
Density Fluctuations and Energy Spectra of 3D Bacterial 
Suspensions

Journal: Soft Matter

Manuscript ID SM-ART-08-2021-001183.R1

Article Type: Paper

Date Submitted by the 
Author: 27-Oct-2021

Complete List of Authors: Liu, Zhengyang; University of Minnesota Twin Cities, Chemical 
Engineering and Materials Science
Zeng, Wei; University of Minnesota Twin Cities, Chemical Engineering 
and Materials Science; Guangxi University, College of Life Science and 
Technology
Ma, Xiaolei; University of Minnesota Twin Cities, Chemical Engineering 
and Materials Science
Cheng, Xiang; University of Minnesota Twin Cities, Chemical Engineering 
and Materials Science

 

Soft Matter



1

Density Fluctuations and Energy Spectra of 3D Bacterial Suspensions

Zhengyang Liu1, Wei Zeng1,2, Xiaolei Ma1, and Xiang Cheng1,*

1 Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 

55455, USA

2 College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China

* Corresponding author: Email: xcheng@umn.edu

Giant number fluctuations are often considered as a hallmark of the emergent nonequilibrium dynamics of 

active fluids. However, these anomalous density fluctuations have only been reported experimentally in 

two-dimensional dry active systems heretofore. Here, we investigate density fluctuations of bulk 

Escherichia coli suspensions, a paradigm of three-dimensional (3D) wet active fluids. Our experiments 

demonstrate the existence and quantify the scaling relation of giant number fluctuations in 3D bacterial 

suspensions. Surprisingly, the anomalous scaling persists at small scales in low-concentration suspensions 

well before the transition to active turbulence, reflecting the long-range nature of hydrodynamic interactions 

of 3D wet active fluids. To illustrate the origin of the density fluctuations, we measure the energy spectra of 

suspension flows and explore the density-energy coupling in both the steady and transient states of active 

turbulence. A scale-invariant density-independent correlation between density fluctuations and energy 

spectra is uncovered across a wide range of length scales. In addition, our experiments show that the 

energy spectra of bacterial turbulence exhibit the scaling of 3D active nematic fluids, challenging the 

common view of dense bacterial suspensions as active polar fluids.   
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Introduction

Density fluctuations are intrinsic to equilibrium systems at finite temperatures and control diverse physical 

phenomena ranging from the liquid-gas phase transition, to radiation scattering, and to the compressibility 

of materials.1 For isotropic homogeneous fluids in equilibrium, the number of particles in a volume V 

fluctuates around the average number N with a standard deviation ΔN proportional to the square root of the 

mean number  (or equivalently the square root of the volume ). However, this well-established 𝑁 𝑉

relation dictated by the central limit theorem may not hold when the system falls out of equilibrium. 

Composed of large collections of self-propelled particles, active fluids are a class of nonequilibrium soft 

materials, which display many fascinating behaviors beyond the expectation of equilibrium 

thermodynamics.2-9 In particular, an active fluid can exhibit anomalously large density fluctuations, the so-

called giant number fluctuations (GNF), where ΔN grows substantially faster than .10-21 Such anomalous 𝑁

density fluctuations may arise simply from the formation of dense clusters in motility-induced phase 

separation,22 but could also be the profound consequence of activity-driven hydrodynamic instabilities that 

couple emergent collective flows with density fluctuations.4 The mechanism of the latter has triggered 

extensive research interests in recent years, motivating our current experimental investigation. 

GNF have been observed in a broad range of living and non-living active fluids such as vibrated granular 

rods,10-13 swarming bacteria14-16 and mammalian cells,17,18 self-propelled cytoskeleton,19 and synthetic 

colloidal swimmers.20,21 As a result, GNF are often viewed as a hallmark of the emergent nonequilibrium 

dynamics of active fluids. However, although significant progress has been made in the theoretical 

understanding of GNF over the past two decades,23-33 systematic experiments that can quantitatively verify 

theoretical and numerical predictions are still few and far between. Particularly, previous experiments on 

GNF all focused on dry two-dimensional (2D) or quasi-2D active systems,10-21 where steric interparticle 

and particle-boundary interactions dominate system dynamics.4 These system-specific interactions lead to 

a variety of the scaling relations of density fluctuations quantified generically by . Scaling Δ𝑁/ 𝑁~𝑁𝛼

exponents α ranging from 0.13 up to 0.5 have been reported in different experiments. Note that α = 0 for 

isotropic homogeneous equilibrium systems obeying the central limit theorem, whereas the upper bound α 

= 0.5 corresponds to a system with maximum density fluctuations. In contrast, quantitative measurements 

of GNF in 3D wet active fluids, where hydrodynamics govern the interparticle interactions and conserve 

the total momentum of systems, have not been achieved heretofore. Important questions including how the 

long-range hydrodynamic interaction and the dimensionality of systems affect the density fluctuations of 

active fluids have yet to be addressed experimentally. Such experiments would be of value for revealing 

the intricate coupling between emergent active flow and density fluctuations and elucidating the origin of 

giant number fluctuations in 3D wet active fluids.  
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Here, we present our systematic experiments on the density fluctuations of bulk bacterial suspensions, a 

premier example of 3D wet active fluids.4,8 We first examine the spatiotemporal density correlations and 

measure the correlation length and time of density fluctuations with increasing bacterial concentrations. 

Moreover, we demonstrate the existence of GNF and quantify the scaling of density fluctuations in bulk 

bacterial suspensions. Surprisingly, we find that the scaling of GNF persists at small scales in low-

concentration suspensions well before the transition to active turbulence with collective bacterial swimming. 

Such an unusual behavior likely stems from the long-range hydrodynamic interaction of 3D wet active 

fluids. To explore the origin of 3D density fluctuations, we further inspect the energy spectra of suspension 

flows, which characterize the scale-dependent flow structures of active turbulence. Interestingly, the scaling 

of the energy spectra extracted from our experiments shows the signature of active nematics and challenges 

the common view of dense bacterial suspensions as active polar fluids. Finally, our methodical 

measurements reveal a scale-invariant density-independent coupling between GNF and energy spectra of 

bacterial suspensions across a wide range of length scales. We show that the same coupling also governs 

the transient kinetics of a bacterial suspension during its transition towards active turbulence. Taken 

together, our study provides benchmark experiments on density fluctuations and energy spectra of bulk 

bacterial suspensions and sheds light on the origin of giant number fluctuations in 3D wet active fluids. 

