
The effect of grain shape and material on the nonlocal 
rheology of dense granular flows

Journal: Soft Matter

Manuscript ID SM-ART-08-2021-001237.R1

Article Type: Paper

Date Submitted by the 
Author: 04-Jan-2022

Complete List of Authors: Fazelpour, Farnaz; North Carolina State University, Physics
Tang, Zhu; North Carolina State University College of Sciences, Physics
Daniels, Karen; North Carolina State University, Department of Physics

 

Soft Matter



The effect of grain shape and material on the nonlocal
rheology of dense granular flows†

Farnaz Fazelpour,∗a Zhu Tang,∗a and Karen E. Danielsa

Nonlocal rheologies allow for the modeling of granular flows from the creeping to intermediate flow
regimes, using a small number of parameters. In this paper, we report on experiments testing how
particle properties affect the model parameters used in the Kamrin & Koval cooperative nonlocal
model, using particles of three different shapes (circles, ellipses, and pentagons) and three different
materials, including one which allows for the measurement of stresses via photoelasticity. Our exper-
iments are performed on a quasi-2D annular shear cell with a rotating inner wall and a fixed outer
wall. Each type of particle is found to exhibit flows which are well-fit by nonlocal rheology, with
each particle having a distinct triad of the local, nonlocal, and frictional parameters. While the local
parameter b is always approximately unity, the nonlocal parameter A depends sensitively on both
the particle shape and material. The critical stress ratio µs, above which Coulomb failure occurs,
varies for particles with the same material but different shape, indicating that geometric friction can
dominate over material friction.

1 Introduction
While idealized studies of granular materials most commonly use
circular-shaped particles, these do not correspond to the majority
of granular materials present in industrial and geophysical appli-
cations. In this paper, we examine the effect of particle properties
on the rheology of granular flows, both experimentally and by
fitting to a nonlocal model which has previously been validated
only for circular particles1–5. Similar to what has been done for
local rheological modeling of faster flows6–10, it is necessary to
determine which aspects of the constitutive laws are affected by
various particle properties.

The study of the rheology of granular materials is based on
quantifying the relationship between the stress applied to the ma-
terial, and the resulting flow. We use the dimensionless inertial
number I to describe the speed of the flow11:

I ≡ γ̇d√
P/ρ

. (1)

This represents the ratio between a microscopic time for rear-
rangements T = d/

√
P/ρ (under pressure P pushing a parti-

cle of diameter d and density ρ into a hole) and a macroscopic
timescale 1/γ̇, which is the mean deformation time under shear
rate γ̇. Large values of I correspond to rapid flow, while small
values are slow, even creeping. In this paper, we focus on 2D
experiments in the regime 10−7 < I < 10−4, where it is possible
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to both individually-track particles and to measure the bound-
ary stresses5; for some particles, we also obtain stress measure-
ment within the bulk, through the use of photoelasticity12,13. The
loading stress is characterized by the nondimensional ratio be-
tween the shear stress τ and the pressure P:

µ ≡ τ

P
. (2)

In a local rheology, there is no flow at locations where µ is less
than a yield criterion µs. However, for slow flows, it has been
observed that this criterion fails to explain a number of experi-
mental results such as a transition from solid-like to liquid-like
behavior14, shear or vibration in one region fluidizing a distant
region15,16, or the dependence of the shear band width on ge-
ometry and grain size17,18. The recent development of nonlocal
rheologies1,2,4,19–21 aims to provide predictive models which cor-
rectly account for the observation of flows where µ < µs. We have
previously observed that two of these nonlocal models (the coop-
erative model by Kamrin and Koval 1 and the gradient model by
Bouzid et al. 19) are able to provide this predictive power in a 2D
granular rheometer5 over a variety of packing fractions and flow
rates.

In this paper, we directly test the dependence of the nonlocal
rheological parameters on particle stiffness and particle shape.
For our experiments, we compare particles of three different
shapes (circles, ellipses, pentagons) and three different elastic
moduli. The choice of these three shapes allows us to test for the
effects of particle anisotropy (circles vs. ellipses) and particle an-
gularity (circles vs. pentagons). Angular particles are particularly
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interesting because there are two types of contacts: side-side and
side-vertex (vertex-vertex contacts are rare). We identify that
having angular vs. rounded particle shape strongly modifies the
yield criterion, while particle shape and modulus jointly control
the length scale of the nonlocal effects.

