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The structural, vibrational, and mechanical properties of
jammed packings of deformable particles in three dimen-
sions

Dong Wang,a John D. Treado,a,b Arman Boromand,a Blake Norwick,d Michael P. Murrell,cde

Mark D. Shattuck, f and Corey S. O’Hern,∗abdg

We investigate the structural, vibrational, and mechanical properties of jammed packings of de-
formable particles with shape degrees of freedom in three dimensions (3D). Each 3D deformable
particle is modeled as a surface-triangulated polyhedron, with spherical vertices whose positions are
determined by a shape-energy function with terms that constrain the particle surface area, volume,
and curvature, and prevent interparticle overlap. We show that jammed packings of deformable
particles without bending energy possess low-frequency, quartic vibrational modes, whose number
decreases with increasing asphericity and matches the number of missing contacts relative to the
isostatic value. In contrast, jammed packings of deformable particles with non-zero bending energy
are isostatic in 3D, with no quartic modes. We find that the contributions to the eigenmodes of the
dynamical matrix from the shape degrees of freedom are significant over the full range of frequency
and shape parameters for particles with zero bending energy. We further show that the ensemble-
averaged shear modulus 〈G〉 scales with pressure P as 〈G〉 ∼ Pβ , with β ≈ 0.75 for jammed packings
of deformable particles with zero bending energy. In contrast, β ≈ 0.5 for packings of deformable
particles with non-zero bending energy, which matches the value for jammed packings of soft, spher-
ical particles with fixed shape. These studies underscore the importance of incorporating particle
deformability and shape change when modeling the properties of jammed soft materials.

1 Introduction
Numerous physical systems are composed of discrete, soft parti-
cles that can change shape under applied stress. Examples in-
clude collections of emulsion droplets1,2, colloids3, bubbles4,
and hydrogel particles5,6. These systems display complex, spatio-
temporal response to applied deformations, including shear jam-
ming7–11, shear banding12,13, aging14–17, and memory forma-
tion18–20.

Many of the physics-based, theoretical models that are used to
investigate the mechanical and vibrational response of soft ma-
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terials fall into one of two classes: 1) “soft-particle" models for
which the interparticle forces are generated by overlaps between
discrete particles of fixed shape21–23 and 2) vertex- or Voronoi-
based models24–29 that treat the system as space-filling polygons
in two dimensions (2D) or polyhedra in 3D, with interparticle
forces determined by shape-energy functions written in terms of
the vertices of all polygons in 2D or polyhedra in 3D.

Recently, we introduced the deformable particle (DP) model
in 2D that combines optimal features of both classes of models
for soft particles30,31. The DP model treats each particle as a
discrete object, and thus in contrast to vertex- or Voronoi-based
models, the DP model can be used to study systems over a wide
range of packing fractions—from isolated particles to confluent
systems. In addition, the DP model considers shape-energy func-
tions for each particle individually (through the shape parameter
A = p2/4πa, where p and a are the perimeter and area of the par-
ticle, and the bending energy), and thus the DP model provides
control over the shape of each deformable particle separately. In
previous studies, we investigated the mechanical and vibrational
properties of jammed packings of DP particles in 2D with and
without bending energy32. We showed that packings of DP parti-
cles without bending energy are hypostatic (with fewer contacts
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than the isostatic value) over the full range of shape parameters,
and that the missing contacts are stabilized by low-frequency,
quartic modes of the dynamical matrix. When perturbing the
system along quartic modes with amplitude δ , the energy of the
system increases as δ 4, rather than δ 2 as for non-quartic modes.
Particles with non-zero bending energy undergo a buckling tran-
sition when A > A ∗, above which the minimal energy shape is
not a regular polygon and A ∗ increases with the bending stiff-
ness. Packings of unbuckled particles with A < A ∗ are isostatic
with no quartic modes. In contrast, packings of buckled particles
with A >A ∗ possess quartic modes, but we showed that it is dif-
ficult to determine how many degrees of freedom are associated
with each buckled particle33. The shape degrees of freedom con-
tribute significantly to the vibrational response for packings of DP
particles without bending energy, which gives rise to power-law
scaling of the ensemble-averaged shear modulus with pressure
that differs from that for jammed packings of particles with fixed
shape.

In this article, we develop the DP model in 3D, which con-
siders particles as “bumpy” surface-triangulated polyhedra with
spherical vertices, and then use it to investigate the structural,
mechanical, and vibrational response of jammed packings of de-
formable particles in 3D. The 3D DP model allows us to deter-
mine whether the structural, vibrational, and mechanical proper-
ties of jammed packings of deformable particles in 3D are similar
to those in 2D, which is important for classifying the critical be-
havior34 of the jamming transition for deformable particle pack-
ings. We will show that many of the results for jammed packings
of deformable particles are similar in 2D and 3D. For example,
packings of deformable particles with no bending energy pos-
sess low-frequency, quartic modes, whose number matches the
number of missing contacts from simple contact counting. Also,
the pressure-dependent mechanical response varies strongly with
the particle deformability; the ensemble-averaged shear modu-
lus scales with pressure as 〈G〉 ∼ Pβ with β ≈ 0.75 for truly de-
formable particles, whereas β ≈ 0.5 for particles with non-zero
bending energy. However, in contrast to the results for 2D, we
show that for all non-zero values of the bending energy (i.e. both
unbuckled and buckled particles), DP packings in 3D are isostatic
at jamming onset and do not possess quartic modes.

The remainder of the article is organized as follows. In Sec. 2,
we describe the shape-energy function for the DP model in 3D and
the computational methods used to generate jammed packings of
deformable particles in 3D and to calculate the dynamical matrix,
density of vibrational modes, stress tensor, and shear modulus for
these packings. In Sec. 3, we discuss the results including calcu-
lations of the vibrational modes for a single deformable particle
(Sec. 3.1), and the packing fraction and contact number at jam-
ming onset (Sec. 3.2), the density of vibrational modes (Sec. 3.3),
the contribution of the shape degrees of freedom to the vibra-
tional modes (Sec. 3.4), and the mechanical response (Sec. 3.5)
of jammed packings of deformable particles in 3D. In Sec. 4, we
summarize the conclusions and provide promising directions for
future research. In addition, we include four Appendices. In
Appendix A, we describe the method we employ to decompose
the vibrational modes into contributions from the translational,

rotational, and shape degrees of freedom of each particle. In
Appendix B, we caclulate the shape parameter distribution for
Voronoi tessellations of jammed packings of frictionless spheri-
cal particles, as well two types of point processes. In Appendices
C and D, we show the influence of adding thermal fluctuations
to the compression protocol for generating jammed packings of
deformable particles on the properties of jammed packings of de-
formable particles in two and three dimensions.

2 Methods
We model deformable particles in 3D as surface-triangulated poly-
hedra with Nv vertices as shown in Fig. 1. The vertices are con-
nected via Delaunay triangulation, resulting in N f triangles and
Ne edges on the surface of each polyhedron. We characterize
the shape of 3D deformable particles using the non-dimensional
shape parameter (or asphericity) A = s3/2/(6

√
πv), where s and

v are the total surface area and volume of the particle, respec-
tively. A = 1 when the particle is a sphere, and A > 1 for any
non-spherical shape.