Experiment  

We use a genetically engineered light-powered Escherichia coli strain as our model active particles 

(Appendix A). In a typical experiment, a bacterial suspension of control volume fraction  is injected into 𝜙

a sealed chamber of 20 mm by 3 mm by 140 μm. Here,  = nVb, where n is the number density of bacteria 𝜙

and Vb is the volume of a single bacterium. We estimate Vb = π(wb/2)2lb ≈ 1 μm3, where lb = 3 μm and wb = 

0.65 μm are the average length and width of bacterial body. Without external oxygen supply, bacteria 

quickly consume all the oxygen in the chamber and stop swimming after about 5 minutes. We then 

illuminate the suspension using a high-intensity light, which saturates the light response of bacteria even in 

the dense region of high-  suspensions used in our experiments. Thus, bacteria show a density-independent 𝜙

average swimming speed of v0 = 15 ± 3 μm/s. A video of the suspension is taken 50 μm above the bottom 

wall of the chamber by a bright-field inverted microscope at a frame rate of 30 fps with a field of view of 

420 μm by 360 μm (Fig. 1A) and an estimated depth of field of 6 μm. We use a standard Particle Image 

Velocimetry (PIV) algorithm to extract the 2D in-plane velocity field v = (vx, vy) in the 3D suspension 

(Appendix A). Since bacteria are used as tracers, PIV tracks bacterial flow, instead of fluid flow. 

Nevertheless, it has been shown that fluid flow and bacterial flow share quantitatively similar statistical 

Page 3 of 30 Soft Matter



4

structures.34 Our PIV analyses reveal the intermittent vortices and jets of collective bacterial swimming in 

high-  suspensions (Fig. 1B and Supplementary Video 1), a phenomenon often referred to as active 𝜙

turbulence.35,36

Note that the smallest dimension of our system is H = 140 μm, which is about two orders of magnitude 

larger than the body size of single bacteria. Recent numerical and experimental studies have shown that the 

dynamics of bacterial suspensions exhibit bulk behaviors at such a large scale.37-39 Away from system 

boundaries, the flow of bacterial suspensions is isotropic. Hence, imaging a 2D plane within a bulk 

suspension yields representative results and provides all the necessary statistical information on the density 

fluctuations and flow structures of bulk 3D suspensions. 

It is challenging to count the number of bacteria in a 3D dense suspension of fast moving bacteria directly. 

Fortunately, by virtue of the Beer-Lambert law, local bacterial density is monotonically correlated with the 

local intensity of microscope images, where darker regions correspond to higher bacterial densities (Figs. 

1A, C and Supplementary Video 1). Such a correlation has been exploited in previous experiments in 

probing the dynamics of bacterial suspensions and actin filaments.19,40,41 To calibrate the density-intensity 

correlation, we prepare bacterial suspensions of different  and image the suspensions under the same 𝜙

illumination (Fig. 1D inset). The mean image intensity decreases with increasing  following an 𝜙

approximately linear relation (Fig. 1D), agreeing with the Beer-Lambert law for samples of small thickness 

and weak absorptivity appropriate to our experiments. The linear density-intensity relation is independent 

of the selection of the field of view down to the size of single pixels. 

Results

Spatiotemporal correlations of density and velocity fluctuations. The monotonic correlation between 

image intensity and bacterial density allows us to map the spatiotemporal patterns and measure the 

correlation length and time of the density fluctuations of 3D bacterial suspensions. Specifically, we compute 

the density spatial correlation, Cn, and the density temporal autocorrelation, Ct,n, for suspensions of different 

 (Figs. 2A and B) and compare them with the corresponding velocity spatiotemporal correlations, Cv and 𝜙

Ct,v, extracted from PIV (Figs. 2C and D). The definition of Cn, Ct,n, Cv and Ct,v are given in Supplementary 

Materials (SM) Sec. 1.1. The correlation length λ and time τ are determined when the corresponding 

normalized correlation function decays to 1/e.

Figure 2E shows the density correlation length λ at different , which quantifies the scale of density 𝜙

inhomogeneities in suspensions. λ is small at low , gradually increases with  and reaches a plateau of ~ 𝜙 𝜙
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5lb above  in high-  suspensions with active turbulence, where  is the transition concentration to active 𝜙𝑐 𝜙 𝜙𝑐

turbulence.  = 4.05% in our experiments, quantitatively agreeing with our previous experiments as well 𝜙𝑐

as the prediction of kinetic theories.42 The velocity correlation length follows a qualitatively similar trend 

and also saturates above , consistent with previous experiments.43 The saturated density correlation length 𝜙𝑐

is about one-half of the saturated velocity correlation length. Our previous study on high-  bacterial 𝜙

suspensions in a planar Couette cell with an adjustable gap thickness has shown that the velocity correlation 

length is linearly proportional to the size of the system,38 which is set by the minimum dimension of the 

sealed chamber H = 140 μm in our current study. 

The correlation times of velocity and density fluctuations, τ, show more interesting trends with increasing 

 (Fig. 2F). While the velocity correlation time increases with  when  < , the density correlation time 𝜙 𝜙 𝜙 𝜙𝑐

decreases with increasing . The two time scales are well separately for low-  suspensions. These opposite 𝜙 𝜙

trends can be understood as follows. The local velocities of low-  suspensions are small and change 𝜙

directions rapidly due to the random tumbling of bacteria within PIV boxes. As a result, the velocities 

decorrelate quickly. With increasing  towards active turbulence, local spatiotemporal correlations between 𝜙

bacteria build up,37,44,45 which lead to longer persistence of the direction of local velocities and therefore 

longer velocity correlation times. The effect culminates at , resulting in the longest velocity correlation 𝜙𝑐

time, reminiscent of the critical slowing down in continuous phase transitions of equilibrium systems.1 

Above , the lifetime of the intermittent vortices and jets of active turbulent flow is approximately constant 𝜙𝑐

independent of ,43 giving a constant velocity correlation time ~ 6τb. Here, τb = lb/v0 = 0.2 s is the 𝜙

characteristic swimming time scale of E. coli. Different from the velocity temporal autocorrelation, the 

density temporal autocorrelation depends on the magnitude, instead of the direction, of local velocities. 