1.1 The cooperative model

The Kamrin & Koval cooperative model is a nonlocal rheological
model1,2,4 which has been developed to overcome the shortcom-
ings of local rheology mentioned above. It is a phenomenological
model that extends a local Bagnold-like granular flow rule to in-
clude additional, nonlocal effects. This model has been tested for
steady state flows, using both experiments (2D systems)5 and
simulations (2D and 3D systems)1,2,22. In this paper, we use
a 2D geometry, allowing us to perform both particle-tracking and
local stress measurements: pressure P(r) and shear stress τ(r).

In a local rheology, the inertial number I and the stress ratio
µ have a linear relationship wherever µ is larger than the yield
criterion µs

23. Thus, the local rheology I(µ) relationship is de-
scribed using the Heaviside function H:

I(µ) =
(µ−µs)H(µ−µs)

b
(3)

where there is no flow for µ < µs. The parameter b is a constant
which models the steepness of the I(µ) relationship. The cooper-
ative model starts from the Bagnold flow rule specifying that the
shear stress and shear rate have a linear relationship. Motivated
by this relationship, the fluidity is defined as:

g≡ γ̇

µ
(4)

where the stress ratio µ is defined in Eq. 2 and g has the same
units as the shear rate γ̇ (s−1).

The fluidity g arises from two contributions. One is from lo-
cal rheology, denoted gloc, and takes into account only local vari-
ables: γ̇ in Eq. 4 is calculated from Eq. 1 and 3. By substitution,
the local fluidity is given by:

gloc(µ,P) =
(µ−µs)H(µ−µs)

bµT
. (5)

The total fluidity g arises from nonlocal effects diffusing from
other regions. This is modeled by a Laplacian term, scaled by a
length scale ξ which sets the length scale of this influence:

∇
2g =

1
ξ 2 (g−gloc). (6)

The length scale ξ is measured in units of the particle diameter d,
and takes the form:

ξ

d
= A

√
1

|µ−µs|
. (7)

where A is a constant depending on the particle properties, and
controls the spatial extent of the nonlocal effects. The length scale
ξ (µ) is symmetric around µ = µs, and the system is most sensitive
to small perturbations near the yield ratio µs.

r

x

y

Fig. 1 Top: Top view of annular Couette experiment filled with flat
pentagonal particles. The inner wheel rotates at a constant speed
v(Ri), the coordinate r measures the distance from the center of inner
wheel, and gravity acts into the page. Bottom: Photos of the three
stiffest acrylic (Ac) shapes: ellipses, circles, and pentagons, along with
the circular/elliptical particles (Vi3), and the softest circular photoelastic
particles (Vi4). The central holes allow for easier particle-tracking. Each
of the acrylic particles can be circumscribed by a square of side length
0.7 cm (small particles) or 1.0 cm (large particles).

Because we are working in a 2D system, we chose for simplicity
to decompose the stress tensor into the (scalar) shear and normal
stresses. For the tensorial form of this nonlocal model, see papers
by Kamrin and coworkers.1–3

2 Method
2.1 Apparatus
Our experiments are performed on a quasi-2D annular shear cell
with a rotating inner wall (Ri = 15cm) and a fixed outer wall
(Ro = 28cm). A motor (Parker Compumotor BE231FJ-NLCN with
a PV90FB 50:1 gearbox) is attached to the inner wall, providing
a constant rotational speed. We measure the inner wall shear
stress τ(Ri) via a torque sensor (Cooper Instruments & Systems)
attached to the central shaft. As shown in Fig. 1, the station-
ary outer wall incorporates 52 laser-cut leaf springs. Each of the
springs linearly deforms (both radially and tangentially) under
stress from the granular material. Via calibrated image process-
ing24, we obtain quantitative measurements of shear (τ) and nor-
mal (P) stresses at each of the 52 spring tips. All values below
are reported as spatial and temporal averages, and all experi-
ments were performed by rotating the inner wall with a speed
v = 1.1 cm/s. We collect all data after several full rotations of the
inner wall, to ensure that we have achieved steady state.