The total potential energy U for a collection of N deformable
particles in 3D obeys the following:
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N

∑
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where v0 is the preferred volume for each particle and a f
0n is the

preferred area for the f th triangle on the surface of particle n.
The bending angle θne is the angle between the two unit nor-
mals to the triangles that share the eth edge on particle n. The
three coefficients εv, εa, and εb control fluctuations in the particle
volume, surface triangle area, and curvature, respectively. To pre-
vent overlap between deformable particles, we include the purely
repulsive, linear spring interaction potential between overlapping
spherical vertices on neighboring particles:

U int =
N

∑
n=1

N
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m>n

Nv
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i=1

Nv
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j=1

εc
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(
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)2
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(
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)
, (2)

where rni,m j is the distance between the centers of spherical ver-
tices i and j on separate particles n and m and σni,m j = (σni +

σm j)/2 is the average diameter of the two vertices. The Heaviside
step function Θ(·) enforces that the pairs of vertices only interact
when they overlap.

We focus on studies of jammed packings of monodisperse de-
formable particles in 3D and have verified that they do not pos-
sess structural order. To ensure that the particles do not inter-
penetrate, we need to have a sufficient number and uniform cov-
erage of the spherical vertices on the surface of each deformable
particle. To achieve this, we consider a geodesic polyhedron with
Nv = 42, i.e. the 2nd frequency subdivision of an icosahedron
with shape parameter Av = 1.024. For this geodesic polyhedron,
there are N f = 80 triangular faces: 20 of the faces have larger area
a f

0n = al , 60 have smaller area a f
0n = as, and al/as ≈ 1.19. This
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Fig. 1 (a) An example jammed packing of DP particles with zero bending
energy, N = 16 particles, Nv = 42 vertices, and normalized shape parameter
Ã = 1.04. (b) Close-up of two particles in (a) to illustrate the definitions
of the surface triangle area an f , the bending angle θne, vertex diameter
σni, and the inter-vertex separation rni,m j. Several spherical vertices are
omitted for clarity.

geodesic polyhedron also has Ne = 120 edges, half with larger
edge length ll , half with smaller edge length ls, and length ratio
ll/ls ≈ 1.13. We choose σni = σ = ls as the diameter for the spher-
ical vertices. When providing values of the shape parameter for
systems with εb > 0, we provide A obtained after minimizing the
shape-energy function for an individual particle, not A0 defined
from v0 and a f

0n. (For εb = 0, A = A0.) Further, we normalize
the shape parameter such that Ã = A /Av. Since Av is the shape
parameter value for the most spherical polyhedron with a given
Nv, we only study cases with A ≥Av, namely Ã ≥ 1. To generate
a deformable particle with Ã > 1 and εb = 0, we start from the
geodesic polyhedron and perturb each vertex randomly by 1% of
ls. To achieve a given Ã , we keep a f

0n fixed and reduce v0 ac-
cordingly. We then minimize U by changing the positions of the
vertices, while maintaining the topology of the geodesic polyhe-
dron. For deformable particles with εb > 0, we first measure A

after potential energy minimization for all A0, and then select A0

to achieve a given A .
We consider three important parameter regimes for the DP

model in 3D (Eq. 1): 1) Completely deformable particles with
εb = 0; 2) Partially deformable particles with εb > 0, and 3) “Rigid"
particles for which the relative vertex positions within each par-
ticle are fixed (i.e. εv, εa, and εb → ∞). For cases (1) and (2),
we choose εv ∼ εav0σ/a2

s ∼ εcv0/(asσ)∼ 1 to achieve comparable
area, volume, and vertex-vertex overlap forces near jamming on-
set. For case (2), we study two values of εb/εv for all Ã : 10−4 and
10−3, but the results described below are similar for other values
of εb/εv. For cases (1) and (2) with shape parameters Ã ∼ 1, we

find that the inter-particle force scales as F ∼ ∆ for small values of
the particle deformation ∆. However, we can tune the shape pa-
rameter and forms of the volume and surface area terms in Eq. 1
to model the interactions between specific particle types used in
a given experiment.

To generate jammed packings, we start with a dilute system
with packing fraction φ = 10−3, random particle positions in a cu-
bic box with length L, and periodic boundary conditions in the
x-, y-, and z-directions. We isotropically compress the system by
increasing the equilibrium lengths, areas, and volumes of the par-
ticles (Eq. 1) in small steps at fixed box length and fixed equilib-
rium shape parameter. We start with ∆σ/σ = 10−3, ∆as ∼ 2∆σ/σ ,
and ∆v0 ∼ 3∆σ/σ , which corresponds to increases in packing frac-
tion of ∆φ/φ ≈ 10−3. After each compression step, we use the
FIRE algorithm35 to minimize the total potential energy U . If
the pressure of the energy-minimized packing satisfies P < Pt , we
compress the system again, followed by energy minimization. If
P>Pt , we return to the configuration before the most recent com-
pression step and decrease ∆σ/σ by a factor of 2. We continue
this process until 1 < P/Pt < 1.1, where Pt = 4×10−6, which yields
packings of deformable particles at jamming onset with packing
fraction φJ(Ã ).

We calculate the virial stress tensor using

Σµν =
1

L3

N

∑
n=1

N

∑
m>n

Nv

∑
i=1

Nv

∑
j=1

fni,m j,µ rni,m j,ν , (3)

where µ,ν = x,y,z, fni,m j,µ is the µth component of the force from
vertex j on particle m on vertex i on particle n, rni,m j,ν is νth
component of the separation vector from vertex j on particle m to
vertex i on particle n. The pressure is defined as P = (Σxx +Σyy +

Σzz)/3.
To study the vibrational response of jammed packings of de-

formable particles, we calculate the dynamical matrix:

Mni,m j =
∂ 2U

∂~rni∂~rm j
, (4)

where ~rni = (xni,yni,zni) gives the position of the ith vertex on
particle n. To obtain the elements of the dynamical matrix, we
first evaluate −~fni = ∂U/∂~rni analytically and then numerically
calculate −∂~fni/∂~rm j using a finite-difference method on a cu-
bic grid with uniform spacing 10−6L, which is chosen to mini-
mize the magnitudes of the three trivial zero modes relating to
global translations in periodic boundary conditions. We then di-
agonalize Mni,m j to obtain the N = 3NNv−3 non-trivial eigenval-
ues λk and corresponding eigenvectors ~Vk, with ~Vk ·~Vk′ = δkk′ and
k = 1, . . . ,N . The eigenfrequencies are given by ωk =

√
λk/m,

where all of the vertices have mass mi = m.
We also measure the packing fraction φJ and coordination num-

ber ZJ of packings of deformable particles at jamming onset. The
packing fraction of a collection of deformable particles is defined
as φ = ∑

N
n=1 Vn/L3, where Vn is the volume of the nth particle.

We determine Vn = vn +πNvσ3/6−V enc
n −V ol

n by adding the vol-
ume vn of the underlying polyhedron, adding the volume of the
spherical vertices, subtracting the volume V enc

n of the spheri-
cal vertices that is enclosed by the polyhedron, and subtracting
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the volume V ol
n of the overlapping regions between neighbor-

ing spherical vertices but outside of the polyhedron. The vol-
ume of the spherical vertices inside the polyhedron is given by
V enc

n = ∑
Nv
i=1 Ωniσ

3/24, where Ωni is the solid angle defined by the
overlap between the polyhedron and spherical vertex i on parti-
cle n36. The volume of the overlapped regions between spher-
ical vertices and outside of the polyhedron is given by V ol

n =

∑
Ne
e=1 π(1−θne/(2π))(2σ + lne)(σ− lne)

2Θ(1− lne/σ)/12, where lne

is the length of the eth edge on the nth particle. We also measure
the contact number Z = 2Nc/N of jammed packings of deformable
particles, where Nc is the total number of contacts between dis-
tinct pairs of deformable particles. Note that for two particles n
and m, multiple vertices on n may overlap multiple vertices on m.
However, these are only counted as one contact between particles
n and m.