Large velocities give rise to a fast temporal variation of local densities. Since the magnitude of velocities 

increases monotonically with , the density correlation time continuously decreases, approaching ~ 4τb at 𝜙

high . As both the density and velocity fluctuations are controlled by the active turbulence above , the 𝜙 𝜙𝑐

two time scales become comparable in high-  suspensions. A simple scaling argument can be formulated 𝜙

based on the above picture, which provides a good estimate of the density correlation time in the low-  and 𝜙

high-  limit (SM Sec. 1.2).       𝜙

 

Giant number fluctuations. Exploiting further the linear intensity-density relation (Fig. 1D), we examine 

the possible existence of GNF in 3D bacterial suspensions by calculating the standard deviation of bacterial 

number ΔN for subsystems of different sizes (SM Sec. 2). Figure 3A shows ΔN as a function of the area of 

subsystems l2 for bacterial suspensions of different , where l is the side length of square subsystems. Since 𝜙
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the depth of field of our images d is fixed, the average number of bacteria in the subsystems of volume l2d 

is . Thus, N is linearly proportional to l2 at a fixed average  and  ~ l. To highlight the 𝑁 = 𝜙𝑙2𝑑/𝑉𝑏  𝜙 𝑁

deviation from the central limit theorem, we normalize ΔN by l (or equivalently ). A system obeys the 𝑁

central limit theorem without GNF should show a constant ΔN/l, independent of subsystem size l. 

At any given , ΔN/l of bacterial suspensions indeed plateaus following the central limit theorem when l is 𝜙

a few times larger than the density correlation length at the corresponding , λ( ) (Fig. 3A). The central 𝜙 𝜙

limit theorem applies at large length scales owing to the spatial average over multiple dense and dilute 

regions. Nevertheless, when l is comparable or smaller than λ( ), bacterial suspensions of all  in our study 𝜙 𝜙

exhibit obvious GNF, where ΔN/l increases with increasing l2. The result demonstrates the existence of 

GNF in 3D bacterial suspensions. Remarkably, ΔN/l versus l2 converges to the same scaling in the small l 

limit even for low-  suspensions without active turbulence. Such a finding is in contrast to 2D active 𝜙

systems, where GNF diminishes continuously with decreasing particle concentrations and disappears 

completely for low-concentration samples.10-12,14,19 Although GNF at small scales has been reported in one 

2D system, where gliding myxobacteria form moving colonies on agar substrates,15 the origin of the density 

correlation at small scales in this 2D system is not clear. For 3D bacterial suspensions, kinetic theories have 

predicted that bacteria show spatiotemporal correlations at low concentrations well before the transition to 

active turbulence due to the long-range hydrodynamic interaction.37,44 Although these theories focused on 

the effect of the correlations on the enhanced diffusion of passive tracers and velocity fluctuations in dilute 

suspensions, our experiments show that such correlations also lead to GNF at small length scales in low-  𝜙

bacterial suspensions. 

The strength of GNF can be quantified by the scaling exponent α in the scaling relation ΔN/  ~ Nα. We 𝑁

extract α by fitting the experimental data with power-law functions at l < λ( ). The inset of Fig. 3A shows 𝜙

α as a function of , where α remains approximately constant at 0.30 ± 0.03 for all . For high  ≥ 5.6%, 𝜙 𝜙 𝜙

α stabilizes to 0.33 ± 0.01. The result quantitatively agrees with the theoretical prediction of α = 1/3 for 3D 

suspensions of polar-ordered self-propelled particles with a long-range hydrodynamic interaction.25 

However, the GNF scaling shown in Ref. 25 is for ordered suspensions without viscous damping. The theory 

predicts that the ordered phase of bacterial suspensions at low Reynolds numbers (Re) is convectively 

unstable. Kinetic theories developed for low-Re 3D active suspensions do show the emergence of collective 

bacterial swimming with large-scale bacterial orientational order,46-49 where density fluctuations arise in the 

nonlinear regime beyond the linear stability analysis.47 Nevertheless, quantitative investigation of GNF in 

low-Re 3D wet active fluids has not been conducted heretofore. Our experiments not only measure the GNF 

scaling in bulk bacterial suspensions, but also show that the scaling persists in low-concentration 

suspensions at small scales well before the emergence of the long-range bacterial orientational order.  Note 
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that although the accuracy of the power-law fitting is limited due to the finite length scale of our experiments 

especially for low-  suspensions, the existence of the scale-dependent GNF in bacterial suspensions of 𝜙

different concentrations is robust and does not rely on the fitting.   

Lastly, we also analyze the scale-dependent density fluctuations in terms of the Fourier transform of the 

Ursell function,  (Appendix A), where the Ursell function Snn(r) quantifies the spatial 𝑆(𝒌) = ℱ(𝑆𝑛𝑛(𝒓))

correlation of density fluctuations .1 Here,  is 𝑆𝑛𝑛(𝒓) = 〈𝛿𝑛(𝒓 + 𝒓𝟎,𝑡)𝛿𝑛(𝒓𝟎,𝑡)〉𝒓𝟎,𝑡 𝛿𝑛(𝒓,𝑡) = 𝑛(𝒓,𝑡) ― 〈𝑛〉

the density fluctuation at r and t around the mean density , whereas the standard deviation of local 〈𝑛〉

density fluctuations is . For isotropic liquids, S(k) is equivalent to the static structure ∆𝑛(𝒓) = 〈𝛿𝑛(𝒓)2〉𝑡

factor when k ≠ 0, which is intimately linked to ΔN in a subsystem of size l considered above via18 

.                                               (1)
Δ𝑁

𝑁 =
1
𝑙[∫𝑑2𝒌|𝜒𝐴(𝒌)|2𝑆(𝒌)]1/2

Here,  is the Fourier spectrum of the characteristic function of the square |𝜒𝐴(𝒌)|2 = 𝑙4sinc2(𝑘𝑥𝑙
2 )sinc2(𝑘𝑦𝑙

2 )
region of area l2. As bacterial suspensions are isotropic, we consider only the orientational average 𝑆(𝑘) =

 (Fig. 3B). Consistent with the density fluctuations in the real space, S(k) plateaus at small k, 〈𝑆(𝒌)〉|𝒌| = 𝑘

indicating the normal density fluctuation at large scales dictated by the central limit theory. The decrease 

of S(k) at the intermediate and large k suggests the existence of GNF at the intermediate and small length 

scales. In particular, S(k) of different  converge at large k, showing the abnormal density fluctuations at 𝜙

small scales, independent of the average concentration of bacterial suspensions.     

