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Shear-Induced Migration of Confined Flexible Fibers†

Nan Xue,a Janine K. Nunes,a and Howard A. Stone∗a

We report an experimental study of the shear-induced migration of flexible fibers in suspensions
confined between two parallel plates. Non-Brownian fiber suspensions are placed and imaged in a
rheo-microscopy setup, where the top and the bottom plates counter-rotate and create a Couette
flow. Initially, the fibers are near the bottom plate due to sedimentation. Under shear, the fibers
move with the flow and migrate towards the center plane between the two walls. Statistical properties
of the fibers, such as the mean values of the positions, orientations, and end-to-end lengths of the
fibers, are used to characterize the behaviors of the fibers. A dimensionless parameter Λeff, which
compares the hydrodynamic shear stress and the fiber stiffness, is used to analyze the effective
flexibility of the fibers. The observations show that the fibers that are more likely to bend exhibit
faster migration. As Λeff increases (softer fibers and stronger shear stresses), the fibers tend to align
in the flow direction and the motions of the fibers transition from tumbling and rolling to bending.
The bending fibers drift away from the walls to the center plane. Further increasing Λeff leads to
more coiled fiber shapes, and the bending is more frequent and with larger magnitudes, which leads
to more rapid migration towards the center. Different behaviors of the fibers are quantified with
Λeff, and the structures and the dynamics of the fibers are correlated with the migration.

1 Introduction
The interactions between fibers and flows are ubiquitous and
essential in many biological processes in nature1. For exam-
ple, micro-organisms use their flagella for swimming2,3; diving
beavers use their hair to entrain air and keep warm4; in humans,
dense arrays of cilia pump fluids into lungs5. Fiber-flow interac-
tions are also widely utilized in applications, such as stretching
and breaking DNA molecules in a microfluidic channel6, design-
ing and controlling swimming robots via electrical forcing7, and
making soft materials by fiber entanglements8.

The dynamics of fibers are rich but complex: fibers roll, tumble,
bend, buckle, coil, entangle, and even break in flows1,6,8–22. For
a non-Brownian fiber that moves freely in a viscous shear flow, the
dynamics of the fibers are mainly governed by the competition be-
tween the hydrodynamic forcing and the fiber stiffness. As a scal-
ing argument, by comparing the viscous forcing and fiber bending
stiffness, we achieve a dimensionless parameter Λeff, which we
denote as the effective flexibility of the fibers in this article, i.e.,

Λeff =
64ηγ̇L4

πED4 , (1)

where η is the viscosity of the liquid, γ̇ is the shear rate of the flow,
L is the length of the fiber, D is the diameter of the fiber, and E is
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the Young’s modulus of the fiber. The expression of Λeff in Eq. (1)
is similar to the expressions in Refs. 1, 8, 9, 13, and 14, though
it is also usual to take the inverse of Λeff to demonstrate the ef-
fective stiffness of the fibers (the symbol is usually Seff). Equa-
tion (1) indicates that the fibers are more likely to bend when the
shear stress ηγ̇ is large, the aspect ratio of the fiber L/D is large,
and the Young’s modulus is small. We note that in this article,
the descriptions flexible fibers and bendable fibers indicate that the
fibers have a large aspect ratio, L/D À 1 and Λeff À 1.

The behavior of fibers in shear flows can be complex. To
analyze the behavior of a single fiber, geometric parameters of
the fibers, such as the end-to-end vector and radius of curva-
ture, are usually used as the signatures of the fiber dynam-
ics1,10,16,19,21,22. For example, the periodic dynamics of a fiber
can be resolved by tracking (the orientation or length of) the end-
to-end vector as a function of time16,19,21: a rolling fiber main-
tains the same orientation as well as the same end-to-end length;
for a tumbling fiber, the orientation of the fiber changes as a func-
tion of time, while the end-to-end length is constant; for flexible
fibers that bend in shear flows, both the orientations and end-to-
end lengths change in time. Further, an increase in shear rate
leads to effectively more deformed fibers and a decrease in the
radius of curvature of the fibers10,22.

The macroscopic rheology of fiber suspensions is another sig-
nature of the behavior of fibers in shear flows and is of inter-
est to many industrial applications23,24. The rheology of the
fiber suspensions is connected to the microscopic behaviors of
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the fibers25,26. Thus, controlling the microscopic behavior of the
fibers has the potential to design fiber suspensions with desired
rheological properties8.

In shear flows, the particles in non-colloidal and colloidal
suspensions tend to migrate due to non-linear effects, such as
viscoelasticity27–29, inertia30,31, particle-particle interactions32,
and wall effects33–45. For example, spherical particles mi-
grate and assemble patterns in viscoelastic liquid27–29, and poly-
mers migrate laterally towards the center in a microfluidic chan-
nel39–41,45. Note that chaotic flow can also lead to irreversibility
and particle migration46. Moreover, flexible structures make a
Stokes flow irreversible. For example, a deformable wall47 or
deformable particles34,36,37 can lead to the drifting of the parti-
cles away from the walls. Also, it has been suggested by numeri-
cal simulations that a non-Brownian flexible fiber in a shear flow
would migrate away from the wall15.

In applications, a typical scenario is that a suspension of non-
Brownian flexible fibers flows in a channel or pipe. Sometimes,
the length of the fibers is of the same order of magnitude as
the cross-sectional size (height, width, or radius) of the chan-
nel, though the diameter of the fibers is much smaller8,23. It
is our understanding that in a geometry where the fiber suspen-
sion is confined between the walls, the shear-induced migration
of non-Brownian fibers is not yet fully understood: the effects of
the flexibility of the fibers and the corresponding fiber dynamics
as part of cross-streamline migration have not yet been system-
atically quantified by experiments. In this article, we focus on
demonstrating the effect of fiber flexibility on the migration in a
confined geometry.

In this experimental study, we report the shear-induced migra-
tion of flexible fibers between two parallel plates. The fibers are
non-Brownian and are confined between two transparent plates
in a rheometer. Initially, the fibers are straight and are near the
bottom plate due to sedimentation. The two plates counter-rotate
and create a Couette flow (we note that the descriptions shear
flows and Couette flows are identical in this article). Under the
shear, we observe that the fibers migrate towards the center hori-
zontal plane between the plates.