To characterize the mechanical response of jammed packings
of deformable particles, we measure the static shear modulus G
by applying successive simple shear strains and calculating the
resulting shear stress. To generate affine simple shear strain,
we shift the y-positions of all particle vertices based on their z-
positions, i.e. the new y-positions are given by y′i = yi +δγzi with
δγ = 5× 10−8, we fix their x- and z-positions, and apply Lees-
Edwards boundary conditions. After each shear strain step, we
minimize the total potential energy U using FIRE and measure the
shear stress Σ =−Σyz. The shear modulus is given by G = ∂Σ/∂γ.
Finally, note that the length, energy, frequency, and stress scales
are provided in units of L = N1/3, εc,

√
εc/m/L and εc/L3, respec-

tively. To assess system-size effects, we study jammed packings
with N = 16, 64, and 128.

3 Results
In this section, we describe the results from the simulations of
jammed packings of deformable particles in 3D. We first study
the vibrational response for individual deformable particles with
εb = 0 and εb > 0. As expected, we find that single deformable
particles with zero bending energy can change their shape with-
out energy cost, whereas changes in particle shape cost energy for
εb > 0. We then investigate the collective structural, vibrational,
and mechanical properties in jammed packings of deformable
particles. The packing fraction φJ and coordination number ZJ

at jamming onset increase dramatically with the shape parame-
ter Ã for completely deformable particles with εb = 0. However,
φJ and ZJ do not increase significantly from the values at Ã → 1
for packings with nonzero εb, which is consistent with prior re-
sults for packings of frictional, nonspherical particles with rigid
shapes. We also show that packings of completely deformable
particles possess a large number of low-frequency, quartic eigen-
modes of the dynamical matrix, and their number matches the
number of missing contacts relative to the isostatic value. In con-
trast, packings with εb > 0 and rigid-shaped particles are isostatic
with no low-frequency, quartic modes. We then decompose the
eigenmodes of the dynamical matrix into contributions from the
translational, rotational, and shape degrees of freedom of the sys-
tem. The vibrational response has significant contributions from
the shape degrees of freedom over the full range of frequencies
for packings of completely deformable particles, whereas there
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Fig. 2 Sorted eigenvalue spectrum λk (from smallest to largest) for
individual deformable particles with (a) εb = 0 and (b) εb = 10−3, and
three shape parameters: Ã = 1 (blue circles), 1.1 (red crosses), and
1.2 (green triangles). The insets show examples for the particle shapes
associated with each value of εb and Ã , with Ã increasing from left to
right. The dashed vertical lines correspond to (a) k = 45 and (b) 6.

are only large contributions from the shape degrees of freedom at
large frequencies for packings with nonzero εb. We also show that
the ensemble-averaged shear modulus displays power-law scaling
with pressure, 〈G〉 ∼ Pβ for packings of deformable particles, and
that the scaling exponent β ∼ 0.75 is larger for packings of com-
pletely deformable particles than the value β ∼ 0.5 for packings
of particles with non-zero εb and rigid, bumpy particles.

3.1 Single-particle vibrational response
For a single deformable particle with Nv vertices, there are 3Nv

eigenvalues of the dynamical matrix (Eq. 4). In Fig. 2 (a), we
show the sorted eigenvalue spectrum (from smallest to largest)
for a deformable particle with εb = 0 and three shape parameters
Ã . For all Ã , we expect 3Nv−N f − 1 = 45 zero modes, where
N f gives the number of area constraints for the triangular faces
and −1 represents the volume constraint. In Fig. 2 (a), we show
that λk . 10−10 for 45 of the eigenvalues, and the remaining 81
eigenvalues are non-zero with λk & 10−5. Deformable particles
with εb = 0 can change their shape by moving along eigenvectors
associated with these zero eigenvalues. Representative shapes for
several Ã are shown in the inset to Fig. 2 (a); note that they can
possess dimples in their surfaces since εb = 0.

When εb > 0, we add Ne constraints, so that the number of con-
straints is larger than the number of degrees of freedom. In this
case, only rigid translations and rotations of individual particles
cost zero energy. As shown in Fig. 2 (b), deformable particles
with εb > 0 possess only 6 “zero" eigenvalues λk . 10−10, corre-
sponding to the three rigid translations and rotations, for all Ã .
The remaining eigenvalues are non-zero with λk & 10−4. Thus,
deformable particles with εb > 0 can change their shape, but it
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costs energy. Example minimum energy shapes with εb > 0 are
shown in the inset to Fig. 2 (b). Note that the shapes at a given
Ã and εb > 0 are more elongated and smooth relative to those at
the same Ã and εb = 0.

3.2 Packing fraction and coordination number at jamming
onset

In this section, we describe the results for the structural proper-
ties (i.e. the packing fraction φJ and coordination number ZJ)
for jammed packings of deformable particles at jamming onset.
In Fig. 3 (a), we show φJ versus Ã for packings with εb/εv = 0,
10−4, and 10−3, as well as particles with completely rigid shapes.
For completely deformable particles, φJ(Ã → 1) ≈ 0.50 and it in-
creases rapidly with Ã , reaching a maximum packing fraction,
φJ ≈ 0.76 near, but above Ã & Ã † ≈ 1.16. Note that disordered,
jammmed packings of monodisperse, frictional spherical particles
have φJ ∼ 0.5537 in the large-friction limit using the Cundall-
Strack model for friction38. Thus, the physical roughness of the
deformable particles gives rise to more dilute jammed packings
in the large-friction limit than those obtained from the Cundall-
Strack model.

The maximum jammed packing fraction is less than 1 because
of the finite size of the spherical vertices. We have shown that the
maximum jammed packing fraction increases as the surfaces of
the deformable particles become smoother. The shape param-
eter at which φJ reaches its maximum value is similar to the
peak value (Ã † ≈ 1.16) in the probability distribution of shape
parameters of the polyhedra generated by Voronoi tessellating
jammed, monodisperse frictionless sphere packings as shown in
Appendix B. In Appendices C and D, we show that φJ reaches its
maximum value at shape parameters closer to Ã † when the pack-
ings are generated by protocols that include thermal fluctuations.

For any εb > 0, there is a single minimal energy shape at each
Ã and deviations from this shape cost energy. For this reason,
the structural properties (e.g. φJ(Ã )) for jammed packings of
deformable particles with any εb > 0 will differ from those for
εb = 0. Further, the structural properties for jammed packings of
deformable particles with any nonzero value of εb will be simi-
lar to those for particles with completely rigid shapes. In partic-
ular, in Fig. 3 (a), we show that φJ(Ã ) is similar for jammed
packings with εb/εv = 10−4 and 10−3 and with rigid shapes.
φJ(Ã → 1) ≈ 0.50, φJ(Ã ) increases by a small amount (∼ 2%),
reaching a peak near Ã ≈ 1.08, and then decreases to ≈ 0.50 at
Ã = 1.2. The value at Ã → 1 is lower than that found in simula-
tions of frictional, monodisperse spheres using the Cundall-Strack
model37 in the infinite-friction limit, but similar to values for ran-
dom loose packing found in experiments of sequentially deposited
rough spheres39.