We use three types of particles in these experiments. The parti-
cles for testing shape-dependence are cut from 3 mm thick acrylic
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Fig. 2 Sample image of Vi4 particles under shear. Left: image of parti-
cles illuminated by non-polarized (red) light, for particle-tracking. Right:
image of particles illuminated by polarized (green) light, for measuring
the internal forces via photoelastimetry. See the Supplementary Infor-
mation for a video of the dynamics of such force chains under white
light.

(bulk modulus 3 GPa and density ρ = 1.14 g/cm3) ; these are re-
ferred to as Ac in the figure legends. As shown in Fig. 1, the par-
ticles are laser-cut with holes at their centers to aid in particle-
tracking. The dimensions of the bidisperse particles were se-
lected to have a size ratio of

√
2 to suppress both crystallization

and segregation and thereby achieve steady state flows without
developing size-gradients or patchy domains. The circles have di-
ameters dL = 1.0 cm and dS = 0.7 cm. The ellipses have (minor,
major) axes (0.81 cm, 1.21 cm) and (0.57 cm, 0.85 cm), with
d defined as the geometric mean of the major and minor axes,
selected to match the same values as the circles. The pentagons
have side lengths of 0.65 cm (large) and 0.46 cm (small), so that
for d taken to be the distance from one side to the opposite vertex
these also match the same values as for the circles. In all cases,
the ratio of large to small particle is 1:2 by number, corresponding
to approximately equal areas for the two components.

For testing the effects of material stiffness, we added two ad-
ditional particle types. First, the particles used in Tang et al. 5 :
these are a bidisperse mixture of circular (60%) and elliptical
(40%) disks cut from 3 mm thick PhotoStress Plus PS-3 polymer
from the Vishay Measurements Group (bulk modulus 0.21 GPa
and density ρ = 1.15 g/cm3), these are referred to as Vi3. Sec-
ond, the particles used in Owens and Daniels 25,26 : these are a
bidisperse mixture of dS = 0.9 cm and dL = 1.1 cm circles in equal
concentrations, cut from 6.35 mm thick Vishay PhotoStress mate-
rial PSM-4 (bulk modulus E = 4 MPa and density ρ = 1.06 g/cm3),
these are referred to as Vi4. Because Vi4 is made of a soft pho-
toelastic material, it allows for the visualization of internal forces,
as shown in Fig. 2. By solving an inverse problem on the fringe
pattern within each disk, we measure the vector force at each
contact, resulting in knowing the shear (τ(r)) and normal (P(r))
stresses throughout the material. Details about this process are
available in12,13,27–29. Unlike for the other particles (Ac and Vi3)
where we measure τ and P only at the boundaries (torque sensor
and leaf spring calibration), the Vi4 photoelastic particles provide
a more quantitative validation of the nonlocal rheology.

For all experiments, the outer wall and a single layer of parti-
cles rest upon a glass substrate; the effects due to basal friction
between the particles and the substrate are described in §2.3 be-
low. The Vi4 particles are not confined by an upper surface, the
Ac and Vi3 are, but in all cases and they primarily form persistent
contacts with their neighbors in the plane.

Importantly, different particle shapes have dramatically-
different packing densities. Random close packing (RCP) for
discs30, ellipses31, and pentagons32 are 0.84, 0.895, and 0.80,
respectively. In order to conduct experiments at approximately
constant pressure, we mapped out the relationship between pack-
ing fraction φ and the measured pressure P for runs at consistent
rotation rate. This data is shown in Fig. 3; for our rheological
measurements, we selected a value of φ to achieve one of two val-
ues of pressure: P= 7.5 kPa and P= 10.0 kPa. Experiments at the
larger pressure probe both the local and nonlocal flow regimes,
while experiments at the lower pressure are nonlocal throughout.
Since the Vi4 particles are several orders of magnitude softer than
the other particles, we performed their experiments at a lower
pressure (P = 0.58 kPa). In Fig. 3, we plot the pressure as a func-
tion of packing fraction to illustrate the choice of φ . The inset
shows the same data rescaled by the bulk modulus of each parti-
cle set, to aid in comparing across several orders of magnitude.
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Fig. 3 Experimentally-determined relationship between the packing frac-
tion φ and the pressure P for different particle types, all sheared at an
inner wall rotation rate of v(Ri) = 1.1 cm/s. In the legend, Vi3 represents
particles cut from Vishay PS-3 (data from Tang et al. 5 ), Vi4 represents
particles cut from Vishay PSM-4, and Ac represents particles cut from
acrylic. The pressure is measured either by taking the time-average of
the normal stress measured for all of the 52 spring tips (Ac and Vi3 par-
ticles), or by taking the time- and particle-average of the normal stress
measured from photoelasticity (Vi4 particles). The error bars represent
standard error. The inset shows the relationship between the ratio of
pressure to bulk modulus of each particle set and packing fraction φ .