In this article, we focus on experimentally quantifying the sta-
tistical behaviors of the flexible fibers by reporting the behaviors
(orientations, shapes, and dynamics) and the corresponding mi-
gration across streamlines. In Sec. 2, we describe the fiber fabrica-
tion in a microfluidic channel (Sec. 2.1) and the rheo-microscopy
setup for imaging the fibers (Sec. 2.2). In Sec. 3.1, by tracking
the velocities of the fibers, we demonstrate the migration of the
fibers towards the horizontal center plane; bending fibers migrate
faster than rolling and tumbling fibers. In Sec. 3.2, we show the
orientations and shapes of the fibers in Couette flows with differ-
ent magnitudes of shear rates. A dimensionless parameter Λeff
[Eq. (1)] is used to characterize the effective flexibility of the
fibers. Larger values of Λeff indicate larger viscous stresses and
softer and smaller diameter fibers. As a result, for sufficiently
small Λeff, the fibers are straight and effectively stiff. The fibers
mostly tumble and roll in the flow and tend to align perpendic-
ular to the flow direction. For an intermediate range of Λeff, the
fibers start to bend and tend to align in the flow direction. At

sufficiently large Λeff, the fibers bend continuously and have coil-
like shapes. Finally, in Sec. 3.3, we report the time scale of the
migration as a function of the effective fiber flexibility Λeff. A
larger Λeff indicates more frequent bending, larger deformations,
and more coiled shapes, and therefore leads to a faster migration
towards the center plane between the two walls.

2 Experimental Methods

2.1 Fabrication of fibers in a microfluidic channel

We used a standard microfluidic method to fabricate the fibers,
similar to previous studies8,48–53. The properties of the fibers,
such as the length L, diameter D, and Young’s modulus E, are
highly controllable and reproducible. We created a uniform cylin-
drical jet of oligomer by flow focusing in a microfluidic channel.
Ultraviolet (UV) light was shined periodically on the jet and trig-
gered the gelation of the oligomer. We then collected the cross-
linked fibers downstream at the end of the channel.

A sketch of the microfluidic device for the fiber fabrication
is shown in Fig 1(a). We fabricated the device using standard
soft lithography54. A channel made of polydimethylsiloxane
(PDMS, Dow Sylgard 184; Ellsworth Adhesives) was plasma-
bonded to a PDMS-coated glass slide using a Corona Surface
Treater (Electro-Technic Products). The main channel was 200 µm
in width and 135 µm in height. Oil solution [yellow in Fig. 1(a)]
and oligomer solution [blue in Fig. 1(a)] were pumped into
the the main channel from the respective inlets. As a conse-
quence, a uniform cylindrical jet of the oligomer was focused
in the main channel. The size of the jet was much smaller
than the height and width of the main channel, and the jet
was cylindrical due to the effect of surface tension8. The oil
solution was, by weight, 11% Span 80 (Sigma-Aldrich) in light
mineral oil (Sigma-Aldrich). The oligomer solution was, by
volume, 54% poly(ethylene glycol) diacrylate (PEG-DA, molecu-
lar weight M = 575 g/mol; Sigma-Aldrich), 38% de-ionized wa-
ter, and 8% 2-hydroxy-2-methylpropiophenone (photoinitiator;
Sigma-Aldrich). The volumetric flow rates of the oil solution
and the oligomer solution, Qoil and Qoligomer respectively, were
controlled by syringe pumps (Harvard Apparatus). The values of
Qoil and Qoligomer controlled the diameter of the cylindrical jet in
the main channel (and therefore the diameter of the fibers). We
aimed to fabricate fibers with two different diameters for compar-
ison in the experiments. In particular, we set Qoil = 0.6 ml/h and
Qoligomer = 0.1 (for larger diameter fibers) or 0.025 (for smaller
diameter fibers) ml/h.

The surfactant (Span 80) in the oil solution stabilized the jet of
the oligomer solution, which remained uniformly cylindrical for
several millimeters downstream in the main channel. A UV LED
(wavelength λ ≈ 365 nm, input current I = 1.3 A; Thorlabs) illu-
minated the cylindrical jet locally and triggered the gelation in
the oligomer solution. The light spot on the oligomer jet was ap-
proximately circular with a diameter DUV ≈ 2.3 mm, and the cor-
responding light intensity was approximately 0.03 E/(m2s), which
was measured in Ref. 52. The LED was turned periodically on for
20 ms and then off for 180 ms. Fibers were generated during the
triggered gelation and were then collected at the end of the mi-
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Fig. 1 Schematics of the experiments. (a) A sketch of the microfluidic setup for the fabrication of the fibers. Solutions of oil and oligomer entered
the microfluidic channel and formed a cylindrical jet of the oligomer. UV light shined on the cylindrical jet and triggered the gelation of the oligomer,
which resulted in cylindrical fibers that were collected downstream at the end of the channel. (b) A sketch of the rheo-microscopy setup for imaging
the dynamics of the fibers in Couette flows. A suspension of the fibers was deposited between two parallel transparent plates. Initially, the fibers were
near the bottom due to sedimentation. The two plates counter-rotated and created a Couette flow in the fiber suspension. The fibers were illuminated
by a white LED and were imaged by a high-speed camera whose field of view was 15 mm to the center of the rheometer. (c) Image of a suspension
of fibers with diameter D = 44.8 µm. (d) Image of a suspension of fibers with diameter D = 23.3 µm.

crofluidic channel. For cleaning, the fibers were washed five times
in 1 wt% Tween 80 aqueous solution (Sigma-Aldrich) and twice
in 0.1 wt% Tween 80 aqueous solution, and then were diluted and
suspended in PEG-DA for further experiments. More quantifica-
tion of the control parameters in this fabrication process can be
found in Ref. 52.

As a result, we achieved two sets of fiber suspensions: (1) Sus-
pensions of large diameter fibers with diameters D = 44.8±0.4 µm
and length L = 1.61±0.02 mm. The corresponding aspect ratio
L/D ≈ 36. The volume fraction of the fibers in the suspension
φ≈ 0.5 vol%. (2) Suspensions of small diameter fibers with diam-
eter D = 23.3±2.0 µm and length L = 1.61±0.05 mm. The corre-
sponding aspect ratio L/D ≈ 69 with volume fraction φ≈ 0.2 vol%.
All of the fibers were straight at rest; see Figs. 1(c,d). Note that
the fibers were formed in flow and the exposure time of the UV
light was shorter at the two ends of the fibers. As a consequence,
near the tips, the fibers were softer, and the shapes were usually
conical rather than uniformly cylindrical. The lengths of these
conical regions were small compared to the total length of the
fiber. Therefore, we estimated that the effect of the conical tips
on the overall fiber dynamics was negligible.