The packing fraction at jamming onset for packings of friction-
less non-spherical particles typically has a peak near A ∼ 1.1 that
is greater than 22% above the value in the Ã → 1 limit40,41. Pre-
vious studies of packings of frictional ellipsoids have shown that
friction reduces the peak in packing fraction that occurs for small,
but finite values of Ã − 1 42. These prior results are consistent
with our observation of a small peak in φJ(Ã ) for deformable
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Fig. 3 Average (a) packing fraction φJ and (b) coordination number
ZJ at jamming onset for jammed packings of deformable particles with
N = 16, εb = 0 (circles); N = 64, εb = 0 (diamonds); N = 128, εb = 0
(asterisks); N = 64, εb = 10−3 (leftward triangles); N = 64, εb = 10−4

(rightward triangles); and N = 64, rigid shape (squares). The data points
are obtained by averaging over 500 jammed packings and the errors bars
are given by the standard deviation.

particle packings with nonzero εb. For both zero and nonzero εb,
φJ(Ã ) does not depend strongly on system size as shown in Fig. 3
(a).

The coordination number ZJ = 6 at jamming onset for disor-
dered packings of frictionless spheres22,43. In contrast, 4 < ZJ < 6
for jammed frictional sphere packings, where the lower value cor-
responds to the large-friction limit37. Fig. 3 (b) shows results of
ZJ for jammed DP packings. We find that ZJ ≈ 5.5 for Ã → 1,
which corresponds to the value for packings of frictional spheres
with µ ≈ 0.1. For completely deformable particles with εb = 0,
ZJ increases strongly with Ã , reaching values above 12 since
they can squeeze through the gaps between closely packed par-
ticles. ZJ becomes independent of system size for N ≥ 128. For
εb/εv = 10−4,10−3 and completely rigid particles, ZJ ∼ 6 and it
does not increase significantly with Ã .

3.3 Vibrational response
We investigate the vibrational response of jammed packings of de-
formable particles by calculating the eigenvalues λk of the dynam-
ical matrix, where k = 1, . . . ,3NvN, and the corresponding vibra-
tional frequencies ωk. We first show the eigenvalue spectrum for
jammed packings of completely deformable particles with εb = 0.
In Fig. 4 (a), we plot λk (sorted from smallest to largest) for
N = 16, Nv = 42, and Ã = 1.06. Apart from the three “zero"
eigenvalues (with λk . 10−9) from the periodic boundary con-
ditions, we find two distinct bands in the eigenvalue spectrum:
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Nv = 42, εb = 0, and Ã = 1.06, sorted from smallest to largest. This packing has three “zero" eigenmodes (with λk . 10−9, also shown as the first three
blue circles), 215 low-frequency, quartic eigenmodes (with 10−7 . λk . 10−4), and 1798 quadratic eigenmodes for a total of 3NvN = 2016 eigenmodes.
For quartic modes and quadratic modes, every 30 modes are also shown with circles (λk) and crosses (λH,k). (b) The eigenvalues λk of the dynamical
matrix plotted as a function of pressure P during isotropic compression for the same packing in (a). The dashed line has a slope of 1. (c) Change
in the total potential energy ∆U plotted versus the amplitude δ of the perturbation when the packing in (a) at P = 4×10−6 is perturbed along each
eigenmode of the dynamical matrix. The dashed (dot-dashed) line has a slope of 4 (2). The blue (red) color of the solid lines in all three panels
indicates the quartic (quadratic) modes of the dynamical matrix highlighted by circles in (a).

one with 215 eigenvalues that satisfy 10−7 . λk . 10−4 and the
other with 1798 eigenvalues that satisfy 10−1 . λk . 103. To better
understand the low-frequency band, we investigate the pressure
dependence of λk as the jammed packings are isotropically com-
pressed above jamming onset. The higher-frequency eigenvalues
are nearly independent of pressure P, whereas the low-frequency
eigenvalues increase linearly with P, as shown in Fig. 4 (b). Thus,
these low-frequency eigenvalues of the dynamical matrix tend to
zero in the P→ 0 limit.

The observation of pressure-dependent eigenvalues of the dy-
namical matrix for packings of completely deformable particles
raises the question of whether these packings are mechanically
stable in the zero-pressure limit. To address this question, we
perturb the packings by an amplitude δ in the direction of each
eigenmode ~Vk:

~R = ~R0 +δ~Vk, (5)

where ~R represents the positions of all vertices on all particles
in the perturbed packing and ~R0 represents those in the original
packing. In Fig. 4 (c), we show that the change in the total po-
tential energy ∆U = U(~R)−U(~R0) increases quadratically with δ

for perturbations along eigenmodes in the higher-frequency band.
However, for perturbations along the low-frequency eigenmodes,
∆U ∼ δ 2 for small δ and ∆U ∼ δ 4 for large δ . Based on the re-
sults in Fig. 4 (b), the crossover, δ ∗, that separates the δ 4 and
δ 2 scaling regimes decreases as

√
P. Thus, in the P→ 0 limit,

the potential energy increases quartically, not quadratically, with
the perturbation amplitude in these directions. These “quartic"
eigenmodes of the dynamical matrix have also been observed in
jammed packings of rigid non-spherical particles23,44–46.

We further investigate the existence of quartic eigenmodes of
the dynamical matrix for packings of completely deformable par-
ticles by decomposing the dynamical matrix into contributions
from the stiffness and stress matrices, M = H−S 32,40,45. The to-
tal potential energy for completely deformable particles has three
terms, U = Uv +Ua +U int defined in Eqs. 1 and 2, and thus the
stiffness and stress matrices have three terms, H = Hv +Ha +H int

and S = Sv +Sa +Sint. The stiffness matrices for each of the three
terms are given by:

Hv
ni,m j =

 ∂ 2Uv

∂v2
n

∂vn
∂~rni

∂vn
∂~rn j

, if n = m

0, otherwise
, (6)

Ha
ni,m j =


N f

∑
f=1

∂ 2Ua

∂a2
n f

∂an f
∂~rni

∂an f
∂~rn j

, if n = m

0, otherwise
, (7)

and

H int
ni,m j =

∂ 2U int

∂ r2
ni,m j

∂ rni,m j

∂~rni

∂ rni,m j

∂~rm j
. (8)

The stress matrices for each of the three terms are given by:

Sv
ni,m j =

− ∂Uv

∂vn

∂ 2vn
∂~rni∂~rn j

, if n = m

0, otherwise
, (9)

Sa
ni,m j =

−
N f

∑
f=1

∂Ua

∂an f

∂ 2an f
∂~rni∂~rn j

, if n = m

0, otherwise
, (10)

and

Sint
ni,m j =−

∂U int

∂ rni,m j

∂ 2rni,m j

∂~rni∂~rm j
. (11)

The number of non-zero eigenvalues λH,k for the stiffness ma-
trix H provides the number of degrees of freedom that are linearly
constrained (i.e. “quadratic modes”), while the number of non-
zero eigenvalues λk for the dynamical matrix M provides the total
number of constrained degrees of freedom (i.e. both “quadratic”
and “quartic modes”). For jammed packings of completely de-
formable particles, we find that the number of “zero" eigenval-
ues of the stiffness matrix (with λH,k . 10−12) matches the num-
ber of quartic eigenvalues of the dynamical matrix plus the three
trivial zero modes for periodic boundary conditions, as shown in
Fig. 4 (a). (Calculating the zero eigenvalues of the stiffness ma-
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trix provides a straightforward method for independently identi-
fying the quartic eigenmodes of the dynamical matrix.) We find
that the number of missing contacts relative to the isostatic value,
m = Niso

c −Nc = Nq with Niso
c = 3NvN− 2, matches the number of

quartic modes Nq. This relationship holds for jammed packings of
completely deformable particles over the full range in Ã studied,
as shown in Fig. 5 (a). From Fig. 3 (b), we know that Nc increases
with Ã , and thus the number of missing contacts decreases with
Ã , reaching zero for Ã & 1.16 as shown in the inset to Fig. 5 (a).