A summary of all experimental runs is provided in Table 1, in-
cluding measurements of the shear stress at the inner wall. Note
that we observe that runs with a higher packing fraction φ (also
higher pressure P) have a higher inner wall shear stress S0. Each
experiment’s microscopic timescale T is calculated from the asso-
ciated pressure measurement P, together with particle properties;
all are approximately 3 msec, except for Vi4 which has a timescale
several times larger due to the lower pressure.
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Table 1 Summary of the datasets. The inner wall rotation speed v(Ri) is set by the motor controller. The number of particles is set by hand to
provide the target pressure. The microscopic timescale T is calculated based on measured P and the known values of d and ρ. The Vi3 column
contains data from Tang et al. 5 .

material acrylic (Ac) acrylic (Ac) acrylic (Ac) acrylic (Ac) acrylic (Ac) acrylic (Ac) Vishay PS-3 (Vi3) Vishay PSM-4 (Vi4)

shape ellipses ellipses circles circles pentagons pentagons circles/ellipses circles

v(Ri) [d/s] 1.3 1.3 1.3 1.3 1.3 1.3 2 1.1

# of particles 3242 3210 2920 2895 3438 3426 5610 1724

P [kPa] 10±0.2 7.5±0.1 10±0.2 7.5±0.1 10±0.2 7.5±0.1 7.5±0.4 0.58±0.02

S0 [kPa] 3.5 ±0.6 1.4±0.3 2.9 ±0.5 1.6±0.3 2.2 ±0.4 1.5 ±0.3 0.8±0.2 0.18±0.04

T [msec] 2.9±0.1 3.3±0.1 2.9 ±0.1 3.3 ±0.1 2.9 ±0.1 3.3 ±0.1 2.2±0.1 13.5±0.1

2.2 Measuring speed and shear rate

We locate the centroids of the particles using Matlab’s Hough
transform33, and create space-time trajectories using the Blair-
Dufresne particle-tracking algorithm34. The tangential speed pro-
file v(r) is calculated within concentric rings of width 0.5 d. To
calculate the shear rate, we use Fourier-derivatives as described
in Tang et al. 5 . Note that, due to the annular geometry, the shear
rate is given by γ̇(r) = 1

2

(
∂v
∂ r −

v
r

)
. These measurements are pre-

sented in Fig. 4, analyzed from 104 frames for each dataset. We
observe that for circular and elliptical particles, the runs at lower
P have smaller values of v and γ̇ when compared at the same dis-
tance from the inner wall. Pentagonal particles do not exhibit this
dependence.

2.3 Estimating basal friction effects

As previously reported in Tang et al. 5 , it is necessary to account
for the basal friction in order to correctly measure the local shear
stress on each particle. For those particles for which we do not
have photoelastic force measurements (Ac and Vi3), we assume
that the stress from the basal friction is proportional to the local
packing fraction φ . We calculate φ(r) for each particle type us-
ing the coarse-graining method of Weinhart et al. 35 , based on the
tracked locations of all particles. For the Lucy function used for
coarse-graining, we find that a width parameter of w= 1.3 is suffi-
cient to remove major fluctuations without being over-smoothed.
As shown in Fig. 5, the data can be approximated by an exponen-
tial with a decay parameter r0. We fit each curve to the equation

φ(r) = φ0

[
1− e−∆r/r0

]
+φ(Ri) (8)

where the parameter φ0 ≡ φ(Ro)−φ(Ri) is the difference in pack-
ing fraction between the outer wall and the inner wall and
∆r = r−Ri is the distance from the inner wall. We observe that
mixtures containing elliptical particles pack the most densely, fol-
lowed by circular particles and then pentagons, as also observed
in Fig. 3.