One of the advantages of this fabrication method was that the
produced fibers were relatively soft. The Young’s modulus of the
fibers E ≈ 105 Pa8,53. As for the concentrations, both of the fiber
suspensions were semi-dilute, i.e., nDL2 ≈ 0.2 < 1, and nL3 ≈ 8
(large diameter fibers) or 12 (small diameter fibers) > 1, where
n = 4φ/(πD2L) is the number density of the fibers in the suspen-
sion20. Therefore, the interactions among the fibers and the cor-
responding rheological effects on the viscosities of the suspen-

sions were insignificant, and were not the focus of this study. The
viscosity of the liquid (without fibers) η= 55±3 mPas (there was
a slight amount of water in the liquid). We note that there were
a few larger diameter fibers observed in the suspensions of the
small diameter fibers, which was due to the possible clogging in
the microfluidic channel during the fabrication. These larger di-
ameter fibers did not significantly affect the observations in the
experiments, and their behaviors were not included in the mea-
surements and processing.

2.2 Imaging the dynamics of flexible fibers in a rheo-
microscope

To visualize the fiber dynamics in a Couette flow, a fiber suspen-
sion was placed in a rheo-microscopy setup; see Fig. 1(b) for a
sketch. The geometry of the rheometer (MCR 702; Anton Paar)
had two parallel transparent glass plates, which counter-rotated
and created a Couette flow between the plates. The parallel
plates were horizontal, with radius r = 21.5 mm. The counter-
rotating speeds at the top and the bottom plates were the same
(and the directions were opposite) in each experiment. To im-
age, a white LED light guide was positioned above the fiber sus-
pension. The light from the LED passed through a pinhole (to
enhance the contrast), illuminated the fibers, and was then cap-
tured by a high-speed camera (v7.3; Phantom). A set of optical
parts, such as a mirror, an objective (5×; Mitutoyo), and an exten-
sion tube, were mounted on the camera, but are not included in
the sketch in Fig. 1(b). The field of view of the captured images
was 3.43×2.57 mm (800×600 pixels, length × width), and the
distance between the center of the field of view and the center of
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the geometry l = 15 mm; see Fig. 1(b). Note that the refractive in-
dex of the fibers was very close to the ambient liquid. To enhance
the contrast of the imaging, we set the focal plane of the camera
horizontal (parallel to the plates) and slightly out-of-focus to the
fibers, i.e., either above or below the fiber suspensions. This out-
of-focus setting enhanced the contrast of the fibers but did not
cause significant errors in the measurements of the fiber veloci-
ties; see more demonstrations and discussion in Fig. S1 in the ESI.
The depth of field of the imaging was larger than the gap size d.
Therefore, all of the fibers between the parallel plates in the field
of view were captured.

Typical images of the large and small diameter fibers are
shown, respectively, in Figs. 1(c,d). The images are the two-
dimensional projections (in the horizontal plane) of the actual
three-dimensional shapes of the fibers. We note that most of the
fiber shapes could be imaged in the horizontal plane due to the
confinement by the two walls. Initially, the fibers were straight in
elastic equilibrium and oriented randomly. We aligned the setup
for imaging so that the length (horizontal direction) in the field of
view was in the velocity direction of the shear flow. Correspond-
ingly, the width of the field of view was in the direction towards
the center of the geometry. Gravity is orthogonal to the plane of
the field of view as well as the two parallel plates. The direction
of gravity is denoted as the vertical direction in this article. When
the experiments started, the parallel plates counter-rotated and
within several milliseconds accelerated to the desired speed. In
the field of view, the bottom plate moved from the left to the right
and the top plate moved from the right to the left.

In most of the experiments presented in this work, the gap size
between the parallel plates d = 0.5 mm (except two experiments
with d = 1.5 mm for comparison). Note that d/L ≈ 0.3 < 1. The
fibers were confined between the two parallel walls, which is one
of the main features of this work. The effective Reynolds number
in the rheometer may be estimated as55

Reeff =
ργ̇maxd3

2ηr
, (2)

where γ̇max was the shear rate at the edge of the parallel plate
(where the shear rate was the maximum). Substituting the char-
acteristic parameters in the experiments (Table S1 in the ESI),
ρ = 1.12×103 kg/m3, γ̇max = 150 s−1, d = 0.5 mm, η = 55 mPa s,
and r = 21.5 mm, the effective Reynolds number Reeff ≈ 0.01 ¿ 1.
Therefore, inertial effects in the experiments were negligible.

The density of the fibers was very close to but slightly larger
than that of the ambient liquid. The density difference ∆ρ/ρ < 0.01
and consequently sedimentation of the fibers occurred on a time
scale of tens of minutes. Specifically, for the gap size d = 0.5 mm,
it took the large diameter fibers approximately 15 minutes and
the small diameter fibers approximately 30 minutes to sediment
to near the bottom plate. In the experiments, we used the sed-
imentation of the fibers to achieve a reproducible initial condi-
tion, where the fibers were approximately on the same horizontal
plane at the bottom; see the sketch in Fig. 1(b). In particular,
we waited for a long time (more than 15 minutes for the large
diameter fibers and 45 minutes for the small diameter fibers; see

a summary of the experimental conditions in Table S1 in the ESI)
until most of the fibers sank to the bottom plate.

When the experiments started, the parallel plates applied a
shear stress in the suspension and the fibers detached from the
bottom plate and moved in the suspension. Usually, the effect
of buoyancy was negligible in the shear flow since the migra-
tion speed of the fibers was much higher than the sedimentation
speed. However, when the shear rate in the suspension was rela-
tively low, buoyancy might affect the fiber migration. Also, with
a low shear rate, some fibers might remain adhered to the plates,
which produced noise in the recorded movies but could be sub-
tracted in the image processing. Both buoyancy effects and the
adhered fibers will be discussed further in Sec. 3.