Jammed packings of deformable particles with nonzero εb pos-
sess only a single band of quadratic eigenmodes, and are isostatic
with m ≈ 0 for all shape parameters studied, as shown in Fig. 5
(b) for the specific case of N = 16 packings with εb/εv = 10−3.
Similar results are found for packings of rigid bumpy particles
with the same Nv and Ã . The fact that 3D jammed packings of
rigid bumpy particles are isostatic is consistent with prior studies
of jammed packings of rigid bumpy particles in 2D47. In con-
trast, we showed previously that jammed packings of “buckled"
deformable particles with εb > 0 in 2D are hypostatic with m = Nq

quartic eigenmodes of the dynamical matrix32. These results em-
phasize an important distinction between jammed packings of de-
formable particles in 2D versus 3D.

In Fig. 6 (a), we display the density of vibrational frequencies
D(ωk) for jammed packings of deformable particles with εb = 0
over a wide range of Ã . We find several key features in D(ωk):
1) there is a large gap that separates the quartic and quadratic
frequency bands; 2) the quartic band shifts to lower frequen-
cies with increasing Ã ; and 3) the high-frequency part of the
quadratic band is insensitive to Ã , while the low-frequency part
forms a plateau that extends to lower frequencies with increasing
Ã . In the inset of Fig. 6 (a), we plot the average quartic mode
frequency ω0 as a function of Ã . We find that ω0 ∼ (A − 1)−1/3

displays power-law scaling with a scaling exponent, −1/3, that is
similar to that observed for 2D packings of deformable particles
with εb = 032. However, the scaling exponent is different (even
the opposite sign) from the value (1/2) that has been observed
for quartic modes in jammed packings of rigid non-spherical par-
ticles45,48.

We display D(ωk) for jammed packings of deformable parti-
cles with non-zero εb over a range of Ã in Fig. 6 (b). The
Ã -dependence is weak. In addition, D(ωk) for packings of de-
formable particles with non-zero εb is continuous with no large
frequency gaps, as has been found for jammed packings of rigid,
frictionless non-spherical particles45,49. The lack of a frequency
band gap in D(ωk) is likely caused by the coupling of the transla-
tional, rotational, and shape degrees of freedom generated by the
effective friction of the spherical vertices on each particle.

We next examine the contribution of the motion of each particle
to each eigenmode of the dynamical matrix at frequency ωk by
calculating the participation ratio50:

ρ(ωk) =

∣∣∣∣ N
∑

n=1
eωkn · eωkn

∣∣∣∣2
N

N
∑

n=1
|eωkn · eωkn|2

, (12)
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Fig. 5 (a) Average number of missing contacts per particle m/N (relative
to the isostatic value) plotted versus the number of quartic modes per
particle Nq/N for N = 64 packings of deformable particles with εb = 0.
The colors of the symbols indicate the value of the shape parameter
from Ã = 1 (blue) to 1.2 (red). The dashed line indicates m/N = Nq/N.
The inset shows m/N versus Ã for the same data in the main plot.
(b) The number of missing contacts m/N plotted versus Ã for N = 64
jammed packings of deformable particles with εb/εv = 10−3 (blue circles)
and rigid bumpy particles (red crosses) with same values of Nv and Ã .
In both panels, the data were obtained by averaging over 500 packings.
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where ~Vk = {eωk1, . . . ,eωkN} is the k-th unit eigenvector corre-
sponding to eigenvalue λk and eωkn is the contribution to ~Vk from
the nth particle. Small values of ρ(ωk) indicate localized eigen-
modes, whereas large values indicate spatially-extended eigen-
modes. For jammed packings of deformable particles with εb = 0,
ρ(ωk) is complex; for a single value of Ã , it increases and de-
creases multiple times as the frequency increases and it depends
strongly on Ã . (See Fig. 6 (c).) Interestingly, for quartic modes,
ρ(ωk) at the lowest frequency increases from ∼ 0 to ∼ 0.8 as
Ã increases from 1 to 1.2. This result suggests that the low-
est frequency quartic modes become increasingly de-localized as
jammed packings of completely deformable particles approach
confluence. In contrast, for jammed packings of deformable par-
ticles with non-zero bending energy, ρ(ωk) does not depend on Ã

as shown in Fig. 6 (d). In this case, ρ(ωk) is small at both small
and large ωk, suggesting localized eigenmodes occur at these fre-
quencies, and ρ(ωk) reaches a peak value of ∼ 0.7 at ωk ∼ 10−1.
This behavior for ρ(ωk) is similar to that found for jammed pack-
ings of frictionless disks and spheres50,51, even though the de-
grees of freedom are different in these two cases.

3.4 Contribution of shape degrees of freedom to vibrational
modes

To understand the role of particle deformability in the vibrational
response, we decompose each eigenmode k (with frequency ωk)
of the dynamical matrix into contributions from the translational
T (ωk), rotational R(ωk), and shape S(ωk) degrees of freedom,
such that T (ωk) +R(ωk) + S(ωk) = 1. Details about how to cal-
culate the eigenmode projections can be found in Appendix A.
Each projection T (ωk), R(ωk), and S(ωk) varies from 0 to 1, with
0 indicating no contribution of the translational, rotational, or
shape degrees of freedom to the eigenmode and 1 indicating that
only translation, rotation, or shape change contributes to a given
eigenmode.

In Fig. 7 (a), we show that for jammed packings of deformable
particles with εb = 0 the shape contribution S(ωk) is non-zero over
the full range of ωk for all shape parameters 1 < Ã < 1.2. This
result suggests that particle shape deformability plays an impor-
tant role in the vibrational response for jammed packings of de-
formable particles. We also find that S(ωk) increases with Ã for
the lowest frequencies. The jammed packings become “conflu-
ent" for Ã & 1.16, and in this regime particle translations and
rotations cost more energy than shape changes at low frequen-
cies. In Fig. 7 (a), we also show that S(ωk) & 0.6 at intermedi-
ate frequencies above the quartic mode frequencies. This result
clearly distinguishes these intermediate frequency modes from
those in jammed packings of frictionless, rigid non-spherical par-
ticles mainly associated with rotational degrees of freedom45.
In contrast, for jammed packings of deformable particles with
nonzero εb, S(ωk) ∼ 0 at low ωk, as shown in Fig. 7 (b). S(ωk)

only becomes appreciable for ωk & 10−1. In addition, S(ωk) does
not vary significantly with Ã for packings of deformable particles
with nonzero εb.