Using Eq. 8, we write a phenomenological model for the shear
stress:

τ(r) = S0

(
Ri

r

)2
+ τ0

[
1− e−∆r/r0

]
(9)

This model consists of two parts. The first term arises from the
annular geometry, with the parameter S0 corresponding to the
torque measured at the central shaft. The second term arises from
the forces due to basal friction, with the parameter r0 taken from
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Fig. 4 (a) Tangential speed profile v(r) and (b) shear rate γ̇(r), measured
using particle tracking and plotted as a function of distance ∆r = r−Ri
from inner wall . Vi3 data is reproduced from Tang et al. 5 . Error bars
are the standard error.
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Table 2 Fit values of local and nonlocal parameters for different particle
shapes and materials, with measured confidence intervals. Each column
(single particle type) is valid for both measured pressures.

acrylic acrylic acrylic Vishay PS-3 Vishay PSM-4
ellipses circles pentagons circles/ellipses circles

µs 0.24±0.02 0.24±0.02 0.17±0.01 0.26±0.01 0.25±0.01

b 1.1±0.5 1.1±0.5 1.1±0.5 1.1±0.5 1.1±0.5

A 0.28±0.01 0.30±0.02 0.13±0.02 0.41±0.02 0.22±0.03

the fits to the packing fraction curves shown in Fig. 5.

For the Ac and Vi3 particles, the parameter τ0 is calculated

from τ(Ro)−S0

(
Ri
r

)2
with τ(Ro) measured from the leaf springs.

This is a semi-empirical result that is interpolated between the
inner and outer walls (symbols in Fig. 6). We measure the full
shear stress profiles using Eq. 9 (dashed-lines in Fig. 6), and the
pressure P(r) is assumed to be constant throughout the material
P = 〈P(r)〉. For both the high and low pressure datasets taken for
the same particle shape, we use the same set of (r0,τ0) parameters
since the difference in particle number is only about 1%. These
values are given in the table within Fig. 5.

For the Vi4 particles, we perform photoelastic stress measure-
ments on 2000 frames (taken at 0.2 Hz, see sample image in
Fig. 2) and time-average the coarse-grained stress field calculated
from the vector contact forces. This provides the shear stress τ(r)
and pressure P(r) throughout the material, as shown in Fig. 6.
For this dataset, the parameters in Eq. 9 can be found with S0 and
τ0 obtained directly from fitting shear stress profiles, and r0 ob-
tained from packing fraction fit (Fig. 5). In this case, we measure
all stresses directly rather than relying on Eq. 9.

These different methods of measurements have advantages and
disadvantages. For instance, the boundary stress measurements
(for Ac and Vi3 particles) gives stress values directly at the inner
and outer wall, but we cannot measure stress directly all through-
out material. The photoelasticity method (Vi4) measures stress
throughout the material, but falls short of the inner and outer
walls due to lighting imperfections and the coarse-graining length
scale.

3 Results

The comparison that follows utilizes the cooperative model of
Kamrin and Koval 1 , using methods previously described in Tang
et al. 5 . In Fig. 7a, we plot the experimentally-measured µ(I) re-
lationships for all three particle materials and all three particle
shapes. Note that in all cases, the low-P run lies at lower µ than
the high-P run for the same particles shape, which arises because
the shear stress τ decreases even faster than P. For example, for
the runs using elliptical particles, the inner wall stress τ(Ri) drops
from 3500 Pa to 1400 Pa, for only a 25% decrease in pressure.