In the experiments, we mainly changed the local shear rate γ̇

(in the field of view) to tune the effective fiber flexibility Λeff. A
summary of the conditions of the experiments performed is pro-
vided in Table S1 in the ESI. For most of the experiments, we
recorded the dynamics of the fiber for long periods, from the di-
mensionless time γ̇t = 0 to at least 8000, when the migration was
sufficiently developed. The corresponding representative exam-
ples of the movies are labelled Movies 1–30 in the ESI. Note that
we applied a standard background subtraction process to enhance
the image quality, i.e., we subtracted each image from the average
intensity of the image sequence and then rescaled the subtracted
images. In each experiment, not all of the fiber behaviors were
identical. The reasons for the different behaviors of the fibers in
the same Couette flow include (1) the shapes of the fibers at rest
were not identical, e.g., the length of the fibers varied slightly by
2%, (2) the initial conditions of the fibers were not identical, e.g.,
the fibers oriented randomly, which led to different fiber dynam-
ics even in the same Couette flow, as suggested by Ref. 21, and (3)
the fibers were not homogeneously distributed in the suspension,
potentially causing some interactions between the fibers. Since
a range of fiber dynamics was observed in a single experiment,
rather than tracking the behavior of a single fiber, we focused on
revealing the statistical behaviors of the fibers (tens or hundreds
of fibers in each experiment) as a function of the effective fiber
flexibility Λeff. Usually, hundreds of fiber dynamics were captured
in each experiment; see the data points in Figs. S6–S20 in the ESI.

In particular, we were interested in measuring the fiber veloc-
ities, which indicated the vertical positions of the fibers in the
gap, orientations, and end-to-end lengths of the fibers. In the
shear flow, fibers entered and exited the field of view and the ve-
locities of the fibers were mainly in the flow direction. For each
fiber, we recorded the period of time (i.e., the transit time) that
the center of the shape of the fiber stayed in the field of view and
correspondingly calculated the mean velocity of the fiber by di-
viding the length of the field of view (we took the distance equal
to zero if the fiber entered and exited from the same side) by the
recorded transit time. On the other hand, we measured the orien-
tations and end-to-end lengths of the fibers at (close to) the cen-
terline (perpendicular to the flow direction) of the field of view,
where the dynamics of the fibers were not changing significantly.
Further demonstrations and discussion of the measurements of
the orientations and end-to-end lengths are provided in Fig. S2
in the ESI. The results of the measurements are displayed and
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discussed in Sec. 3 and the ESI.

In each experiment, the angular rotation speed of the paral-
lel plates was constant. As a consequence, there was a gradient
of shear rate in the radial direction of the plate, i.e., the shear
rate increased linearly with the distance from the center of the
geometry. In particular, along the width of the field of view, i.e.,
perpendicular to the flow direction, the shear rate and the corre-
sponding velocities of the shear flow varied approximately by 17%
(of the mean value at the center of the field of view). To further
reduce the effect of the variation of the shear rate in the exper-
imental processing, we restricted the width of the field of view
where we measured the fibers. In particular, usually, we only
counted and measured the fibers that entered the field of view
from the middle (e.g., the middle region with a width of 200 pix-
els); see a summary of the restricted widths for the experimental
processing in Table S1 in the ESI. As for the radial gradient of the
flow velocities, we used the local flow velocities to normalize the
fiber velocities in the processing. Therefore, the radial variation
of the flow velocities did not affect the quantification of the fiber
velocities. However, we note that the radial gradient of the shear
rate and the circular streamlines might cause a radial migration
of the fibers. Still, this migration was generally not observed in
the experiments, except when the gap size was large, the shear
rate was high, and the time was long.

3 Experimental Results and Discussions

3.1 The migration of flexible fibers towards the center plane
between the two parallel plates

In this section we focus on demonstrating the shear-induced mi-
gration of the fibers towards the horizontal center plane. We
use the suspension of the large diameter fibers as an example,
as shown in Figs. 2(a,b). The local shear rate in the (center of
the) field of view γ̇= 105 s−1. The corresponding movies for the
experiments are Movies 7 and 8 in the ESI.

Initially, the fibers are near the bottom plate and oriented ran-
domly. At t = 0, a constant Couette flow is applied in the fiber
suspension. The two parallel plates counter-rotate and create a
uniform shear in the vertical direction; see the sketch in Fig. 2(c).
The magnitude of the flow velocity decreases near the middle be-
tween the two plates. Fibers move and follow the shear flow.
The mean velocity of a fiber, i.e., the velocity of the center of
mass, indicates the vertical position of the center of the fiber in
the suspension. Assuming that the mean velocity of the fiber is
identical to the flow velocity (in the uniform Couette flow) at the
center of the fiber, we can estimate the fiber position z accord-
ing to z/d = u/u0, where z is the vertical position of the center
of the fiber, u is the measured velocity of the fiber, and u0 = γ̇d
is twice the speed of the moving plate (the speed of the plate is
u0/2). Then, z/d = 1/2 indicates that the fiber is at the bottom
plate (where u = u0/2), and z/d = 0 indicates that the fiber is at
the center stagnation plane between the two plates. When the
center of the fiber is higher than the stagnation plane, the fiber
moves from the right in the field of view to the left; when the cen-
ter of the fiber is lower than the stagnation plane, the fiber moves
from the left to the right. The magnitude of the fiber velocity |u|

decreases when the fiber is closer to the middle plane.
The motions of the fibers at an early dimensionless time (γ̇t =

62.8) are indicated in Fig. 2(a); the dimensionless time is also the
total shear strain in the suspension. At an early time, the fibers
are close to the bottom plate and all the fibers move at nearly the
speed of the plate from the left in the field of view to the right.
The orientations of the fibers are also random.

However, at a late time (γ̇t = 8715), the behaviors of the fibers
are very different; see Fig. 2(b). The magnitudes of the velocities
of the fibers significantly decrease, which indicates that most of
the fibers are near the stagnation plane at the middle between
the parallel plates. Some fibers move from the right in the field
of view to the left, which indicates that these fibers are above the
stagnation plane. As for the orientations, most fibers near the
stagnation plane align in the flow direction. These fibers bend
and relax in the shear flow; see Movies 7 and 8 in the ESI. In
contrast, some fibers do not align in the flow direction and are
usually closer to the bottom plate (the speeds are higher). These
fibers roll and tumble without bending. The observations of the
fibers in Figs. 2(a,b) show that the fibers migrate from the bottom
to the center, and suggest that the bending fibers migrate faster
than the rolling and tumbling fibers.