We now investigate how to take the rigid-particle limit for
jammed packings of deformable particles to recover eigenmodes
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Fig. 7 Contribution S(ωk) of the shape degrees of freedom to the
kth eigenmode of the dynamical matrix (with frequency ωk) for N = 64
jammed packings of deformable particles with (a) εb/εv = 0 and (b) 10−3

over a range of Ã from 1 (blue) to 1.2 (red).

that only contain contributions from particle rotations and trans-
lations, not particle shape changes. To address this question,
we study jammed packings of deformable particles with non-
zero bending energy as a function of decreasing εc/εv and fixed
εb/εv = 10−3. In Fig. 8 (a), we show the eigenvalue spectrum of
the dynamical matrix sorted from smallest to largest for N = 16
jammed packings with Ã = 1.06. As εc/εv decreases, a band gap
emerges that separates 6N− 3 small eigenvalues from the larger
band of high-frequency eigenvalues. (Note that the smallest three
eigenvalues correspond to rigid translations of the system.) In
Fig. 8 (b), we show that the contribution to the eigenmodes from
the shape degrees of freedom, Sk = 0, for the first 6N eigenmodes
for εc/εv & 10−3. (We index the eigenmodes by the integer k in-
stead of ωk, so that it is easy to identify the first 6N eigenmodes.)
Thus, the first 6N eigenmodes are composed of only particle trans-
lations and rotations, similar to the eigenmodes of jammed pack-
ings of rigid bumpy particles.

3.5 Ensemble-averaged shear modulus
In this section, we examine the effects of particle deformability
on the mechanical properties of jammed packings of deformable
particles. In particular, we isotropically compress the packings
and calculate the ensemble-averged shear modulus 〈G〉 as a func-
tion of pressure P for particles with εb/εv = 0 and 10−3 and rigid
bumpy particles. We find that 〈G(P)〉 can be fit by the following
functional form:

〈G(P)〉= G0 +
aPα

1+ cPα−β
, (13)

where a and c are constants, and α and β are the power-law
scaling exponents at small and large pressures, respectively52.
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G0 ∼ N−1 gives the value of the shear modulus in the zero-
pressure limit. Prior studies of jammed packings of frictionless
and frictional disks in 2D and spheres in 3D have found that
α ≈ 1 and β ≈ 0.522,53,54. In Fig. 9 (a), we show that 〈G〉 obeys
Eq. 13 for all Ã for jammed packings of deformable particles with
εb = 0. We find that G0 decreases as Ã approaches unity (be-
cause of the decrease in zJ as Ã → 1), but the power-law scaling
exponents α ≈ 1 and β ≈ 0.75 (shown in the insets) are insensi-
tive to Ã . Note that the power-law scaling exponent β is differ-
ent for jammed packings of completely deformable particles com-
pared to that for rigid spherical frictionless and frictional particles
(β ≈ 0.5), as well as rigid, frictionless ellipse- (1.0)23 and circulo-
line-shaped particles (0.8-0.9)55. The larger values of β > 0.5 is
correlated with the presence of quartic eigenmodes of the dynam-
ical matrix.

For jammed packings of deformable particles with nonzero εb

(and no quartic eigenmodes), we do not observe a low-pressure
plateau in 〈G〉 (due to the relatively small value of εc/εv), and
〈G〉 ∼ P0.5 over the full range of pressure studied and for all Ã .
(See Fig. 9 (b).) As a comparison, we show 〈G(P)〉 for jammed
packings of rigid bumpy particles over the same range of Ã in
Fig. 9 (c). Similar to jammed packings of deformable particles
with non-zero bending energy, the power-law scaling exponent
β ≈ 0.5 and 〈G(P)〉 is insensitive to Ã .

4 Conclusions and future directions
In this article, we performed computational studies of the struc-
tural, vibrational, and mechanical properties of jammed packings
of deformable particles in three dimensions (3D). We have found
several significant differences in these properties for jammed
packings described using the soft, fixed-reference shape model
versus the deformable particle model that includes shape degrees
of freedom. We first considered the vibrational response of sin-
gle deformable particles with no bending energy and showed
that they possess numerous unconstrained degrees of freedom.
Adding a bending energy term for each edge between triangular
faces on the polyhedral surface of the particle constrains all of the
remaining degrees of freedom. We then show that jammed pack-
ings of completely deformable particles with zero bending energy
are hypostatic and possess Nq quartic eigenmodes of the dynam-
ical matrix, where Nq matches the number of missing contacts
relative to the isostatic value. In contrast, jammed packings of
deformable particles with non-zero bending energy are isostatic
with no quartic eigenmodes. This result in 3D is significantly dif-
ferent than that in 2D. Jammed packings of deformable particles
with non-zero bending energy in 2D can be hypostatic or isostatic
depending on whether the particles are buckled or not.

The density of vibrational modes D(ωk) for packings of com-
pletely deformable particles in 3D possesses a frequency band
gap between the quartic and higher frequency modes. The av-
erage quartic eigenmode frequency scales as ω0 ∼ (Ã − 1)−1/3,
which is different than the scaling behavior of the quartic modes
in jammed packings of rigid, frictionless non-spherical particles
(ω0 ∼ (Ã −1)1/2). D(ωk) does not depend on the shape parame-
ter Ã for jammed packings of deformable particles with nonzero
bending energy. In this case, D(ωk) is similar to that for jammed
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packings of rigid, spherical particles with a plateau that extends
to lower frequencies with decreasing pressure. We also investi-
gate the effect of particle deformability on the mechanical prop-
erties of jammed packings of deformable particles. Specifically,
we calculate the ensemble-averaged shear modulus 〈G〉 as a func-
tion of pressure P as we isotropically compress the system above
jamming onset. We find that for particles with non-zero bending
energy 〈G(P)〉 scales as a power-law in pressure, 〈G〉 ∼ Pβ with
β ∼ 0.5, which is similar to the results for jammed packings of
rigid, frictionless and frictional spherical particles. The scaling
behavior of the ensemble-averaged shear modulus is different for
jammed packings of completely deformable particles with εb = 0.
In this case, the power-law scaling exponent β ≈ 0.75. Moreover,
in all cases studied for which jammed particle packings (with re-
pulsive linear spring interactions) possess quartic eigenmodes of
the dynamical matrix, the power-law scaling exponent β > 0.5.
For example, β ≈ 0.75 for 2D and 3D jammed packings of com-
pletely deformable particles32, β ≈ 1.0 for 2D jammed packings of
ellipse-shaped particles, and β ≈ 0.8-0.9 for 2D jammed packings
of circulo-lines55. We encourage future studies to understand the
link between quartic eigenmodes of the dynamical matrix and the
non-trivial power-law scaling of 〈G(P)〉.

In summary, we have shown that particle shape deformability
has a significant impact on the structural, vibrational, and me-
chanical properties of jammed particle packings. The deformable
particle model can be used to describe the jamming behavior ob-
served in experiments on a variety of soft particle systems, e.g.,
bubbles and emulsions (εb = 0), and vesicles and elastic shells
(εb > 0). In the current studies, we used spherical vertices on the
particle surfaces, i.e. the rough surface model, to implement the
particle-particle interactions. In future studies, we will investi-
gate the smooth surface model, where deformable particles are
modelled as sphero-polyhedra, and inter-particle distances are
determined by the separations between points, lines, and planes
that form the particle surfaces. It will be interesting to determine
whether any of the properties of jammed packings of deformable
particles depend on the surface roughness. In addition, the cur-
rent studies have determined the properties of jammed packings

of deformable particles at zero temperature. An important topic
of future research is to understand how the structural, vibra-
tional, and mechanical properties depend on temperature, and
how the glass transition temperature that determines long-time
particle diffusion depends on the shape parameter and bending
rigidity56. In addition, it is straightforward to add inter-particle
attractions to the deformable particle model and study how the
vibrational and mechanical properties of jammed packings of at-
tractive deformable particles differ from those without attractive
interactions.
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Appendix A