Energy spectra. To understand the origin of scale-dependent GNF in bulk bacterial suspensions, we further 

investigate the flow structures of bacterial suspensions. Similar to GNF, the velocity field of bacterial 

suspensions also exhibits scale-dependent structures, which are usually characterized by its energy 

spectrum, E(k) (Appendix A).50-54 E(k) measures the kinetic energy density at different scales in terms of 

wavenumber k = 2π/l, which is related to the mean kinetic energy density via 〈𝒗2〉/2 =  〈𝑣2
𝑥 + 𝑣2

𝑦〉/2 =

. Figure 4 shows E(k) of bacterial suspensions at different . In the dilute suspension of  = ∫∞
0 𝐸(𝑘)𝑑𝑘 𝜙 𝜙

0.8%, E(k) is independent of k in the small k limit and decreases at high k. The oscillation observed at high 

k likely arises from PIV errors due to the small number of bacteria in each PIV boxes at low . With 𝜙

increasing , the plateau of E(k) at small k increases sharply. In the turbulent regime above , the kinetic 𝜙 𝜙𝑐

energy concentrates at scales much larger than the size of single bacteria, even though the flow is driven by 

the swimming of individual bacteria. The overall trend of E(k) with increasing  qualitatively agrees with 𝜙

large-scale particle simulations.31,55 
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The energy spectra of low-  suspensions with uncorrelated pusher swimmers have been predicted,55𝜙

,                                        (2)𝐸(𝑘) = 4𝜋𝑛𝜅2[1
3 +

cos (𝑘𝑙𝑑)
(𝑘𝑙𝑑)2 ―

sin (𝑘𝑙𝑑)
(𝑘𝑙𝑑)3 ]𝜀4𝑘2

𝑙2
𝑑

𝐾2
2(𝑘𝜀)

where κ is the dipole strength and ld is the dipolar length of E. coli. ε is the distance for the regularization 

of the dipolar flow field. K2 is the modified Bessel function of the second kind. The fitting of Eq. (2) agrees 

reasonably well with our experiments at low  in the small k limit (Fig. 4). Particularly, Eq. (2) predicts 𝜙

that E(k) is independent of k as k → 0, a key feature confirmed by our experiments. A simple dimensional 

analysis shows that the plateau E(k) at the small k follows  for uncorrelated swimmers of lim
𝑘→0

𝐸(𝑘)~ 𝑛𝜅2

number density n. Here, the dipole strength can be estimated as  300.8 μm3/s, where 𝜅 = 𝐹𝑙𝑑/𝜂 = 𝜉𝑣0𝑙𝑑/𝜂 =

η is the viscosity of the buffer. ξ is the drag coefficient of a bacterial body along its major axis, which can 

be calculated based on the geometry of bacterial body .56 ld = 1.9 μm is 𝜉 = 3𝜋𝜂𝑤𝑏[1 ― (1 ― 𝑙𝑏/𝑤𝑏)/5]

taken from direct measurements.57 Thus,  μm3/s, within the same order of magnitude of lim
𝑘→0

𝐸(𝑘) ≈ 7 × 102

our experiments. The discrepancy between Eq. (2) and experiments at large k arises from PIV errors and 

the local bacterial correlations as shown by density fluctuations.

We also extract the scaling exponent β of the energy spectra, E(k) ~ , by fitting E(k) at intermediate k, 𝑘 ―𝛽

where a significant change of E(k) with  occurs and E(k) exhibits good power-law relations. β increases 𝜙

with  and saturates around 3 at high  >  (Fig. 4 inset). The saturated scaling exponent quantitatively 𝜙 𝜙 𝜙𝑐

agrees with previous experiments on the active turbulence of high-concentration sperm suspensions and B. 

subtilis suspensions at large k.51,52 However, E(k) in Ref. 51 increases with k at small k and shows a non-

monotonic trend with a pronounced peak. Such a discrepancy is likely attributed to the confined geometry 

used in 51, which limits the size of turbulent vortices38 and causes the increase of E(k) with k when k is 

smaller than the reciprocal of the vortex scale. The large system size of our experiments allows us to probe 

energy spectra at small k without the influence of system boundaries. Remarkably, our experiments show 

E(k) ~ k0 in the small k limit and ~ k –3 at large k, exhibiting the universal scaling predicted for 3D wet 

active nematic fluids.36,58,59 This finding, in combination with our previous results on the linear relation 

between the velocity correlation length and the system size,38 challenges the popular view of dense bacterial 

suspensions as active polar fluids.4,34,36,51 Theories of wet active nematic fluids predict a long-wavelength 

hydrodynamic instability with the most unstable mode at k → 0.4,25,46-49 As a result, the velocity correlation 

length is set by the size of the system. In contrast, the phenomenological theories of active polar fluids 

predict an intrinsic vortex scale independent of system sizes,34,51,60 which dictates a constant velocity 

correlation length at which energy spectra peak.    
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Density fluctuation–flow coupling in steady state. Both GNF and energy spectra probe the scale-

dependent dynamic structures of bacterial suspensions. While the former measures density fluctuations at 

different scales, the latter probes flow energies contained at different scales. Although both quantities have 

been extensively studied, a direct correlation between the two has not been explicitly considered heretofore. 