The migration of the fibers towards the center is observed and
further quantified in statistical measurements. Figure 2(d) dis-
plays the normalized velocities of the fibers u/u0 as a function of
the normalized time γ̇t. The distribution of the normalized ve-
locities implies the distribution of the vertical positions z/d of the
fibers between the parallel plates. As a result, initially, the fibers
are near the bottom plate, where u/u0 = 1/2. In the shear flow,
the fibers drift normal to the plate and migrate towards the cen-
ter plane, and the mean of the distribution u/u0 decreases with
normalized time γ̇t. At late times (γ̇t& 3000), the mean of the dis-
tribution approaches the center plane where u/u0 = 0. In particu-
lar, most of the fibers are close to the center plane (|u|/u0 . 0.2),
i.e., the distribution of the fibers is not uniform in the vertical
direction and more fibers are near the center. Some fibers have
negative velocities (u/u0 < 0), thus these fibers are above the stag-
nation plane, which indicates that the fibers can move across the
center plane during the migration.

We note that several [two in Fig. 2(d)] fibers remain attached
to the bottom plate throughout the experiments. These fibers
move at the same speed as the bottom plate (u/u0 = 1/2) and ap-
pear periodically in the field of view while their shapes and orien-
tations remain unchanged. These adhered fibers are not the focus
of our experiments and are thus excluded from the processing. In
particular, in statistical processing (e.g., taking the average of the
fiber velocities) throughout this work, we neglect the information
of the fibers that are very close to the plates (|u|/u0 > 0.45) after
early times (γ̇t > 500). This treatment provides a robust cut-off
for the adhered fibers and does not miscount the detached fibers.
However, we note that all of the detached and the adhered fibers
are close to the bottom plate at early times, and thus, it is chal-
lenging to distinguish and reject the adhered fibers at such times.
Therefore, the information of the adhered fibers might still be in-
cluded in the early-time statistics, which leads to a minor error.
Note that the adhered fibers are only observed in the experiments
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Fig. 2 Migration of fibers in a Couette flow with shear rate γ̇= 105 s−1, fiber diameter D = 44.8 µm, and the corresponding effective fiber flexibility
Λeff = 2×103. (a) The motions of the fibers at an early time, γ̇t = 62.8. The arrows represent the velocities of the fibers. (b) The motions of the
fibers at a late time, γ̇t = 8715. (c) A schematic of the fiber motions in a Couette flow. (d) The normalized velocity of the fibers u/u0 as a function
of the normalized time (shear strain) γ̇t, where u0 = γ̇d is twice the speed of the moving plate. The circular data points show the measured velocities
of the fibers. The color bar shows the corresponding alignment angles of the fibers in the shear flow |θ|. The solid black line and black squares show
the average velocity of the fibers, while the gray shaded area is the standard deviation of the velocity distribution. The dashed orange line shows the
fitting curve of the velocity measurements using the equation u/u0 = 1

2 e−γ̇t/τ0 , where τ0 is a fitting parameter that represents a normalized time scale
for the migration. (e) The distribution of the normalized velocities of the fibers u/u0 as a function of the alignment angles of the fibers in the shear
flow |θ|. The color bar shows the normalized time (shear strain) in the shear flow.

with relatively low shear rate, while all the fibers detach under a
high shear.

We extract statistical results, e.g., the average of the fiber veloc-
ities, to further analyze the migration and the behaviors, e.g., the
orientations, of the fibers. Fibers with higher speeds |u| stay in the
field of view only for shorter periods and are also observed more
frequently since these fibers quickly move around in the rheome-
ter; in contrast, fibers with lower speeds |u| stay in the field of
view for much longer times. Therefore, to statistically represent
the behaviors of the fibers in the field of view, the properties of
the fibers are weighted by the transit time that the fibers are ob-
served. The weight function wi is the transit time that fiber i
stays in the field of view. Further, we calculate the mean value
of a certain property x (e.g., x can denote the normalized ve-
locities of the fibers, u/u0) by x̄ = ∑

i xiw′
i, where x̄ is the mean

value of the property, xi is the value of the property of fiber i, and

w′
i = wi /

∑
i wi is the normalized weight function for fiber i. The

corresponding standard deviation is
(∑

i w′
iσ

2
i

)1/2
, and the stan-

dard error is
(∑

i w′2
i σ

2
i

)1/2
, where σi = xi−x̄ is the deviation (from

the mean value) of fiber i.

To analyze the migration of the fibers, we calculate the mean
values of the normalized velocities of the fibers < u/u0 > as a
function of the dimensionless time γ̇t; see the solid black line
and black squares in Fig. 2(d). Note that each mean value [black
squares in Fig. 2(d)] represents the average value of the fiber ve-
locities in a sub-region of γ̇t in the experiments, e.g., 0≤ γ̇t < 200
for the first square. As a result, the mean value of the normal-
ized velocities typically decreases in time and approaches zero at
late times, which confirms the migration of the fibers towards the
stagnation plane in the shear flow. The migration is faster at early
times when fibers are near the bottom plate and is slower at late
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times when the fibers are near the center plane.
To further characterize the migration, we fit the migration re-

sults according to u/u0 = 1
2 e−γ̇t/τ0 , where τ0 represents the nor-

malized time scale for the migration. In the fitting, the velocity
of each fiber is weighted by wi, which is the transit time that the
fiber is in the field of view. In particular, τ0 ≈ 1.3×103 for the
experiment presented in this section, and the exponential decay
equation agrees well with the trend of migration in the experi-
mental measurements; see the dashed orange line in Fig. 2(d).
We will discuss the normalized time scale for the migration τ0 as
a function of the effective fiber flexibility Λeff in Sec. 3.3.

The migration of the fibers is associated with the detailed dy-
namics, e.g., the orientation of the fibers. For example, at late
times [γ̇t & 3000, in Fig. 2(d)], the fibers at the horizontal cen-
ter plane (u/u0 . 0.1) are mostly aligned in the velocity direction
[blue circles in Fig. 2(d)]. In contrast, the fibers that are not
aligned in the velocity direction still migrate towards the center
plane but are closer to the bottom plate. Note that the color bar
in Fig. 2(d) represents the alignment angle of the fibers in the
flow direction |θ|. |θ| = 0 indicates that the fiber is aligned in the
flow direction (the horizontal direction in the field of view), and
|θ| = 90 degrees indicates that the fiber is perpendicular to the
shear flow. There is no significant difference between a negative
value and a positive value of θ since the geometry is mainly sym-
metric.