In this Appendix, we describe how to decompose the eigenmodes
of the dynamical matrix into contributions from the translational,
rotational, and shape degrees of freedom. We consider a packing
of N deformable particles, where each particle n’s center of mass
is located at~cn = N−1

v ∑
Nv
i=1~rin. Let ~V k be the kth eigenvector of the

dynamical matrix M in Cartesian coordinates. Components from
the (3Nv(n−1)+1)th to the (3Nvn)th position in ~V j correspond to
the nth deformable particle, among which the first, second, and
third Nv components are the Nv x-, y-, and z-coordinates, respec-
tively. We can define six unit vectors to describe translation (ûn,x,
ûn,y, ûn,z) and rotation (ûn,r1, ûn,r2, ûn,r3) about the center of mass
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of the nth particle as follows:

ûn,x =
~un,x

|~un,x|
,~un,x =( 0, . . . ,0︸ ︷︷ ︸

1 to (n−1)

, 1, . . . ,1︸ ︷︷ ︸
nth particle x

,

0, . . . ,0︸ ︷︷ ︸
nth particle y and z

, 0, . . . ,0︸ ︷︷ ︸
(n+1) to N

),

(14)

ûn,y =
~un,y

|~un,y|
,~un,y =( 0, . . . ,0︸ ︷︷ ︸

1 to (n−1)

, 0, . . . ,0︸ ︷︷ ︸
nth particle x

, 1, . . . ,1︸ ︷︷ ︸
nth particle y

,

0, . . . ,0︸ ︷︷ ︸
n-th particle z

, 0, . . . ,0︸ ︷︷ ︸
(n+1) to N

),

(15)

ûn,z =
~un,z

|~un,z|
,~un,z =( 0, . . . ,0︸ ︷︷ ︸

1 to (z−1)

, 0, . . . ,0︸ ︷︷ ︸
nth particle x and y

,

1, . . . ,1︸ ︷︷ ︸
nth particle z

, 0, . . . ,0︸ ︷︷ ︸
(n+1) to N

),

(16)

ûn,r1 =
~un,r1

|~un,r1|
,~un,r1 =( 0, . . . ,0︸ ︷︷ ︸

1 to (n−1)

, 0, . . . ,0︸ ︷︷ ︸
nth particle x

,

−(z1n− cn,z), . . . ,−(zNvn− cn,z)︸ ︷︷ ︸
nth particle y

,

y1n− cn,y, . . . ,yNvn− cn,y︸ ︷︷ ︸
nth particle z

, 0, . . . ,0︸ ︷︷ ︸
(n+1) to N

),

(17)

~u′n,r2 =( 0, . . . ,0︸ ︷︷ ︸
1 to (n−1)

,−(z1n− cn,z), . . . ,−(zNvn− cn,z)︸ ︷︷ ︸
nth particle x

, 0, . . . ,0︸ ︷︷ ︸
nth particle y

,

x1n− cn,x, . . . ,xNvn− cn,x︸ ︷︷ ︸
nth particle z

, 0, . . . ,0︸ ︷︷ ︸
(n+1) to N

),

(18)

and

~u′n,r3 =( 0, . . . ,0︸ ︷︷ ︸
1 to (n−1)

,−(y1n− cn,y), . . . ,−(yNvn− cn,y)︸ ︷︷ ︸
n-th particle x

,

x1n− cn,x, . . . ,xNvn− cn,x︸ ︷︷ ︸
n-th particle y

, 0, . . . ,0︸ ︷︷ ︸
n-th particle z

, 0, . . . ,0︸ ︷︷ ︸
(n+1) to N

).

(19)

Note that these six vectors do not form an orthogonal basis due to
non-zero off-diagonal components in the moment of inertia ma-
trix with respect to the center of mass. To construct six orthogonal
unit vectors, we apply the Gram-Schmidt process (ûn,x, ûn,y, ûn,z,
and ûn,r1 are already orthogonal to each other):

ûn,r2 =
~un,r2

|~un,r2|
,~un,r2 =~u′n,r2−

~u′n,r2 · ûn,x

|~u′n,r2|
ûn,x−

~u′n,r2 · ûn,y

|~u′n,r2|
ûn,y

−
~u′n,r2 · ûn,z

|~u′n,r2|
ûn,z−

~u′n,r2 · ûn,r1

|~u′n,r2|
ûn,r1

(20)
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Fig. 10 Magnitude of the contributions of the translational T (blue
circles), rotational R (red crosses), and shape S (black triangles) degrees
of freedom to each eigenmode of the dynamical matrix with frequency
ωk for N = 16 jammed packings of deformable particles with εb = 0 and
Ã = 1.06.

and

ûn,r3 =
~un,r3

|~un,r3|
,~un,r3 =~u′n,r3−

~u′n,r3 · ûn,x

|~u′n,r3|
ûn,x−

~u′n,r3 · ûn,y

|~u′n,r3|
ûn,y

−
~u′n,r3 · ûn,z

|~u′n,r3|
ûn,z−

~u′n,r3 · ûn,r1

|~u′n,r3|
ûn,r1

−
~u′n,r3 · ûn,r2

|~u′n,r3|
ûn,r2.

(21)

By defining the following coefficients,

pk
n,x =~V k · ûn,x (22)

pk
n,y =~V k · ûn,y (23)

pk
n,z =~V k · ûn,z (24)

pk
n,r1 =~V k · ûn,r1 (25)

pk
n,r2 =~V k · ûn,r2 (26)

pk
n,r3 =~V k · ûn,r3, (27)

we can rewrite the eigenvector ~V k as

~V k =
N

∑
n=1

pk
n,xûn,x +

N

∑
n=1

pk
n,yûn,y +

N

∑
n=1

pk
n,zûn,z +

N

∑
n=1

pk
n,r1ûn,r1

+
N

∑
n=1

pk
n,r2ûn,r2 +

N

∑
n=1

pk
n,r3ûn,r3 +~V k

s ,

(28)

where ~V k
s is the vector that remains after projecting the particle

translations and rotations out of ~V k. By applying this decomposi-
tion, we can express each eigenmode as the sum of particle trans-
lations, rotations, and shape deformations.

With these coefficients, we can define the contributions of
translational T k and rotational Rk degrees of freedom to the kth
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Fig. 11 The probability distribution P(A ) of the polyhdedra generated
from Voronoi-tessellating the centers of spheres in jammed monodisperse
sphere packings (blue circles) and random points (red crosses), as well as
the polyhedra generated from Lloyd’s algorithm (black triangles). In all
cases, the number of points is Np = 64 with periodic boundary conditions
in the x-, y-, and z-directions. The vertical dashed line is located at
A = 1.18.

eigenmode of the dynamical matrix as:

T k =
N

∑
n=1

[(
pk

n,x

)2
+
(

pk
n,y

)2
+
(

pk
n,z

)2
]

(29)

Rk =
N

∑
n=1

[(
pk

n,r1

)2
+
(

pk
n,r2

)2
+
(

pk
n,r3

)2
]
. (30)

Sk = 1− T k −Rk gives the contribution of the shape degrees of
freedom to the kth eigenmode. As an example, we show T k,Rk,
and Sk for an N = 16 jammed packing of deformable particles with
εb/εv = 0 with shape parameter Ã = 1.06 in Fig. 10 as a function
of frequency ωk.