Indeed, the trends of GNF and energy spectra show similar characteristics at high , both exhibiting a rapid 𝜙

increase at small scales and plateaus at large scales (Figs. 3 and 4). Such a similarity suggests that a density-

independent correlation between density fluctuations and kinetic energy may exist in the k space. To verify 

the hypothesis, we plot the kinetic energy density E(k) against the density fluctuations ΔN at each 

corresponding scale l = 2π/k (Fig. 5A). All the ΔN-E(k) pairs in the turbulent regime fall onto a master curve 

over a wide range of length scales extending from the size of a single PIV step (~ 8 μm) up to the size of 

the entire system (> 140 μm), regardless of the volume fractions of the samples. In contrast, ΔN-E(k) scatters 

strongly for low-  suspensions without active turbulence. It is certainly not surprising that density 𝜙

fluctuations positively correlate with kinetic energy in general, as both are increasing functions of bacterial 

density. However, the collapse of data of high-  suspensions of different volume fractions at different 𝜙

scales is quite unexpected. The result demonstrates a scale-invariant and density-independent coupling 

between density fluctuations and kinetic energy density: E(k) of the same value gives rise to quantitatively 

similar ΔN regardless length scales and volume fractions. The relation further suggests that the couplings 

between density fluctuations and flow energy at different scales are independent. A similar trend can be 

also observed when plotting E(k) versus S(k) (Fig. 5B), although the collapse is not as good as that shown 

in ΔN-E(k) for suspensions close to the transition concentration  ≈ 4.0%.    𝜙𝑐

Density and velocity fluctuations are connected via the continuity equation at the mean field level,47 

,                                                         (3)
∂𝑛
∂𝑡 + 𝒖 ∙ ∇𝑛 = ― ∇ ∙ (𝑛𝑣0𝒅)

where n(x,t) and u(x,t) are the bacterial density field and the fluid velocity field, respectively. d(x,t) is a 

unit vector field, indicating the local average orientation of bacteria. (x,t) is the local average bacterial 𝑣0

swimming speed, which may depend on the local density n. Diffusion is typically small compared to 

advection and thus neglected. Although looking simple, Eq. (3) is highly nonlinear with strong coupling 

between n, , u and d via kinetic equations. While the linear stability analysis of the coupled equations has 𝑣0

been implemented on both the isotropic and fully-aligned states of suspensions, density remains uniform in 

the linear regime.47,49 Hence, the rise of density fluctuations is an intrinsically nonlinear phenomenon, 

requiring the full solution of the kinetic equations in the turbulent state. As a result, a direct quantitative 

relation between velocity fields and density fluctuations of active turbulence cannot be easily obtained from 
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Eq. (3) without recourse to experimental or numerical insights. The challenge is similar to that faced by the 

infamous problem of high-Re turbulence,61 even though active turbulence is driven by the swimming of 

bacteria with Re ~ 10-4. Saintillan and Shelley showed numerically that the local density n anti-correlates 

with the divergence of the relative bacterial flux  for 2D active turbulence.47 Here, we ∇ ∙ (𝑛𝑣0𝒅)

experimentally investigate the correlation between density fluctuations and flow structures of 3D active 

turbulence. Different from the results of the 2D numerical simulation, we find that the correlation between 

local density and bacterial flux is too weak to be detected (crosses in Fig. 6B). Instead, we show that density 

fluctuations and active turbulent flow are coupled in the k space, where a scale-invariant density-

independent correlation between density fluctuations and energy spectra is uncovered over a wide range of 

length scales.        

The coupling between density fluctuations and energy spectra at each length scale can be qualitatively 

understood as follows. By integrating over a box of a side length l and applying the divergence theorem on 

Eq. (3), we achieve 

,                                            (4)
∂𝑁𝑙

∂𝑡 = ∯[𝑛(𝑣0𝒅 + 𝒖)] ∙ 𝑑𝑺 = ∯𝑛𝒗 ∙ 𝑑𝑺

where Nl is the total number of bacteria in the box and  represents the density fluctuations in the ∂𝑁𝑙/∂𝑡

box. dS is the differential surface area of the box.  is the velocity of bacterial flow measured 𝒗 = 𝑣0𝒅 + 𝒖

by PIV. The incompressibility of the fluid flow  is applied when deriving Eq. (4). For simplicity, ∇ ∙ 𝒖 = 0

we consider the initial growth of density fluctuations starting from the turbulent state established in the 

linear regime with spatially uniform density. n is then a constant that can be taken outside the integration. 

If the local turbulent flow has a correlation length much larger than l, then the velocity at the one side of 

the box would be strongly correlated with the velocity at the opposite side of the box. Bacteria are simply 

advected through the box without changing the number of bacteria inside. Thus, the flow at the large scales 

does not contribute to the density fluctuations inside the box. Similarly, if the correlation length is much 

smaller than l, the spatial average of randomly orientated small-scale turbulent vortices over the surface 

area l2 would lead to zero density flux at the surface and, therefore, does not contribute to the density 

fluctuations inside the box either. Thus, the density fluctuations inside the box of length l should be 

dominated by the flow with a correlation length on the order of l. Because E(k = 2π/l) is the Fourier 

transform of the two-point velocity-velocity spatial correlation and quantifies the strength of bacterial flow 

at the length scale l,61 E(k = 2π/l) naturally correlates with the density fluctuations at the scale l as shown 

in Fig. 5. The simple argument above assumes a one-way coupling, where the turbulent flow triggers density 

fluctuations and not vice versa. This simple assumption is valid only at early times during the initial growth 

of density fluctuations from the state of uniform density in the linear regime. As density fluctuations build 
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up, the back influence of density inhomogeneities on the turbulent flow may not be ignored. Thus, our 

experimental finding provides not only a quantitative understanding of the origin of density fluctuations in 

dense bacterial suspensions, but also important insights into the nonlinear dynamics of 3D active turbulence.

To illustrate the correlation between density fluctuations and kinetic energy at a given scale in real space, 

we calculate the correlation of local density fluctuations and kinetic energy at the smallest length scale of 

our PIV analysis, i.e., the step size of PIV at l = 2.75lb (see SM Sec. 3.1 for the definition). The local density 

fluctuation Δn(r, t) and kinetic energy E(r, t) are extracted from the image intensity field and the PIV 

velocity field, respectively (Fig. 6A). The normalized correlation between Δn(r, t) and E(r, t) averaged over 

all r and t is then computed at different  (disks in Fig. 6B). At low  without active turbulence, the 𝜙 𝜙

correlation is weak and fluctuates around zero. It then increases sharply with  as bacterial suspensions 𝜙

transition to active turbulence. A constant positive correlation persists in the turbulent regime when  > , 𝜙 𝜙𝑐

which is substantially larger than the correlation between local density and the divergence of bacterial flux 

(see SM Sec. 3.2 for the definition). The results provide a concrete example of the coupling between density 

fluctuations and kinetic energy at small scales. 