The distribution of the orientations of the fibers is shown in
Fig. 2(e), where the color bar indicates the normalized time γ̇t.
Initially [black circles in Fig. 2(e)], the fibers are near the bottom
plate (u/u0 = 1/2) and oriented randomly (black circles distribute
approximately uniformly from |θ| = 0 to 90 degrees). At late times
[bright circles in Fig. 2(e)], most of the fibers are near the left
bottom corner (where u/u0 = 0 and |θ| = 0), which indicates that
the fibers mostly migrate toward the center and align in the flow
direction. Several fibers are not aligned in the flow direction and
are closer to the bottom plate. We note that for the results pre-
sented in this section, most of the fibers tend to align in the flow
direction (more precisely, the alignment of the fiber is dependent
on its initial condition and the effective fiber flexibility, which is
suggested in Ref. 21 and will be discussed further in Sec. 3.2).

Our imaging of the fibers is a two-dimensional projection in the
horizontal plane of the three-dimensional fiber shapes. According
to our observations (e.g., Movies 7 and 8 in the ESI), the fibers
tend to bend when aligned in the flow direction. In contrast, the
fibers tend to roll and tumble when they are perpendicular to the
flow direction. The bending fibers exhibit more out-of-plane mo-
tion (in the vertical direction, orthogonal to the plane of the field
of view), i.e., the length (projection) of the fiber in the orthogo-
nal direction changes significantly when bending21. Further, our
observation shows that the mean velocities of the fibers remain
constant when the fibers do not bend; in contrast, when the fibers
bend, the mean velocity rapidly changes in time, indicating that
the vertical positions of the fibers z change during the bending.
The bending deformations normal to the walls induce hydrody-
namic interaction between the walls and the fibers, which breaks
the symmetry of the system and leads to the irreversibility of the
flow15,44. On the other hand, potentially, a bending fiber might

make direct contact with the wall and bounce away from the wall,
which is the so-called pole-vault motion33,35,38,42,43. As a con-
sequence of the hydrodynamic interaction and the possible direct
contact with the wall, bending fibers drift away from the walls,
similar to the drifting of deformable droplets away from the walls
in shear flows34,36,37. A demonstration of the tracking of a single
bending fiber is in Fig. S3 and Movie 31 in the ESI. To summarize
the observations, more frequent and larger bending deformations
lead to faster migration away from the walls.

The strength of the shear flow determines the behaviors of the
fibers and thus influences the migration of the fibers. In Sec. 3.2,
we will further discuss the orientations and shapes of the fibers
with different effective fiber flexibilities Λeff. The correspond-
ing migration of the fibers with different Λeff will be discussed in
Sec. 3.3.

3.2 The orientations and shapes of the fibers

In this section, we focus on demonstrating the orientations and
shapes of the fibers under different shear stresses. To expand the
parameter space, we use both large diameter fibers (D = 44.8 µm)
and small diameter fibers (D = 23.3 µm), and tune the shear rate
γ̇ ≈ 1 to 2×103 s−1. The corresponding effective fiber flexibili-
ties Λeff ≈ 2×101 to 5×105 [by Eq. (1)]; see a summary of the
experiments and the corresponding conditions in Table S1 in the
ESI.

Snapshots of the fibers in Couette flows with different effective
fiber flexibilities Λeff are shown in Figs. 3(a-f), where all of the
snapshots are taken at the normalized time γ̇t ≈ 4000. As a result,
we can compare the behaviors of the fibers with different Λeff.
We identify mainly three different ranges of Λeff.

At a low effective fiber flexibility (Λeff . 2× 102), the shear
rate γ̇ is low, and the fibers behave like rigid objects in flow; see
Fig. 3(a) and the corresponding movies labelled Movies 1 and 2 in
the ESI. Many fibers are adhered to the plates since the adhesion
to the wall is comparable to the shear stress. The detached fibers
mostly roll and tumble following Jeffrey-like orbits56. The fibers
are mainly perpendicular to the shear flow, and the migration is
slow (on the scale of the dimensionless time, γ̇t).

For an intermediate range of the effective flexibility (2×102 .
Λeff . 2×104), the fibers exhibit some deformations and tend to
align in the flow direction; see Figs. 3(b-d) and the correspond-
ing Movies 5, 6, 11, 12, 17, and 18 in the ESI. The fibers bend
and then relax in the shear flow but remain straight most of the
time. Still, a small portion of the fibers are perpendicular to the
flow, where they roll and tumble in the shear flow. Overall, the
migration speed is moderate, and the mean positions of the fibers
are close to the horizontal center plane at late times (γ̇t ≈ 4000).

In the large effective flexibility range (Λeff & 2×104), the fibers
exhibit significant deformations; see Figs. 3(e,f) and the corre-
sponding Movies 21, 22, 25, and 26 in the ESI. The fibers bend
continuously and seldom relax to straight, which leads to a coiled
shape. The orientations and end-to-end vector of the fibers are
random due to the coiled shape. The migration of the fibers is fast
and the fibers are typically near the center plane within γ̇t ≈ 1000.
Moreover, all the fibers are closer to the middle plane due to the
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Fig. 3 The structure of the fibers at late times. The images are, respectively, large diameter fibers (D = 44.8 µm) in Couette flows with the shear rates
γ̇= (a) 1, (b) 21, and (c) 523 s−1, and small diameter fibers (D = 23.3 µm) with the shear rates γ̇= (d) 5, (e) 105, and (f) 2093 s−1. The snapshots
are taken at the normalized time γ̇t ≈ 4000; in order to achieve snapshots with a clean background and enough fibers in each field of view, the exact
normalized time of the snapshots are, respectively, γ̇t = (a) 4156, (b) 4084, (c) 3889, (d) 3982, (e) 3925, and (f) 3901. (g) The mean value of the
alignment angle of the fibers < |θ| > as a function of the effective fiber flexibility Λeff. (h) The mean value of the normalized end-to-end length of the
fibers < Lee/L > as a function of the effective fiber flexibility Λeff. The error bars in (g) and (h) represent the standard errors.

continuous bending of the fibers and the resulting drift away from
the walls; e.g., see the distributions of the normalized velocities
of the fibers u/u0 in Figs. S16 and S17 in the ESI.