In all cases, we are able to fit the experimentally-determined
µ(I) data using the cooperative model, using the parameters
listed in Table 2. The next sections describe the fitting tech-
niques used to obtain these results.
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Fig. 5 The local packing fraction for different particle shapes and ma-
terials at P = 7.5 kPa (P = 0.58 kPa for Vi4 particles), calculated via
coarse-graining. The error bars are the standard error, and the solid
curves are the corresponding fits to Eq. 8. The circle/ellipse (Vi3) data
are from Tang et al. 5 . The table shows the fitting parameters from Eq. 8
and 9 for each particle shape and material. These parameters are taken
to be constant for the same particles, independent of pressure.
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Fig. 6 Stress profiles for all types of particles. Dashed-lines are shear
stress for Ac and Vi3 particles obtained from Eq. 9, using boundary
measurements only. Filled symbols are taken at P = 10 kPa and open
symbols are taken at P = 7.5 kPa, with matching symbol and line colors.
Solid lines are the photoelastically-measured pressure (solid diamonds)
and shear stress (open diamonds) for the Vi4 particles. The error bars
are spatial and temporal standard deviations.
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Fig. 7 (a) Stress ratio µ, obtained from Eq. 2, as a function of inertial
number I, for all eight datasets, both measured locally using binned
(velocity) or coarse-grained (stress) data. The horizontal dashed-lines
indicate the measured critical stress ratio µs for each particle type. (b)
Speed profiles v(r) for all eight datasets. In both plots, the symbols are
the measured data, with the cooperative model (see Section 1.1, using
model parameters from Table 2) shown by the solid curves. The error
bars in both plots are the standard errors measured in the experimental
results.

3.1 Rheological parameters

For the seven datasets taken for Ac and Vi3 particles, we per-
formed the same particle-tracking and boundary stress measure-
ments as done in Tang et al. 5 . For the Vi4 dataset, we perform
the same particle-tracking, but the stress measurements are done
using photoelasticity (see Fig. 2). To measure the yield stress ra-
tio µs, we performed an additional run (not shown in Table 1)
at v(Ri) = 0.0013d/s, for which we previously observed that the
ratio of the inner wall shear stress to the pressure is a good esti-
mate5. These values are shown in Table 2. We observed that all
circular/elliptical particles have a similar value of µs, while the
angular particles yield at a much lower stress ratio. This reflects
that the shape of the interparticle contacts (rounded vs. angular)
is an important control on µs, beyond material properties such as
coefficient of friction or elastic modulus36.

For each dataset, we find the fluidity profile g(r) by solving
Eq. 6 using the Matlab ODE solver. We set the boundary condi-

tions empirically, by measuring g near the wall. To obtain values
for parameters (A,b), we use Levenberg-Marquardt optimization
to fit the g(r) dataset for each particle type. For the Ac particles,
we measure the parameters (A,b) at P = 10 kPa, and then apply
these same parameters to the dataset collected at P = 7.5 kPa.
The resulting parameters are shown in Table 2, and the best fit-
ting curves are shown in Fig. 7. We observe that values of the
nonlocal parameter A are similar (but not identical) for rounded
particles with the same material, but differ for pentagonal parti-
cles. The pentagonal particles have a smaller nonlocal param-
eter A, indicative of a weaker nonlocal effect (shorter nonlocal
diffusion lengthscale ξ ). This observation is consistent with the
experimental results of Kozlowski et al. 37 , where the spatial ex-
tent of the force chains was observed to be shorter for pentagonal
particles than disks. The particle material plays an important role
in determining the nonlocal parameter A: rounded particles of
different material have different nonlocal parameters. Values of
the local parameter b are insensitive to the particle properties,
whether material or shape.

3.2 Length scale

The lengthscale ξ in Eq. 7 represents the influence of the nonlo-
cal term in the vicinity of µs. To check this dependence and the
effects of particle shape on it independently, we pick three differ-
ent particle shapes all cut from acrylic (at pressure P = 10 kPa),
to determine whether the assumptions of the model are justified.
The measured lengthscale is calculated by Eq. 6 using the analyt-
ical method presented in Tang et al. 5 , and the theoretical curves
are calculated by Eq. 7.

To perform this validation, we perform an empirical fit to the
speed profile v(r), in order to take the necessary higher-order
derivatives. We (as previously given in Tang et al. 5) observe that
the empirical speed profile function is well-fit by

v(r) = v0 exp
[
α3r3 +α2r2 +α1r+α0

]
. (10)

The resulting fits in the vicinity of µs are shown in Fig. 8. Note
that v(r) for the circular particles fails to fall off as quickly as was
observed for the elliptical and pentagonal particles. In the orig-
inal movies obtained for these experiments, we confirm this ob-
servation, and additionally observe that the run with circular par-
ticles exhibits significant crystallization effects. Because crystal-
lized domains are more stable under higher pressure than lower
pressure38, they are more efficient at transmitting shear at larger
distances from the shearing surface. Since the calculation of ξ

does not take place in this outer region, we are able to proceed
with the model validation.