As a comparison, we also calculate the direct correlation between the local density (instead of local density 

fluctuations) and kinetic energy (squares in Fig. 6B)(see SM Sec. 3.3 for the definition). Local density and 

kinetic energy show small but positive correlations when . A high bacterial density enhances local 𝜙 < 𝜙𝑐

bacterial alignment and therefore increases local flow velocity, a feature similar to that observed in 2D 

bacterial swarming on agar substrates.14 In contrast, local density and kinetic energy become anti-correlated 

in active turbulence above . The finding is reminiscent of the preferential accumulation of passive inertial 𝜙𝑐

particles in high-Re turbulence,62 where heavy particles concentrate at convergence zones at which multiple 

vortices interact to form a saddle-like flow of low flow velocity. Nevertheless, since the particle Stokes 

number of bacteria is St ~ 10-5, the inertial effect that drives particle preferential accumulation in high-Re 

turbulence cannot be present in bacterial suspensions. Instead, the anti-correlation may arise from the 

unique features of bacterial locomotion in shear flow such as rheotaxis and shear-induced trapping of 

bacteria.63,64 More works are certainly needed to reveal the origin of the density-flow correlation in active 

turbulence, which are beyond the scope of our current study focusing on density fluctuations and will be 

the subject of future investigations.      

Density fluctuation–flow coupling in transient state. The same scale-invariant density-independent 

correlation between density fluctuations and energy spectra is also present in the kinetic process during the 

bacterial turbulent transition. Taking the advantage of the light-powered bacteria, we trigger the onset of 
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bacterial turbulence by suddenly turning on the light illumination on high-  bacterial suspensions at t = 0.42 𝜙

Figure 7A shows the temporal evolution of density fluctuations and turbulent flow in a bacterial suspension 

of  = 6.4% through this kinetic process (see also Supplementary Video 2). At t = 0, the local flow velocities 𝜙

are close to 0. The suspension shows no sign of density fluctuations. At t = 40 s, although the magnitudes 

of velocities are still small, local alignment of velocity directions can be clearly observed, displaying the 

characteristic pattern of turbulent vortices and jets. Weak density fluctuations start to emerge. At t = 103 s, 

the magnitude of velocities grows substantially and saturates. The suspension reaches the steady-state active 

turbulence with strong density fluctuations. Note that the response time of individual bacteria to light 

triggering is much shorter than the emergence of collective flows. A single bacterium recovers its 

swimming speed within a few seconds after turning on the light.42    

Quantitatively, we monitor the temporal evolution of density fluctuations and energy spectra of the 

suspension in the transient state before the suspension reaches the steady-state turbulence (SM Sec. 2.4). 

Figure 7C shows the growth of GNF during the turbulent transition. Different from the steady-state GNF 

at different , where strong GNF persist at small length scales even for low-  suspensions, the high-  𝜙 𝜙 𝜙

bacterial suspension shows no or very weak GNF at all scales at the onset of active turbulence near t = 0 

with a small scaling exponent α ≈ 0.10. The strength of GNF, quantified by α, gradually increases over time 

(the black line in Fig. 7B). α saturates to the steady-state value of 0.33 above t ≈ 90 s. Interestingly, the 

growth of GNF is significantly delayed compared with the formation of collective turbulent flow, which is 

measured by the area fraction of the regions with strong local velocity alignment, M.42,65 M reaches a plateau 

at a much earlier time ~ 30 s (the blue dotted line in Fig. 7B). The finding provides experimental evidence 

on a key prediction of the kinetic theories of active suspensions,46-49 where density fluctuations are shown 

to be the consequence of the nonlinear development of the hydrodynamic instability of pusher swimmers 

and appear only at long times. In the linear regime at the onset of the hydrodynamic instability, although 

the collective turbulent flow has already established, density remains uniform. While α and M show a clear 

separation of time scales, the growths of α and the kinetic energy E are strongly correlated and exhibit 

quantitatively similar trends in the transient state (the black and the orange lines in Fig. 7B), demonstrating 

the coupling between density fluctuations and flow kinetic energy in the kinetic process.

Lastly, we also analyze the correlation between ΔN and E(k) during the turbulent transition of bacterial 

suspensions of different  (Fig. 7D). When  > , all our data at different  and k, as well as at different 𝜙 𝜙 𝜙𝑐 𝜙

t except for the earliest time of 10 s close to the light response time of bacteria (“×” markers in Fig. 7D), 

collapse into the same master curve obtained from the steady-state measurements. The result shows that the 

k-space kinetic energy density controls not only the steady-state GNF but also the rise of GNF at the 

corresponding scale.
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Discussion and conclusions

We have conducted systematic experiments investigating density fluctuations and energy spectra of 3D 

bulk bacterial suspensions over a wide range of concentrations in both the steady and transient states. We 

examined the density and velocity spatiotemporal correlations and uncovered a dynamic slowing down as 

the system approaches the bacterial turbulent transition. More importantly, we demonstrated the existence 

of giant number fluctuations in bulk bacterial suspensions and quantified their scaling relation at different 

concentrations. We found that the same scaling persisted at small scales even in low-concentration 

suspensions well before the transition to active turbulence. Moreover, we also measured the energy spectra 

of bacterial suspensions of different concentrations and showed the spectral properties of the active 

turbulence of dense bacterial suspensions in the bulk limit. The scaling of the energy spectra of our bulk 

samples suggests that dense bacterial suspensions behave like an active nematic fluid, rather than an active 

polar fluid. Lastly, by comparing density fluctuations and energy spectra at different scales, we revealed a 

universal correlation between density fluctuations and kinetic energies across two orders of magnitude of 

length scales stretching from the scale of single bacteria up to the size of the system. We further showed 

that such a scale-invariant and density-independent correlation also dominated the kinetic process during 

the transition towards active turbulence and governed the rise of density fluctuations in 3D wet active fluids. 