Further, we process the statistical values of the fibers to charac-
terize the behaviors of the fibers in shear flows. In particular, we
are interested in the mean values of the alignment angle < |θ| >
and the normalized end-to-end length < Lee/L >, which are, re-

spectively, the signatures of the orientations and shapes of the
fibers. For comparison, we calculate the mean values of the mea-
surements from the normalized time γ̇t = 2000 to 4000 in each
experiment. The statistical results are displayed in Figs. 3(g,h),
as a function of the effective fiber flexibility Λeff. The results for
the large and small diameter fibers are similar.

In the low effective flexibility range (Λeff . 2×102), the mean
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value of the alignment angle is large, < |θ| >≈ 60 degrees, which
indicates that the fibers are mainly perpendicular to the shear
flow. In the intermediate effective flexibility range (2× 102 .
Λeff . 2×104), < |θ| > sharply decreases with Λeff until it reaches
a minimum at Λeff ≈ 4×103. At the minimum, < |θ| >≈ 10 degrees
and the fibers are mostly aligned in the flow direction. When
Λeff further increases, fibers bend more frequently and transition
from straight to coiled shapes. < |θ| > increases with Λeff until
< |θ| >≈ 45 degrees (the orientation is fully random) in the large
effective flexibility range (Λeff & 2×104). We note that after the
shear flow with large Λeff ceases, the fibers relax to their straight
shapes and orient randomly. Applying a high shear in the fiber
suspension is a reproducible protocol to achieve homogeneous
fiber suspensions (with respect to the fiber orientations).

As for the normalized end-to-end length of the fibers < Lee/L >,
the fibers are slightly curved (< Lee/L >≈ 1) in the low and in-
termediate effective flexibility ranges. When Λeff increases, the
fibers bend more frequently, and the shapes of the fibers are
coiled. As a result, < Lee/L > decreases with Λeff. Further,
< Lee/L >≈ 0.2 at Λeff ≈ 5× 105, which indicates that the fibers
are coiled and compact under high shear stresses.

The statistical results of < |θ| > and < Lee/L > characterize the
behaviors of the fibers with different flexibilities. We note that
both < |θ| > and < Lee/L > represent the mean values (therefore,
the averaged behaviors) of the fibers, and the distributions of the
values may be very broad. A comparison of the distributions of
|θ| and < Lee/L > as a function of Λeff is provided in Fig. S4 in
the ESI. The comparison shows distinct differences in the distri-
butions with different effective flexibilities.

3.3 The time scale for the migration of the flexible fibers

In this section, we focus on demonstrating the migration of the
flexible fibers with different effective fiber flexibilities. The de-
tailed conditions for the experiments are provided in Table S1 in
the ESI.

The migration of the large diameter fibers in Couette flows with
different shear rates γ̇ is shown in Fig. 4(a). The mean velocities
of the fibers < u/u0 > are presented as a function of the normal-
ized time γ̇t. The statistical results show that < u/u0 > decreases
with γ̇t and approaches zero at late times. Also, an increase in
the effective fiber flexibility Λeff leads to a faster fiber migration
towards the center plane. Note that the migration of the smaller
diameter fibers is similar to these results; see Fig. S5 in the ESI.

As discussed in Section 3.1, we use the exponential decay equa-
tion u/u0 = 1

2 e−γ̇t/τ0 to fit the positions of the fibers, where τ0 rep-
resents the normalized time scale for the migration of the fibers
and is a function of Λeff. The exponential decay equation de-
scribes the migration of the fibers well [the dashed colored lines
are close to their respective solid colored lines in Figs. 4(a) and S5
in the ESI], except in the experiments where the shear rate is low
and the effect of buoyancy matters [γ̇= 1 and 5 s−1 in Fig. 4(a)].
The fitted values of τ0 with the shear rates γ̇= 1 and 5 s−1 (in the
suspensions of large diameter fibers) are not considered in any
further analysis of τ0(Λeff).

By fitting the exponential decay equation, we estimate the nor-

malized time scale for fiber migration τ0 with different effective
flexibilities Λeff; see τ0(Λeff) in Fig. 4(b). The responses of the
large and small diameter fibers are similar. τ0 responds relatively
slowly to the variation of Λeff: τ0 decreases from approximately
2×103 to 4×102, which is a factor of 5, while Λeff increases from
approximately 1×102 to 1×106, which is a factor of O

(
104)

. A
power-law fit in Fig. 4(b) shows that τ0 ∝Λ−0.19±0.12

eff (with 95%
confidence bounds).

In Couette flows, the fibers that are more likely to bend mi-
grate faster towards the horizontal middle plane between the two
plates. The main reasons for the observed faster migration are:
(1) more bendable fibers, e.g., smaller diameter fibers and higher
shear stress, tend to align more in the flow direction and bend in
the shear flow21; (2) more frequent bending, with larger defor-
mations in the shear flow, leads to faster drifting away from the
walls. Note again that the bending deformation leads to the irre-
versibility of the flow and the drifting of the fibers, which is sim-
ilar to the drifting of deformable droplets in shear flows34,36,37;
and (3) the radius of curvature of the fiber decreases when the
shear stress increases22. As a consequence, the fibers that are
more likely to bend are more coiled, which decrease the effective
hydrodynamics ratios (effective aspect ratios) and lead to more
frequent tumbling, rolling, and bending behaviors (bending, tum-
bling, and rolling are coupled under a high shear). Note that (1),
(2), and (3), respectively, highlight the orientations, dynamics,
and shapes of the fibers in the shear flows.

Further, to demonstrate the effect of confinement from the
walls, we perform control experiments with the gap size d =
1.5 mm (three times the gap size that is mainly used in this
study). The resulting migration of the fibers with the large gap
size (d = 1.5 mm) is very similar to those with the gap size
d = 0.5 mm. For example, the corresponding normalized time
scales τ0 for d = 0.5 and 1.5 mm are almost identical; see the
blue circles, the yellow upward-pointing triangle, and the purple
downward-pointing triangle in Fig. 4(b). Also, we add 10 vol%
water in the fiber suspension to enhance the buoyancy, and no
significant difference in the fiber migration is observed. More
comparisons of the velocity distributions are in Fig. S20 in the
ESI.

