

area constraint:

 ,   (13b)𝐸insertion = ∑4
𝑖 = 1

1
2𝜇A

(𝐴𝑖 ― 𝐴0)2

𝐴0

where  is the area of one triangle in the insertion zone,  0.5 nm2 is the target area 𝐴𝑖 𝐴0 =

of the insertion zone triangle (the total area of the insertion zone is 2 nm2, and the insertion 

zone has four triangles so each triangle should have area 0.5 nm2), and  is the membrane 𝜇A

area elasticity modulus as in Eq (1). To use Eq (13b) for the insertion area constraint, we 

need to separate out the insertion area from the global area constraint in Eq (1).  
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VD Evaluation of surface integrals: The numerical solution of the integral over the surface 

in this theoretical model (Eq 1) is calculated by second order Gauss-quadrature. We 

validate that the second order of Gauss-quadrature is sufficient to produce converged 

energy estimates, and the higher-order and more expensive quadrature schemes are not 

necessary (Fig S10). We also validate that the fineness of the triangular mesh doesn’t 

influence the energy calculation (Fig S11), verifying that the resolution used here is 

sufficient to accurately measure energy changes following insertion.

VE Regularization Energy: To eliminate the in-plane shearing deformations of the 

triangular mesh, we add a regularization energy [37]. The regularization energy has two 

forms depending on whether the triangular element is too biased from the equilateral shape. 

The function to describe the shape of triangular element i is defined by

,         (14)𝜂𝑖 = ∑3
𝑗 = 1(𝑙𝑖,𝑗 𝑙𝑖 ― 1)2

where  is the edge length and  is the target edge length with  being 𝑙𝑖,𝑗 𝑙𝑖 = 4𝐴𝑖 3 𝐴𝑖

the triangular element area. A large  means the triangle is more deformed, and here in 𝜂𝑖

our simulations we use  0.2 as the criteria determining whether the triangle shape is 𝜂0 =

too deformed. If , the regularization energy for this triangular element i is 𝜂𝑖 > 𝜂0

,      (15a)𝐸reg,𝑖 = ∑3
𝑗 = 1

1
2𝑘(𝑙𝑖,𝑗 ― 𝑙𝑖)2

where  is the coefficient of this spring-type energy. If , the regularization energy 𝑘 𝜂𝑖 ≤ 𝜂0

for this triangular element i is

,     (15b)𝐸reg,𝑖 = ∑3
𝑗 = 1

1
2𝑘(𝑙𝑖,𝑗 ― 𝑙0

𝑖,𝑗)2

where  is the edge length we choose to use which is called the reference structure. Then 𝑙0
𝑖,𝑗

the total regularization energy is the sum of all the  triangular elements of the mesh𝑁

 .     (16)𝐸reg = ∑𝑁
𝑖 = 1𝐸reg,𝑖

The regularization energy controls sizes of mesh elements which improves numerical 

Page 33 of 38 Soft Matter



34

integration over the surface, and thus is a technical constraint on the numerical method 

rather than physical constraint on the membrane energy, so it should converge to 0 when 

the system reaches the equilibrium state. The reference structure (value of ) needs to be 𝑙0
𝑖,𝑗

updated as the simulation evolves, and we update it when the energy optimization slows. 

This update method ensures that Eq (16) will converge to 0 and that the regularization 

works effectively on remeshing the triangular mesh [37]. Note that Eq (15) is not a 

continuous function, so it may cause a problem to find an efficient step size during the 

NCG energy minimization, but practically this problem can be solved by restarting the 

simulation or by shutting down Eq (15a) for several simulation steps.

VE Set-up and simulation of cylinder membrane: To set up the triangular mesh of a cylinder 

membrane with the radius R, we first set up a circle of  on the plane  0 with the 𝑅 𝑧 =

circle center being (0, 0, 0); next we select  vertices uniformly distributed on this circle, 𝑛

and thus the edge length between two nearest vertices is ; then we 𝑙 = 2𝑅 ∙ sin (π 𝑛)

repeatedly move these  vertices along  axis by  and rotate along  𝑛 𝑧 ∆𝑧 = + 3𝑙 2 𝑧

axis by  rad. Through this process, we can get a perfect smooth triangular mesh + π/𝑛

with all the triangles being equilateral and identical in size, Fig S12A. 

The mechanical description of the cylinder membrane is the same as the vesicle above, 

with the same regularization scheme and energy minimization method, except that the 

volume constraint is excluded. For the mesh boundary conditions [48], the two ends of the 

cylinder membrane are constrained by periodic boundary conditions (PBC), which we 

found provided more stable energetics even for small cylinders (  10 nm) at all cylinder 𝑅 =

lengths, compared with fixed boundary conditions. Periodic boundaries are also a more 

accurate physical representation of the experimental tether which is about 6 μm in length, 

because they are not pinned to a nanoscopic size (  55 nm). PBC is enforced by 𝐿 =

introducing ghost vertices and ghost faces, as illustrated in Fig S12B. The ghost vertices 

and ghost faces are necessary to calculate the nodal force on each of the boundary vertices. 
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The update of the ghost vertex position relies on the boundary vertices of the cylinder. Note 

the integral of the membrane area and energy doesn’t include the ghost faces. The protein 

binding on the cylinder membrane generates a local bulge (Fig 7A), similar to the binding 

to vesicles (Fig 1D), and we verified that the length of the cylinder doesn’t affect the 

energetics of the membrane, Fig S12C. 

VE Experimental surface densities We estimated the surface coverage of amphipathic 

helices on membranes for the ALPS experiments [16] and ENTH on cylinders [17] to 

ensure they were below 20%, consistent with the ENTH vesicle experiments [12]. These 

estimates are therefore only used to confirm this threshold is not passed, as additional 

membrane bending mechanisms can then play a role, and they are not used for any 

energetic calculations. For the tether experiments, the final lipid concentration is 2.5-4 μM, 

of which 1% are PI(4,5)P2, and the total ENTH concentration is 0.2-0.5 μM [17]. Assuming 

1:1 binding of ENTH to PI(4,5)P2 and a  of ~0.5-1 μM, the fraction of bound PI(4,5)P2 𝐾D

varies from ~20-50%, which produces a surface density of ~0.004-0.01 proteins/nm2, or a 

maximal surface coverage of ~12%. For the ALPS experiments, the final lipid 

concentration is 750 μM, and the total protein concentration is 0.75 μM [16]. With 

maximally 80% of proteins bound to the surface [16], the bound protein to lipid ratio is 

0.0008, and for the  34 nm vesicle (lipid area is ~0.7 nm2), the protein density on the 𝑅 =

surface is ~0.001 proteins/nm2. Assuming a larger footprint for ALPS, surface coverage is 

still < 4%.  
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