In addition to these previously unknown features, our study also verified several important theoretical 

predictions on 3D wet active fluids:

i. Our study provided experimental evidence on the existence of local spatiotemporal correlations between 

bacteria in 3D dilute suspensions well before the transition to active turbulence.37,44

ii. The measured energy spectra of low-concentration bacterial suspensions confirmed the key feature of 

the energy spectra of uncorrelated pusher swimmers in the small wavenumber limit,55 whereas the scaling 

of the energy spectra of high-concentration suspensions at both small and large wavenumbers testified the 

universal scaling predicted for 3D wet active nematics.36 

iii. The delayed onset of density fluctuations uncovered in our experiments supported the central prediction 

of the kinetic theories on the nonlinear development of the hydrodynamic instability of pusher 

suspensions.46-49 

It is worth of noting that there have been extensive studies on GNF and energy spectra of active fluids as 

two independent topics. Our experiments showed that GNF and energy spectra are coupled in 3D wet active 

fluids following a scale-invariant density-independent correlation. The finding can potentially help to 
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coordinate independent research efforts in understanding these two different emergent properties of active 

turbulence.  

Appendix A: Materials and methods

Light-powered E. coli. We introduced a light-driven transmembrane proton pump, proteorhodopsin (PR), 

to wild-type E. coli (BW25113) by transforming the bacteria with plasmid pZE-PR encoding the SAR86 γ-

proteobacterial PR-variant.66 The activity of PR was correlated with the intensity of light. Thus, we could 

control the swimming speed of bacteria using light of different intensities. In our experiments, we used 

high-intensity light, which saturated the light response of bacteria. The average swimming speed of bacteria 

was fixed at v0 = 15 ± 3 μm/s.

The bacteria were cultured at 37 °C with a shaking speed at 250 rpm for 14-16 hours in terrific broth (TB) 

[tryptone 1.2% (w/w), yeast extract 2.4% (w/w), and glycerol 0.4% (w/w)] supplemented with 0.1 g/L 

ampicillin. The culture was then diluted 1:100 (v:v) in fresh TB and grown at 30 °C for 6.5 hours. PR 

expression was triggered by supplementing the culture medium with 1 mM isopropyl β-D-thiogalactoside 

and 10 μM ethanolic all-trans-retinal in the mid-log phase, 3 hours after the dilution. The bacteria were 

harvested by gentle centrifugation (800g for 5 min). After discarding the culture medium in the supernatant, 

we resuspended bacteria with DI water. The resuspended suspension was then centrifuged again at 800g 

for 5 min, and finally adjusted to the target concentration for experiments.

Sample preparation and microscopy. To prepare the sample for microscopy, we constructed a seal 

chamber made of glass slides (25 mm by 75 mm) and #1.5 coverslips (18 mm by 18 mm). We first glued 

(NOA 81, Norland, NJ) two coverslips on a glass slide, side-by-side, leaving a 3-mm separation between 

the two coverslips. We then covered the 3-mm separation with another coverslip to form a channel. We 

pipetted bacterial suspensions into the channel. Finally, the two ends of the channel were sealed by UV 

glue (NOA 76, Norland, NJ) to form a sealed chamber.

Images of the bacterial suspensions were taken 50 μm above the bottom surface of the sealed chamber by 

a Nikon Ti-E inverted microscope in the bright-field mode using a 20× (NA 0.5) objective. The field of 

view was 420 μm by 360 μm. All videos were recorded at 30 frames per second using an Andor Zyla 

sCMOS camera.
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Particle image velocimetry (PIV). Two-dimensional in-plane velocity fields were extracted by Particle 

Image Velocimetry (PIV) analysis using the openPIV package in Python (Liberzon et al., OpenPIV). We 

fixed the box size to be 16.5 μm, which was larger than the size of a single bacterial body but smaller than 

the velocity correlation length. A step size of the half of the box size with Δx = 2.75lb = 8.25 μm was used 

by convention, which set the spatial resolution of the velocity fields.

Fourier transform of the Ursell function. The Fourier transform of the Ursell function was calculated as 

follows. First, for a given frame of time, we measured the local light intensity I(r) at the spatial resolution 

of PIV by averaging pixel intensities over non-overlapping square boxes of size Δx = 8.25 μm. The 

fluctuations of the local light intensity were then calculated as , where  is the average 𝛿𝐼(𝒓) = 𝐼(𝒓) ― 〈𝐼〉 〈𝐼〉

light intensity over all the boxes at different r. Since the local light intensity is linearly proportional to the 

local bacterial density n, we have . We then used the built-in Fast Fourier Transform (FFT) 𝛿𝐼(𝒓) ~ 𝛿𝑛(𝒓)

function of Python numpy.fft package to convert the discrete density fluctuation field δn(r) = δn(x,y) to the 

density fluctuation field in the momentum space δn(k) = δn(kx,ky). Note that to compensate the difference 

between FFT and the continuous Fourier transform, we multiplied the k-space density fluctuation from FFT 

by the square of the spatial spacing of the discrete n(r), Δx2 = 68.1 μm2. The Fourier transform of the Ursell 

function in the k-space was then computed as

,𝑆(𝑘𝑥,𝑘𝑦) =
1

2𝐴〈𝛿𝑛(𝑘𝑥,𝑘𝑦)𝛿𝑛 ∗ (𝑘𝑥,𝑘𝑦)〉

where A is the total area of the field of view and * denotes the complex conjugate.  represents an average 〈 ∙  〉

over multiple images from different times. Finally, the orientational average S(k) was obtained by averaging 

all S(kx,ky) with k = (kx
2 + ky

2)1/2 falling in the bin [k, k+dk].    

Energy spectra. A similar method was also used to calculate the energy spectra of bacterial suspensions. 

First, we applied the Python package numpy.fft to convert the discrete velocity field v(r) = [vx(x,y), vy(x,y)] 

obtained from PIV to the velocity field in the momentum space vk(k) = [uk(kx,ky), vk(kx,ky)]. To compensate 

the difference between FFT and the continuous Fourier transform, we multiplied the k-space velocity from 

FFT by the square of the spatial spacing of the discrete v(r), Δx2 = 68.1 μm2. The point-wise kinetic energy 

density in the k-space was then computed as

,𝐸(𝑘𝑥,𝑘𝑦) =
1

2𝐴〈𝑢𝑘(𝑘𝑥,𝑘𝑦)𝑢 ∗
𝑘 (𝑘𝑥,𝑘𝑦) + 𝑣𝑘(𝑘𝑥,𝑘𝑦)𝑣 ∗

𝑘 (𝑘𝑥,𝑘𝑦)〉

where A is the total area of the field of view and * denotes the complex conjugate.  represents an average 〈 ∙  〉

over multiple images from different times. There was a slight difference in computing the orientational 

average of S(k) and E(k). Specifically, the energy spectrum E(k) was obtained by first averaging all E(kx,ky) 

with k = (kx
2 + ky

2)1/2 falling in the bin [k, k+dk] and then timing the average with 2πk. The procedure ensures 
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that . Thus, the method is mathematically equivalent to the calculation 〈𝒗2〉/2 =  〈𝑣2
𝑥 + 𝑣2