From Eq. 7, we expect a divergence of ξ (µ) at µs, and the
kinematics of the particles thereby provides an independent mea-
surement of µs. We estimate its location by drawing an arbitrary
horizontal line in Fig. 8(b), and determining the two intersection
points of this horizontal line and the ξ 2(µ) curve. The measured
value of µs lies at the mean ξ of these two intersections: for cir-
cular particles µs = 0.23, for elliptical particles, µs = 0.22, and for
pentagonal particles, µs = 0.16. These values correspond closely
to the values measured by quasi-static shearing, given in Table 1.
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Fig. 8 (a) Speed profile for P = 10 kPa datasets, for particles with
different shapes. Only the brighter data points (in the vicinity of µs) are
used for fitting Eq. 10 (dash-dotted curves), with the dimmer data points
shown for completeness. (b) Comparison of measured length scale (the
dash-dotted curves) to the theoretical curves (solid curves). The particle
shapes are given by the same colors as in (a).

Moreover, we can see variations in the nonlocal effects for differ-
ent particle shapes in Fig. 8(b) where ξ 2(µ) takes a wider form
in circular/elliptical particles than pentagons.

4 Microscopic description of granular fluidity

According to a recent interpretation4 of the granular fluidity g,
the only variables affecting the granular fluidity g are the veloc-
ity fluctuation δv (the square root of the granular temperature)
and the packing fraction φ . This motivates writing the granular
fluidity g in a microscopic form:

g =
δv
d

F(φ). (11)

While the physical origin of the function F(φ) remains unknown,
simulation results from Zhang and Kamrin4 showed that the func-
tion F(φ) is independent of the driving speed and experiment
geometry, and depends only on the packing fraction φ and the
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Fig. 9 Determination of the function F(φ) from Eq. 11, for differ-
ent Ac shapes (both pressures) and Vi4 (lower pressure). Data are
experimentally-determined from the same bins as used in the µ(I) plot
shown in Fig. 7a. The error bars are from the standard error of granular
fluidity g.

particle properties.
We test this definition using particles of different shape but the

same material (acrylic) and same shape (circles) but different ma-
terial. Here, we exclude the Vi3 particles since the mixture of el-
lipses and circles does not have a clear comparison in the other
datasets. The velocity fluctuations are measured within concen-
tric rings of width 0.5d, using the same data presented in Fig. 4.
As shown in Fig. 9, the shape of the particles affects the func-
tion F(φ): each shape and material has its own characteristic
curve that ends at φRCP for that specific shape/material. While
the elliptical and pentagonal particles display a consistent shape,
independent of pressure, the circular particles do not. Instead,
the shape of F(φ) changes, likely due to the wall-crystallization
observations presented earlier.

5 Conclusions
We have established the success of the cooperative nonlocal
model1–4 in describing the rheology of non-circular particles. The
particle shape and modulus both play an important role in the
particular choice of modeling parameters. We reported the rela-
tionship between particle properties and nonlocal effects. While
the local parameter b is independent of the particle shape or mate-
rial, the critical stress ratio µs only depends on the particle shape
and not the particle material, and the nonlocal parameter A is
strongly sensitive to both the particle shape and stiffness. Non-
local effects are observed to be more important for rounded par-
ticles than for angular particles, as measured by the magnitude
of A. For similar shapes, we observe that softer particles have
very different nonlocal effects set by the softness of the particles.
Among all 3 model parameters, the nonlocal parameter A is the
most sensitive to grain properties, both shape and material. To
obtain these parameters (A,b), we set the boundary conditions
from empirical observations and see that the results are sensi-
tive to the choice of boundary condition. The open question is
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how we can set the boundary conditions from first principles, and
what role the walls play in these results. Finally, we find that the
particle-scale definition of granular fluidity takes a similar shape
to that observed in simulations4, and may be strongly affected by
crystallization.
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