As a result, in the limit that the fibers are confined between the
parallel plates (D ¿ d and L ≈ d), the gap size does not signifi-
cantly affect the dimensionless time scale for the migration. We
highlight that in our experiments, the fibers are affected by the
existence of both plates (i.e., the top plate as well as the bottom
plate). The bending of the fibers leads to hydrodynamic inter-
actions between both plates, but the drift away from the closer
plate is usually stronger, which leads to the migration towards
the center. Therefore, in this confined geometry, the migration of
the fibers is not significantly affected by the gap size. The gap size
d is expected to strongly influence the fiber migration in the limit
that d À L. The threshold and the transition of the confinement
of the geometry and the corresponding fiber migration are very
interesting prospects for further investigations.
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Fig. 4 The normalized time scale for the shear-induced migration of the fibers. (a) The normalized mean velocity of the large diameter fibers
(D = 44.8 µm) < u/u0 > as a function of the normalized time (shear strain) γ̇t. The shear rate of the flow γ̇ = 1 (circles), 5 (squares), 21 (upward-
pointing triangles), 105 (down-pointing triangles), 209 (diamonds), 523 (plus signs), and 1047 (asterisks) s−1, respectively. The corresponding effective
flexibility Λeff = 2×101, 1×102, 4×102, 2×103, 4×103, 1×104, and 2×104, respectively. The dashed colored lines show the corresponding fit using
the exponential decay equation u/u0 = 1

2 e−γ̇t/τ0 , where τ0 represents the normalized time scale for the shear-induced migration of the fibers. (b) The
fitted normalized time scale for the migration τ0 as a function of the effective fiber flexibility Λeff. The experimental conditions are, respectively,
D = 44.8 µm and d = 0.5 mm (circles), D = 23.3 µm and d = 0.5 mm (squares), and D = 44.8 µm and d = 1.5 mm (triangles). The error bars represent
the fitted τ0 with 95% confidence bounds. The dashed line shows the power-law fitting of τ0(Λeff), and the gray shaded region represents τ0 ∝Λ−0.19

eff
with 95% confidence bounds. The two snapshots are, respectively, from Figs. 3(a) and 3(f) (cropped).

4 Conclusion
In this experimental study, we reported the shear-induced mi-
gration of the suspensions of flexible fibers between two paral-
lel plates. We produced the fiber suspensions using a standard
microfluidic method, which controlled the lengths, diameters,
and elasticities of the fabricated fibers. We then used a rheo-
microscopy setup to image the dynamics and the migration of the
fibers in Couette flows. The fibers were non-Brownian and were
confined between the two plates. We focused on demonstrating
the statistical behaviors of the fibers, for example, the mean val-
ues of the positions, alignment angles, and end-to-end lengths
of the fibers. The dimensionless parameter Λeff [Eq. (1)], which
represents the competition between the shear stress and bending
modulus, was used to characterize the flexibilities of the fibers.
As a result, in the shear flow, the fibers, which were initially at
the bottom plate, migrated towards the horizontal center plane
between the two counter-rotating parallel walls. The fibers that
are more likely to bend migrated faster. For sufficiently small Λeff,
the fibers were rigid, mainly tumbled and rolled in the shear flow,
and the migration speed was low. For an intermediate range of
Λeff, the fibers tended to align in the flow direction and bend,
which led to a moderate migration speed. For sufficiently large
Λeff, the fibers bent continuously, exhibited coil-like shapes, and
the migration speed was fast. Finally, an empirical exponential
decay equation and a corresponding normalized time scale for the
migration were presented, which described well the migration of
the fibers under different shear stresses.

This work highlights the effect of flexibility on the shear-
induced migration with the confinement from the two walls. Fur-

ther, this work correlates the migration with the dynamics and
the structures of the fibers. We find the following directions con-
structive and worth considering for further investigations:

(1) Theoretical modeling and numerical computations on the
flexible fiber dynamics. We note that the conditions in the ex-
periments are usually not ideal. For example, typically fibers
are not perfectly straight at rest, not uniform at the two ends,
not perfectly placed and oriented as the initial condition, or not
ideally dilute and might induce complex fiber-fiber interactions.
Also, in the experiments, it is challenging to reconstruct the three-
dimensional shapes and dynamics of the fibers, and the imaging
is usually a two-dimensional projection of the fibers in the hor-
izontal plane. Numerical computations will help to understand
the three-dimensional dynamics of the fibers. Further, it would
be helpful to analyze the interaction between the fibers and the
walls and estimate the magnitude of the drifting force away from
the walls with different effective fiber flexibilities.

(2) Tracking the dynamics of the fibers. In this study, we fo-
cus on the statistical behaviors of the fibers. We note that track-
ing the dynamics of individual fibers would provide new infor-
mation, for example, the frequencies of the fiber bending, the
trajectories of the end-to-end vectors of the fibers, and the local
curvatures along the fibers as a function of time. Tracking the
fibers would be beneficial to characterize the fiber dynamics and
even the fiber-fiber interactions in Couette flows with different
shear rates. The observations in the experiments show that the
fibers tend to bend simultaneously. Though the periods of mo-
tions of the bending fibers are similar (the fibers might bend si-
multaneously since they have similar frequencies), we expect that
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the hydrodynamic interactions of the fibers might also be a pos-
sible mechanism, e.g., a bending fiber triggers the perturbation
of another neighboring fiber, which leads to simultaneous bend-
ing, and remains as a potential topic for further investigations.
Whether the bending fibers are in direct contact with the walls is
another interesting question. Moreover, the comparisons of the
dynamics and the migration among flexible fibers, rigid rods, and
spherical particles would be constructive.

(3) The rheological properties of the fiber suspensions. In this
work, we focus on the microscopic behavior of the fibers. The
macroscopic rheological properties of the fiber suspensions un-
der different shear stresses are another interesting aspect for fu-
ture investigations (especially for more concentrated fiber sus-
pensions). In the shear flow, the fibers migrate towards the cen-
ter and increase the local concentration near the middle plane.
Therefore, at late times, we expect that there will be more fiber-
fiber interactions near the middle plane, and the fibers might even
entangle with each other and create gel-like structures8. Charac-
terizing a typical time scale when the fibers migrate and entangle
would be of practical interests. Further correlating the macro-
scopic rheological properties of the fiber suspension with the mi-
croscopic dynamics of the fibers would be fundamental and even
constructive for building guidelines for fiber-based soft materials.
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