𝑦〉/2 = ∫∞
0 𝐸(𝑘)𝑑𝑘

of E(k) from the Fourier transform of the two-point velocity correlation function .61〈𝒗(𝒓𝟎) ∙ 𝒗(𝒓𝟎 + 𝒓)〉
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Figure captions:

Fig. 1 Density fluctuations and active turbulence. (A) A snapshot of a dense suspension of E. coli with 

bacterial volume fraction  = 6.4%. (B) 2D velocity field of the suspension shown in (A), which exhibits 𝜙

characteristic active turbulent flow patterns. See also Supplementary Video 1. (C) A snapshot of a dilute 

suspension of E. coli with  = 1.6%, which shows no active turbulent flows. Scale bars are 85 μm. (D) 𝜙

Average pixel intensities of images, I, as a function of . Squares indicate the intensity of the spatial average 𝜙

over the full field of view, where disks indicates the temporal average intensity of single pixels. Inset shows 

the images of bacterial suspensions of different  under the same light illumination. 𝜙

Fig. 2 Density and velocity spatiotemporal correlations. (A) Density spatial correlations at different 

bacterial volume fractions . Radial position r is normalized by the average length of bacteria lb = 3 μm. 𝜙

(B) Density temporal autocorrelations at different . Time t is normalized by the characteristic swimming 𝜙

time of bacteria τb = 0.2 s. (C) Velocity spatial correlations at different . (D) Velocity temporal 𝜙

autocorrelations at different .  (%) of different curves are indicated in (A). (E) Density and velocity 𝜙 𝜙

correlation lengths, λ, versus . (F) Density and velocity correlation times, τ, versus . The error bars in 𝜙 𝜙

(E) and (F) represent the standard deviations of measurements over 3 independent experiments. 

Fig. 3 Density fluctuations of bacterial suspensions. (A) The standard deviation of bacterial number ΔN in 

a subsystem of side length l as a function of the area of the subsystem l2 for suspensions of different volume 

fractions . ΔN is normalized by the length of the subsystem l, which is proportional to the square root of 𝜙

bacterial number in the subsystem . l is presented in a dimensionless form, , where lb = 3 μm is 𝑁 𝑙 = 𝑙/𝑙𝑏

the average length of bacteria. Dark green triangles indicate the density correlation lengths λ( ) from Fig. 𝜙

2E. The black dashed line indicates a power-law scaling of 0.33. The data at  measure the temporal 𝜙 = 0

fluctuation of the intensity of the microscope illumination light as well as the image noise of the sCMOS 

camera. Inset: Scaling exponent α versus . α is extracted by fitting the experimental data for l < λ( ). As 𝜙 𝜙

guide for eye, the dashed line in the inset indicates the constant α = 1/3. (B) The Fourier transform of the 

Ursell function, S(k). The wavenumber k is normalized by kb = 2π/lb, where lb = 3 μm is the length of 

bacterial body. S(k) is equivalent to the static structure factor for any k ≠ 0. 
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Fig. 4 Energy spectra E(k) of bacterial suspensions. The wavenumber k is normalized by kb = 2π/lb, where 

lb = 3 μm is the length of bacterial body. The volume fractions of different suspensions  are shown in the 𝜙

legend. Shaded region indicates the range over which the scaling exponent β is fitted. The black dashed line 

shows a power-law scaling of -3. The red dashed line is a fitting of E(k) at  = 0.8% using Eq. (2). In the 𝜙

fitting, the bacterial number density n and the dipole length ld = 1.9 μm are from experiments, whereas the 

dipole strength κ = 100 μm3/s and the regularization length ε = 14 μm are taken as fitting parameters. Inset: 

Scaling exponent of E(k), β, as a function of . The dashed line indicates β = 3.3.𝜙

Fig. 5 Correlation between density fluctuations and energy spectra in the steady state. (A) Energy spectra 

E(k) plotted against the number density fluctuations ΔN at the corresponding length scale for bacterial 

suspensions of different volume fractions . Gray symbols are for low-  suspensions. The black dashed 𝜙 𝜙

line is a polynomial fitting of the master curve, serving as guide for the eye. (B) E(k) plotted against the 

Fourier transform of the Ursell function S(k). 

Fig. 6 Correlation between local density fluctuations and kinetic energies in the steady state. (A) The fields 

of density fluctuations and kinetic energy at the length scale l = 2.75lb in a bacterial suspension of  = 4.8%. 𝜙

lb = 3 μm is the average length of bacteria. The field of view is 420 μm by 360 μm. (B) The  dependence 𝜙

of the correlation between the local density fluctuations and kinetic energy C1 (disks), the correlation 

between the local density and the divergence of the bacterial flux C2 (crosses), and the correlation between 

the local density and kinetic energy C3 (squares). The results are averaged over 1000 frames in the steady 

state, and the error bars represent the standard deviations. 

Fig. 7 Correlation between density fluctuations and energy spectra in the transient state. (A) The field of 

density fluctuations and the field of the velocity of a bacterial suspension of volume fraction  = 6.4% at 𝜙

different time t in the transient state. The gray-scale background indicates the magnitude of local density 

fluctuations, whereas the yellow arrows show the local velocities. Light is turned on at t = 0. See also 

Supplementary Video 2. (B) Temporal evolution of the GNF scaling exponent α, the total kinetic energy 

 and the area fraction of regions with collective flow M during the transition to turbulence shown in 〈𝑣2〉/2

(A). (C) Number density fluctuations ΔN as a function of subsystem size l2 at different times over the 

turbulent transition shown in (A). ΔN is normalized by the length of subsystems l, similar to that in Fig. 

3A. . t is indicated in the legend. (D) Energy spectra E(k) versus density fluctuations ΔN during the 𝑙 = 𝑙/𝑙𝑏

Page 18 of 30Soft Matter



19

turbulent transition. t and  are encoded by the marker size and color, respectively. The black dashed line 𝜙

is the master curve shown in Fig. 5A.
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