Appendix B
In this Appendix, we provide insight into the value of the shape
parameter at which jammed packings of deformable particles
with zero bending energy become confluent. In particular, we
show results for the probability distribution of the shape param-
eters obtained from Voronoi tessellation of random points and of
the sphere centers in jammed packings of monodisperse, friction-
less spheres, as well as the shape parameters of the polyhedra
generated from Lloyd’s algorithm57. In all three cases, we con-
sider Np = 64 points and periodic boundary conditions in the x-,
y-, and z-directions. For the jammed sphere packings, we use the
same packing-generation process described in Sec. 2. For Lloyd’s
algorithm, we start with a set of random points and apply Voronoi
tessellation. We then use the centroids of the tessellated polyhe-
dra as the new set of points and apply Voronoi tessellation again.
We repeat this process 104 times after which the distribution of
the polyhedra shape parameters, P(A ), reaches a stationary dis-
tribution.

In Fig. 11, we show P(A ) for the three point processes de-
scribed above. The distributions P(A ) from jammed friction-
less sphere packings and Lloyd’s algorithm are narrow with peaks

10
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)
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Fig. 12 Local (symbols) and global (lines) packing fraction 1−φ versus
particle shape parameter Ã −1 for jammed packings of deformable par-
ticles in 2D prepared using a packing-generation protocol that includes
thermal fluctuations at temperatures T = 10−6 (blue), 10−4 (cyan), 10−3

(yellow), and 10−2 (red). Error bars correspond to averages over config-
urations (lines) or both particles and configurations (symbols). The ver-
tical dashed line is drawn at Ã = 1.16. Example particles with Ã = 1.16
for their surface-Voronoi cells are drawn in the inset, sorted by increasing
temperature from top to bottom. Arrows indicate excess free area in
each cell. Surface-Voronoi cells are drawn with black solid lines, while
total particle areas are shaded in blue, and the underlying polygons of
the deformable particles are indicated with white dashed lines.

near A ≈ 1.185 = 1.157Av and ≈ 1.176 = 1.148Av, respectively.
As discussed in Sec. 2, Av = 1.024 is the smallest shape parameter
for the Nv = 42 polyhedral deformable particles that we consider
in the main text. Thus, the most probable shape parameters for
these two types of Voronoi tessellations are similar to the value of
Ã = A /Av ≈ 1.16 above which the packing fraction at jamming
onset φJ reaches a plateau for deformable particles with εb = 0.
This value of A is also similar to the critical shape parameter at
which a fliud-to-solid transition occurs in the 3D vertex model for
confluent tissues29. In contrast, Voronoi tessellations obtained
from sets of random points yield a wide distribution P(A ) with
the most probable A ≈ 1.316 = 1.285Av, which is much larger
than the most probable values from the other two types of Voronoi
tessellations.

Appendix C
In this Appendix, we describe the effects on the packing fraction
at jamming onset φJ in 2D from packing-generation protocols that
include thermal fluctuations. In previous studies30, we found that
φJ increases with shape parameter for Ã < Ã † ≈ 1.16. Above Ã †,
φJ reaches a plateau and the particle shapes begin to buckle in-
ward. As the polygons of Voronoi tessellations of jammed disk
packings possess typical shape parameter of A † ≈ 1.16, we hy-
pothesized that the plateau in φJ for Ã & Ã † indicates a conflu-
ence transition, where deformable particles completely fill their
Voronoi cells as Ã → Ã †. For Ã > Ã †, the particles cannot fur-
ther expand in area to increase their perimeter, so they invaginate
instead.

We show in Fig. 12 that the confluence transition is sensitive
to the packing-generation protocol. We prepare jammed packings
of N = 64 2D deformable particles with εb = 0 in square, periodic

Journal Name, [year], [vol.],1–15 | 13

Page 13 of 15 Soft Matter



10
0

10
-2

10
-1

0.2

0.3

0.4

A  - 1
~

1
 -

 �

J
(A

)
~

Fig. 13 Packing fraction at jamming onset 1−φJ plotted as a function
of shape parameter Ã − 1 for jammed packings of N = 16 deformable
particles with εb = 0 in 3D, generated using the protocol with thermal
fluctuations at temperature T = 0 (blue circles), 10−4 (cyan squares),
10−3 (yellow triangles), and 10−2 (red diamonds). The dashed vertical
line is located at Ã = 1.16. Note that the confluence transition in 3D
sharpens for packings with increasing T , but it is still smoother than that
for packings of deformable particles in 2D as shown in Fig. 12.

boundaries with side length L. To include thermal fluctuations
in the packing-geneartion proptocol, we run constant N, constant
boundary area L2, and constant temperature T dynamics for a
time 50τ, where τ =

√
a0/εc, a0 is the preferred area of the par-

ticle, and thermal energy kBT is given in units of εc. We then
rapidly quench the system to T = 0 using FIRE, take a small com-
pression step, and then re-minimize the total potential energy to
achieve force balance. We repeat this thermalization, compres-
sion, and energy minimization process until reaching jamming
onset with a pressure that satisfies 10−7 < P < 2×10−7 when the
system is in force balance. (A similar protocol has been imple-
mented to generate jammed packings of 3D rigid bumpy parti-
cles58.) We studied a range of temperatures from T = 10−6 to
10−2. Constant temperature was enforced using a Langevin ther-
mostat59.

We measure packing fraction both globally and locally; the
global packing fraction φ = L−2

∑µ atµ , where atµ is the total
area of particle µ, i.e. the area of the underlying polygon aµ

plus the area of the exposed bumpy vertices abµ . For a par-
ticle with nµ circular vertices of radius rµ , the exposed bump
area abµ =

( nµ

2 −1
)
πr2

µ . The local packing fraction for particle
µ is defined as φµ = atµ/avµ , where avµ is the area of the sur-
rounding surface-Voronoi cell of the 2D deformable particle60.
Surface-Voronoi diagrams are generated by distributing fifteen
points along the segments joining adjacent circular vertices on
each particle, computing the Voronoi tessellation of all of the
points, and taking the union of the Voronoi cells associated with
each deformable particle.

In Fig. 12, we find that there is a well-defined confluence tran-
sition in both the global and local packing fractions for 2D de-
formable particle packings generated with large thermal fluctu-
ations. When T ≥ 10−3, both measures of the packing fraction
possess maxima near Ã ≈ 1.16. When T < 10−3, the packing
fraction at jamming onset is generally smaller and continues to

change for Ã > Ã †. In the inset of Fig. 12, we include examples
of single deformable particles with Ã = 1.16 and their associated
surface-Voronoi cells. At lower temperatures, we find small re-
gions of excess free area near the cell boundaries, but at higher
temperatures these regions disappear. This result indicates that
lower local (and therefore, global) packing at lower temperatures
is caused by surface friction from the circular vertices.

Appendix D
In this Appendix, we show that the packing fraction at jamming
onset φJ also depends on the protocol used to generate jammed
packings of 3D deformable particles with εb = 0. In addition to the
packing-generation protocol described in Sec. 2, we employ the
protocol58 with thermal fluctuations described in Appendix C. As
in 2D, we find that φJ increases with T , as shown in Fig. 13. For
small T (T ≤ 10−3), φJ smoothly approaches a maximum value of
packing fraction that occurs for Ã > Ã † ≈ 1.16. For T = 10−2, we
find a sharper transition near Ã = Ã † for the maximum φJ , likely
from reducing the surface friction between particles via thermal
fluctuations. However, the confluence transition in 3D still ap-
pears to be less sharp than that in 2D.
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